
Expressive, Interactive Robots: Tools, Techniques,
and Insights based on Collaborations

Jesse Gray, Guy Hoffman, Sigurdur Orn Adalgeirsson, Matt Berlin, and Cynthia Breazeal
Robotic Life Group

MIT Media Laboratory
20 Ames Street E15-468
Cambridge, MA 02139

Email: {jg,guy,siggi,mattb,cynthiab}@media.mit.edu

Abstract—In our experience, a robot designer, behavior ar-
chitect, and animator must work closely together to create
an interactive robot with expressive, dynamic behavior. This
paper describes lessons learned from these collaborations, as
well as a set of tools and techniques developed to help facilitate
the collaboration. The guiding principles of these tools and
techniques are to allow each collaborator maximum flexibility
with their role and shield them from distracting complexities,
while facilitating the integration of their efforts, propagating
important constraints to all parties, and minimizing redundant
or automatable tasks. We focus on three areas: (1) how the
animator shares their creations with the behavior architect,
(2) how the behavior architect integrates artistic content into
dynamic behavior, and (3) how that behavior is performed on
the physical robot.

I. INTRODUCTION

Creating a robot to expressively interact with humans poses
a novel set of challenges: designing a physical robot capable of
compelling motion; animating expressive physical motion for
that complex interactive robot; and combining this expressive
motion with the robot’s functional control to produce interac-
tive behavior.

Traditionally, motion generation for robots has fallen into
one of two extremes. On the one hand, mobile and industrial
robots have been controlled by strictly functional approaches,
such as Inverse Kinematics (IK) and self-collision avoidance.
Some of these motion generation systems have been trans-
ferred to control interactive robots, a decision resulting in
stiff, unnatural, and often slow or clumsy motion. On the other
hand, animatronic robots have been scripted using a variety
of input techniques, including direct motor commands from a
sequencer or even a 3D animation tool. These techniques either
constrain the animator to animate in the unintuitive space
defined by the physical motor layout, or constrain the robot
design to follow restrictions of the 3D animation tool, or both.
Moreover, just as functional control lacks the expressiveness
of authored gestures, pre-scripted animatronic control can be
devoid of a functional relation to the robot’s surroundings,
prohibiting the adaptive and reactive behavior required of
robots designed for human interaction.

Human-interactive robots must combine these approaches,
and embrace the reality that experts with different backgrounds
must collaborate together to make these robots possible. Like

Behavior
ArchitectAnimator Robot

Designer{ { {

a b c

Fig. 1. Experts from three fields collaborate to produce an interactive robot
with expressive behavior. This paper covers lessons learned and tools devel-
oped from our experiences with these collaborations, focusing on the parts
shown: a) interface between animator and behavior architect, b) mechanisms
to produce dynamic behavior using animated content, and c) the interface
between behavior architect and physical robot.

animatronic robots, they need to move in a reactive and life-
like manner, employing gestures and nonverbal behavior fit
for human interaction. But due to their existence in real-world
environments, they must also relate to their environment and
interact functionally with the world around them.

To produce such a robot requires collaboration between
people with a wide range of areas of expertise. This paper
describes our own method for breaking down this process
among experts, and the lessons we have learned about how
to allow them to best work together to produce a compelling,
expressive system.

The roles we will describe here are the animator, behavior
architect, and designer of the physical robot. Our motivation
is to enable each of these collaborators to have the most
flexibility in their work and to limit the constraints placed
on them to ones that productively define the capabilities of
the system. We want the animator to be able to use the tool
they are most familiar with. We want the behavior architect to
have access to any mechanisms helpful for creating dynamic,
interactive behavior. We want the designer of the physical
robot to employ any complex mechanisms that are necessary,
free of worry that complicated mechanisms will frustrate the
animator or behavior architect. The goal is not to hide the
limitations of the robotic system from the other collaborators
- quite the opposite, we believe making these limits as visible

as possible will aid the creation of the best, usable content.
We do, however, seek to shield each from complexities of
implementation and control that would complicate their work
without benefit. This interaction is pictured in figure 1.

Across all of the mechanisms, we have a consistent set of
goals:

• Best Tool/Technique for the Job: Allow each collaborator
to employ whatever tools/techniques they need. Excellent
animation tools exist, and we should be able to leverage
these tools and the artist’s familiarity with them. The
behavior architect should be provided with the best mech-
anisms possible to mix, blend, and combine animations
to get the behavior they want. The robot designer should
build the robot without constraining their creativity based
on a certain control structure.

• Playback Consistency: The correlation between the robot
motion as viewed in the animation authoring tools, the
tools used by the behavior architect, and the performance
on the actual robot should be clear and predictable.

• Manage complexity: Each collaborator should have access
to as many useful constraints, data, and meta-information
as possible, but not be burdened with arbitrary complex-
ities.

• Safety: Animation/behaviors should be safe when played
out on the robot. The authoring tools and—more
critically—the execution systems should take into account
the robot’s physical limits: self-collision, joint limits,
cable limits, workspace collision, and safe velocity and
acceleration bounds.

• Scalability: Provide scalability (both in allowing high
degrees-of-freedom robots, and in the capability to trans-
fer the system between robots) by automating processes
and facilitating the sharing of information/data among
collaborators.

Covering our approaches to these requirements brings us
through sections III to V, where we follow, step by step,
the progression the animated content takes on the way to the
robot: starting with the animation tool, making its way into the
behavior engine to be re-mixed and blended, then finally off
to be transformed into data necessary for the physical robot.

The system we will describe here is not the only way to
accomplish these goals, and there is always room for improve-
ment (see section VI). However, we feel we have assembled a
set of tools/techniques that hits an important “sweet spot”,
greatly advancing possible collaboration between people in
these three roles.

In section III, we describe the interface between the ani-
mator and behavior architect, which is designed to eliminate
any redundant setup work, allow them to share an intuitive
view of the joints of the robot, and allow the animator to
prototype/author animations while also providing appropriate
behavioral hints.

In section IV, we describe the tools available to the behavior
architect which relate to authoring motor behaviors through
combining animation data in different ways.

Fig. 2. In order to achieve an evenly bending finger, the model contains
multiple joints linked down the center of the finger. These joints bend
simultaneously causing the finger to curve.

In section V, we describe the interface between the behavior
architect and the physical robot, which is designed to abstract
complex linkages, real-time concerns, and calibration issues
away from the day to day work of the behavior architect.

II. PHYSICAL PLATFORM

While these collaboration techniques were first attempted
with a 13 Degree of Freedom (DoF) robot called “Public
Anemone” [1], the first robot to push the development of
much of the automation and abstraction was the much more
complicated 65 DoF Leonardo [2]. These tools have also been
used in robotic projects such as Aida, Aur [3], the Huggable
project [4], the Operabots project, and Nexi.

III. CONNECTING ANIMATOR TO BEHAVIOR DESIGNER

In this section, we describe insights and techniques based
on our work collaborating with animators to create expressive
yet interactive behavior for robots. At the minimum, it is
necessary to share 3D models and animations between the
animator and the behavior architect. However, we have found
that sharing additional information such as simplified DoF
abstractions, joint constraints, and meta information about the
animations enhances the collaboration, without increasing our
commitment to a particular animation software package.

A. Abstract File Formats

To create a clean interface to any authoring tool a profes-
sional animator might want to use, we created file formats for
representing 3D models and animations. The only restriction
on authoring tools that can be integrated into our pipeline
is that they provide plug-in capability to access and export
the 3D models and animations. This provides the flexibility
to switch to new authoring tools as they become available.
Currently, such plug-ins have been written for Maya and 3D
Studio Max.

B. Abstracting DoFs from Skeleton

We use the “skeleton” modeling technique, where a robot
is represented as a hierarchical skeleton of joints connected
by bones, with the visible surfaces of the 3D bot driven by
the motion of these underlying joints. Because of the way
skeleton modeling functions, an animator might be forced to
model certain DoFs in a fairly complicated way, e.g. figure 2
and 3. These methods both use multiple joints in the animation
tool to model what the animator and behavior architect would

(a) (b)

Fig. 3. (a) In a four-bar linkage the effector (shaded) stays parallel through
its motion. (b) This is approximated in the 3D authoring environment by using
two joints, where the child joint is programmed to compensate for the rotation
of the parent.

prefer to think of as a single DoF. Luckily, the animation tools
all include mechanisms for the animator to make an interface
to move those joints as a single element.

Unfortunately, this wouldn’t help our behavior architect,
because whatever interface is added in the animation tool
to facilitate this process won’t exist in the raw 3D model
exported to the behavior engine, and so any procedural moving
of the DoF in question would involve keeping track of all its
component parts.

We want the same simplified controls the animator created
in the authoring tool to become available for manipulation of
degrees of freedom programatically by the behavior architect.
Since the animator has already done the work of defining these
controls, instead of having our behavior architect redefine them
we can export this information from the animation authoring
tool.

There are many different ways the animator might accom-
plish tying multiple joints into one scalar control. We wish to
remain agnostic to the specifics of the animation tool and to the
method used by the animator to tie the joints’ motions together.
So, instead of attempting to process and export the animator’s
custom interfaces directly, we resort to using a “calibration
animation.”

C. Calibration Animation

It is important for the animator’s model to include the cor-
rect axes of rotation and joint limits for the joints of the robot.
The animation authoring tools tend to have a good UI for
manipulating these joint parameters, so we use the animator’s
3D model of the robot as the canonical repository of this
information. Keeping the animator’s model as the canonical
repository of this information ensures that the animator has
access to all the known information about joint restrictions,
decreasing the chance of creating animations that will not run
correctly on the robot.

However, these parameters are also required for the oper-
ation of the behavior engine (and we wish to avoid error-
prone manual replication of information). In an effort to stay
agnostic towards any specific authoring tools, our architecture
uses a calibration animation to obtain specific attributes about
the robot’s configuration instead of deeply inspecting the 3D
model within the animation tool. The authoring tool simply

LogicalDOF
Body Lean Fwd/Rear

LogicalDOF
Body Lean Side/Side

Motor

Motor

Lean
Differential

Left

Lean
Differential

Right

RenderingDOF
Lean Differential Left

val=Leanfb+Leanss

RenderingDOF
Lean Differential Right

val=Leanfb-Leanss

c) Differential Joint

ModelDOF
Body Lean Fwd/Rear

ModelDOF
Body Lean Side/Side

LogicalDOF
Right Wrist

Motor
Right
Wrist

RenderingDOF
Right Wrist

val=rWrist

a) Simple Joint

ModelDOF
Right Wrist

Leanfb

Leanfb

Leanss

Le
an ss

rWrist

LogicalDOF
Base Slide

Motor
Base
Slide

RenderingDOF
Base Slide

val=bSlide

b) 4-Bar Joint

ModelDOF
Base Slide

bSlide

ModelDOF
Base Slide Compensate

bSlide

bS
lid

e_
co

mp

val=bSlide

Fig. 4. LogicalDoFs interface between the—sometimes unintuitive—3D
model of a degree of freedom and the—also possibly unintuitive—mechanical
linkage that moves that DoF, providing a simple scalar value controlling a
“logical” degree of freedom.

outputs an animation where every DoF is moved individually
to its limits (which for some could represent movement of
multiple model joints, if the animator has set up a complex
DoF as described in the previous section). Our system reads
this calibration animation and uses the motion contained
within to define the joint axes and joint limits, as well as
to discover which joints are tied together as one DoF (and in
those cases, figure out the mapping of how they are correlated).

D. Logical DoF Representation

Once the behavior system is able to pull DoF informa-
tion out of the calibration animation, it can store all this
information in a LogicalDoF. The role of the LogicalDoF
is to store all the relevant information that the animation
tool had about the DoF (including limits, axes, and any
DoF simplification controls added by the animator to abstract
multiple joints as one DoF), and present it as an intuitive
interface to the behavior architect. In this way, instead of
being faced with potentially messy joint setups necessitated
by skeleton modeling, the behavior architect is presented with
a similar interface to the one the animator had created for
themselves: a single scalar value per DoF. This process is
shown in the left-hand-side of figure 4 (the right hand side
will be covered in section V).

E. Animating Joint Priorities

Our robots frequently have to perform multiple different
motions at the same time: for example, a robot might be
running an animation that extends its right arm for a handshake
while maintaining eye-contact with a person. In this example,
one part of the robot is controlled via animation while the other
is controlled using functional control with sensor feedback.
In many cases these situations are handled by the blending
systems in section IV without intervention of the animator.

However, we find that since our robots are employing a
procedural orient behavior at almost all times, it can be helpful

to provide the animator a mechanism to specify when certain
joints normally overridden for orienting the robot are required
for the expressive purpose of the animation.

For example, if an animation includes an “eye roll”, it
is imperative that at that moment the animation have full
control over the eyes (the robot must momentary cease any
eye orientation behavior it is performing). To address this
need, we provide a mechanism for the animator to specify the
importance of certain DoFs to the success of the gesture. This
mechanism is implemented as a set of special, invisible joints
whose value, instead of indicating a rotation or translation,
indicates the animation’s desire for full control over a particu-
lar DoF. This implementation allows the animator to vary the
ownership of a DoF over the duration of an animation, so the
joint is only seized for the short time it is required. Also, this
strategy means that the ownership data will be automatically
included in any exported animation file without any authoring
tool modifications.

IV. TOOLS FOR THE BEHAVIOR ARCHITECT

The role of the behavior architect, as it fits into the structure
we are proposing here, is to create the system which will
drive the real-time behavior of the robot. This could take
many forms, with varying levels of autonomy, but here we’re
focusing in particular on how the work of the animator can be
used to create expressive behavior for the robot, while allowing
for the flexibility of control required for an interactive robot.
This section covers the common types of motion we have had
our robots perform, and the tools we provide the architect
to accomplish these motions utilizing the animations from
the animator. Many of these techniques were developed for
graphical characters, and are adapted from [5].

A. Kinds of Motion

We have found that a robot interacting with a human
counterpart needs to be able to move in four distinct ways:

1) Gestural: First, a robot is expected to express its internal
state through understandable social gestures and communicate
ideas in verbal and non-verbal ways. This calls for a system
that enables an animator to author natural looking gestures and
behaviors to be played out on the robot. These motions are
typically iconic gestures like thumbs-up, shoulder shrug, nod,
and eye-roll.

2) Functional: As a physically embodied agent, the robot
needs to be able to engage in functional motion relating to
objects in the robot’s workspace and human counterparts.
Touching and manipulating objects and IK gaze fixation are
examples of such motion.

3) Procedural Expressive: A third motion requirement may
be called procedural expressive motion. These are motions
that are mostly expressive in their function, i.e. not related
to an external object, but are too variable to be authored as
complete fixed gestures. An intermittent blink behavior, an ear
twitch in response to a new sound, and an overall body posture
indicating an emotional state are some examples of procedural
expressive motion.

Press Wave

= A single joint configuration
 of the robot, or Pose

Idle
Ready

Point

= Blended Pose

Fig. 5. Posegraph representation of imported animation data. Each node
either represents a single pose of the robot, or a set of example poses that
can be blended together at runtime based on input parameters.

4) Parameterized Gestures: Finally, parameterized gestures
are required when an action may be performed in a number of
ways, and it is desirable to form a continuous, parameterized
space of actions rather than rely on choosing amongst a few
discrete examples. We have used this method, for example, to
create a continuous space of pointing gestures which allow the
robot to point to an arbitrary location while maintaining the
expressiveness of the original, discrete set of hand animated
motions.

B. Realizing these Kinds of Motion

This section covers mechanisms to produce each type of
the above motions individually. However, to create interesting
behaviors, several motions may need to occur simultaneously
which will be explained in the next section.

Our basic representation for positioning the robot is through
a posegraph [6] (figure 5). In this graph, each node represents a
pose of the robot, and the (directed) edges represent allowable
transitions between poses. An animation, then, is loaded into
this representation as a series of connected poses.

Gestures can be performed by simply traversing the ap-
propriate series of poses in the posegraph. The connections
between an animation and the rest of the posegraph are
accomplished manually - this gives the behavior architect
control of what transitions between animations are allowed
based on their appropriateness to the behavior of the creature.

Parameterized gestures are created by authoring multiple
versions of the same gesture, and blending them together based
on a set of parameters provided in real-time (in the manner
of verb/adverb actions [7]). This blending happens within
the nodes of the posegraph. These blended nodes, instead
of representing a single static pose, each contain multiple
poses that define a blend space. Whenever a blended node is
traversed, external parameters indicate a position in this blend
space, and the node reads these parameters to produce the
resulting blended pose.

Functional motion can be determined by direct IK calcu-
lations given the kinematics of the robot and the goals of
the action. This often results in undesirably robotic motion,
so to realize a functional goal (such as touching an object)
we combine the IK calculation with parameterized gestures.
These gestures are used to get as close as possible to a goal
condition, then IK can take over to fulfill the goal with minimal

disruption to the expressive behavior of the robot.
Procedural expressive motion, while it describes different

motion scenarios than the above categories, can be imple-
mented as special cases of the above techniques. Many sit-
uations in this category can be described as a need to blend
immediately between two static poses, for example, a blinking
eye, or a slight “perk up” in response to an audio signal.
These cases can be seen as a trivial case of parameterized
gestures, where the change in parameter controls the motion
and the example animations themselves contain no motion.
For example, a blend parameter might control the blend space
from example animation “eyes open” to example animation
“eye closed”, allowing for procedural blinking.

C. Combining Simultaneous Motions

The above section covered each category of desired motions
individually. In general, however, the robot’s behavior will call
for executing a number of motions simultaneously. We have
found that there are several ways in which we find ourselves
routinely combining different motor behaviors.

1) Multiple Gestures: In a simple posegraph, the robot has
one “play-head” which represents its current position as it
traverses the graph. This can be limiting, because the robot
may well wish to perform two gestures (parameterized or
simple) simultaneously on different body parts (e.g., nodding
while pointing). For this reason, we allow multiple “play-
heads” to simultaneously traverse the posegraph. However,
each gesture, or path through the graph, will have an associated
set of preferences over what joints it requires. This allows
the robot to play two compatible gestures simultaneously, and
prevents it from initiating a gesture which requires joints that
are currently in use. The set of required joints can be specified
manually, however usually it can be assumed to be the set of
joints that move during that animation.

2) Postural Overlay: As opposed to the gestures above,
a postural overlay is an animation (or blended space of
animations) which is designed to be applied to the DoFs of
the robot all the time, even when gestures are happening. The
posture often is used to reflect the emotional state of the robot.
Just as with “multiple gestures” blending, a new “play-head”
is required which will play this overlay animation at the same
time as gestures or other activity is taking place. However,
instead of taking full control over specific DoFs, the overlay
is designed to be applied with a very light weight to all the
DoFs of the robot, thereby slightly changing any gesture the
robot performs. This is done by simply blending the postural
animation with the gesture, using a very light blend weight.
Gestures also have the option of locking out this postural
overlay for specific joints, if their absolute position is critical
(e.g., when reaching for an object, ancestors of the robot’s
hand must maintain their exact position).

3) Idle Overlay: An idle overlay can give the creature an
appearance of life even when it is not actively executing a
gesture. This type of overlay keeps track of which joints
have not been claimed by any active gestures, and applies
the current pose from an idle animation to those joints.

We typically use an idle animation which simulates gentle
breathing motions.

4) Procedural Overlay: Finally, any desired procedural
overlay can be applied. One type of procedural overlay is
the IK system for fine control of the robot’s hand position.
However, our most used procedural overlay is the orient
system which the robot uses to look at a target. This system
determines which joints it currently has access to based on
the preference set of the current gestures, and then uses the
joints it can access to orient the eyes and body as best it can
towards the target. Because the robot is constantly looking
around, we provide a special channel here to give the animator
direct control over this behavior (section III). This allows the
animator to control this important aspect of the animation’s
performance; instead of animating just the position of the eyes,
they can also animate the transitions between procedural and
animated content for them.

D. Types of Blending

There is an important distinction between additive and
weighted-average blending, we have found it is important to
provide both as options to the behavior architect. Weighted
average blending is useful for combining multiple animations
into a resulting animation that has aspects of all of the inputs,
where each joint position will lie somewhere between the
example positions.

Additive blending, on the other hand, is useful for offsetting
animations so they are fully performed but from a new starting
position. This is particularly useful to apply to the torso and
neck areas of the look-at behavior of the robot. For example,
when performing a nod and looking at a person, using additive
blending the robot will perform the full nod in its current
orientation. In a weighted average blend system, it would have
to either fully center itself to perform the full nod (turn look-
at off), or do a blend and get something halfway between a
centered nod and an unmoving “look to the right” pose (a
half-height nod oriented half-way to target).

V. CONNECTION TO PHYSICAL ROBOT

Just as section III discussed 3D model implementation
issues that produce unnecessary complications, the physical
mechanisms of the robot can also give rise to certain complex-
ities that could burden the behavior architect or the animator.
In this section, we describe some of the requirements of
controlling a physical robot, and how we use the interface
between the behavior system and the robot to model these
complexities and shield the behavior architect and animator
from needing to consider them in their daily work. This means
that the robot designer need not be constrained by the preferred
tools of the other collaborators, nor are the other collaborators
inconvenienced by the complexities introduced by the robot
designer.

A. Model / Motor Discrepancies

The most common DoF is a single motor controlling a
single rotation, mirroring the simple representation in the

Front View - Pure RollSide View - Pure Tilt
(a) (b)

Fig. 6. A differential linkage prohibits mapping a single motor to a single
DoF’s movement. Both motors need to move in symmetry to achieve tilt
motion (a) and in anti-symmetry to roll (b).

behavior generation system. However, other linkages are more
complicated.

There are many interesting linkages that occur throughout
the robots discussed here, but a good example is a differential
linkage (Fig. 6), which is often used to control two DoFs
in a torso or neck where movement both forward/back and
side-to-side is required. As shown in the figure, the Logi-
calDoFs of forward/back and side-to-side do not map cleanly
onto individual motors - each direction requires motion from
both of the motors. Explicitly representing the motors of the
differential is not useful, and is somewhat confusing, for both
the animator and the behavior architect. For this reason, we
have the RenderingDoFs on the right hand side of figure 4.
Each physical motor has a corresponding RenderingDoF, and
its job is to acquire and transform data from one or more
LogicalDoFs into the form needed by that motor.

Thus, in the behavior system, the data is represented in
its most intuitive “logical” format, with one LogicalDoF for
each of the logical degrees of freedom of the robot. The
RenderingDoFs serve as the mechanism to transform the data
into the format used by the actual motors of the robot. These
complete the three stage system from figure 4, where each
stage serves to abstract unnecessary complexities away from
the collaborators.

B. Real-time Control

Updating the target position for a motor must happen at a
regular, high frequency to produce smooth motion. Updating
as slow as 30hz, a reasonable update rate for computer graph-
ics, can introduce visible and audible jittering in a motor’s
performance. However, it is undesirable to insist on a precise,
60hz or greater update from the behavior engine. Depending
on the interaction, it may have a large amount of processing to
do, which could put a cap on its maximum frame-rate. Further,
without a real-time operating system there is no guarantee that
the updates will come at precise intervals.

We address this problem with a “Motor Rendering” layer
that buffers data from the behavior engine. This layer intro-
duces a 200 ms delay with its buffer, but it allows the data to be
read at whatever frame-rate the motors require by upsampling
with spline interpolation.

Behavior System Position Outputs:

Real Time

Current TimeRender Time (Current - 200ms)

Po
sit

io
n

Behavior System Position Outputs:

Frames

Po
sit

io
n

F1 F2 F3 F4

F1 F2 F3 F4

a) Position Output Vs. Frame Number

b) Position Output Vs. Real Time

Fig. 7. A) shows the position output of a DoF from the behavior system
plotted against frame number. We can see that there the DoF has a constant
velocity B) shows the position output of a DoF from the behavior system
plotted against real world time. We can see that although the DoF has constant
velocity with respect to frame number, the real DoF velocity changes when
there are fluctuations in duration of a frame.

An additional problem we face with our system is based on
an internal assumption that the time between each update is
precisely 1/30th of a second. Using virtual-time in the system
greatly simplifies certain calculations (as well as aiding in
debugging), but it can introduce velocity discontinuities if the
updates happen somewhat irregularly on a taxed computer
(figure 7). To allow the behavior architect to continue to work
in this simplified virtual-time, but to preserve joint velocities,
we introduce the timewarp renderer.

The timewarp renderer takes in position samples from the
behavior engine and places them in the interpolation buffer
(just as described above). However, instead of placing them
in the buffer at the current time, it places them at even
1/30th of a second intervals (despite the fact that they arrive
irregularly). Then, by the time the read head travels through
that buffer pulling out upsampled data for the motors, the
behavior engine’s samples are neatly arranged as if they came
in at precisely 1/30th of a second intervals, and constant
velocities are preserved.

The timewarp renderer must perform one more critical
step: keep the read head from catching up to the write head
(underbuffer), or falling too far behind (overflow), as would
happen if the average speed of the behavior engine changes
from the declared 30hz. This can be achieved by applying a
scaling factor to the ∆real− time value used to advance the
read-head between reads. This factor can be used to keep the
buffer close to a desired size, but care should be taken to keep
this value well filtered - if it changes too quickly, it creates
the same velocity discontinuities we are trying to prevent.

C. Model/Robot Calibration

We have found it crucial to maintain an animated model
that is as true to the physical incorporation of the robot as
possible, in structure, dimension, and movement. While this
seems obvious, we stress that in order to bridge the inherent
differences between the virtual model and the robot, we have
gone to great lengths to create a feasible mapping between the

Fig. 8. Transparent rendering of 3D model of robot overlayed on live video
feed. Useful for calibration.

euclidean joints representing the virtual model and the various
physical controls that drive the robot.

In the past, we have found that a poorly matching model
results in a severely hampered workflow, due to the misrepre-
sentation in software of the actual result of the robot’s physi-
cal motion. This violated not only the playback consistency
authoring requirement but also affected safety calculations,
as it was hard to evaluate from the virtual models when
the robot would self-collide or reach other physical limits.
In addition, a poorly calibrated model results in a highly
iterative authoring process, requiring manual adjustment of
uncalibrated animations until the desired physical result is
reached. This also imposes unnecessary wear and tear on the
robot.

The minimal parameters needed for calibration are offset
(offset from zero position in the 3D model to the zero position
on the physical robot’s encoder) and scale (encoder ticks per
radian). For complex linkages, the relation of radians traversed
at the end effector to encoder ticks traveled on the rotation
sensor may be nonlinear - in this case, a linear scale may not
be sufficient. For many joints, a combination of calculation (eg.
known encoder/gearbox parameters) and observation (visually
lining up zero positions) may be enough. However, this can
be become tiresome for a robot with many DoFs, or it may
not provide the necessary accuracy.

1) Video Calibration: For joints that cannot be clearly de-
scribed in terms of radians (e.g., a paddle that moves skin on a
robot’s cheek), visual scale and offset calibration are required.
One technique that can facilitate this process is a video overlay
(see figure 8). In this strategy, the camera parameters of the
virtual camera are aligned with those of a real camera, and
the two images are overlaid using transparency. This allows
for straightforward tuning of calibration parameters with less
reliance on subjective assessments.

2) Motion Capture based Calibration: For joints that can
be clearly described in terms of rotation, optical motion
capture can be used to automatically calibrate offset and scale
(or a more complicated non-linear relation, represented as
an interpolated map of example correspondence points). To
minimize requirements on the physical robot, our technique
requires a single trackable marker to be placed on an effector,

Fig. 9. Joint mappings and zeros calibrated by optically tracking a single
marker.

and no access is required at pivots or joint axes. (See figure
9).

First, the two joints closest to the model’s hierarchical root
are used to precisely calculate the position of the physical
robot (allowing the 3D model to be aligned for the next
steps). This can be done by rotating these two joints through
their range, with a marker mounted somewhere on their
descendants. This will create two arcs that will define a single
valid position for the robot.

For each joint that needs calibration, rotating the joint
through its range will cause the marker, mounted on the final
end effector, to traverse through a set of points. Those points
will define a circle, and if each point is recorded along with
the encoder reading at that time, the radians traversed can be
matched against encoder ticks traveled, and these can generate
an encoders-to-radians scale, or even a non-linear mapping
useful for that joint’s calibration.

Further, the line passing through the center of the circle
(perpendicular to its plane) is the axis of rotation for that joint.
The difference between this observed axis and the expected
axis (calculated from the 3D model) indicates the zero offset
necessary to correct the zero position of the joint’s parent
(assuming grandparents and further ancestors are already cal-
ibrated)

D. Flexibility

Robots and their behaviors in the context of HRI research
can often be a moving target. As projects evolve requirements
can change, hardware failures can occur, and mechanisms can
be redesigned. We have found that maintaining an abstraction
layer between the representation of the robot model used in
the behavior system, and the mechanism for rendering motion
data out to the physical robot through RenderingDoFs can
be quite useful. Calibration, joint interdependencies, and non-
linear linkages all are handled here, and thus many changes to
the physical structure of the robot will not affect the behavior
engine or animator. Of course, if there are significant changes

that actually change the morphology, they will need to be
carried all the way through so that each collaborator has a
correct kinematic model.

E. Safety

Experimental robots actively used for research are subject
to damage through standard wear-and-tear as well as unsafe
usage. Also, the possibility of causing such damage can slow
development, as users of the robot will have to be extra
cautious about every new change. Therefore, integrating a
safety layer protecting the robot from harm not only will save
time and money in robot repair but also allow the animator
and behavior architect to work faster and more freely.

We currently do not have a foolproof system to prevent all
kinds of damage to the robot, and this is definitely an area
where we could benefit from more work to achieve our safety
goals outlined in section I. However, we do employ a number
of heuristics that help keep the robot safe.

1) Simulator: The first line of defense is the correspon-
dence between the 3D model and the physical robot. This
allows the animator and the behavior architect to prototype
new animations and behaviors before ever sending them to
the robot.

2) Constrained Generation: In some cases, the mechanism
we use for parameterized gestures can provide a measure of
safety. As opposed to IK solutions that might have unpre-
dictable results when given incorrect input, if we are generat-
ing motions by blending within a set of example animations
which define a continuous, safe space of gestures, no incorrect
input can generate damaging output. For example, if we are
generating a pointing motion by blending example pointing
animations, flawed target parameters can at most generate
extreme pointing examples, but will not be able to cause self-
collision.

3) Output Sanity Check: Although we do not yet check for
possible self-collisions, we do check individual joint limits,
and at the lowest level each joint is prevented from moving
past the extremes of its safe range. Finally, any accelerations
that are out of the acceptable range can signal a fault, and thus
halt the robot.

4) Self Report Watchdog: This is a high-level watchdog
system, designed to detect errors that aren’t caught by other,
more specific checks. Each joint is queried for its current
target position, as well as its current measured position (via
a potentiometer or encoder). If a joint’s measured position
deviates from the target by more than the allowed latency and
noise parameters permit, it may have encountered a hardware
problem or experienced a collision. This system will generate
an error message, and, depending on the configuration, disable
that joint or the entire robot.

VI. DISCUSSION

In this paper we have explained a system that was iteratively
designed through many years of collaborations with artists
and engineers to control at least seven different robots of
different levels of interactivity and physical complexity. Our

system strives to empower each participant of the collaboration
as much as possible by allowing them freedom, making
them aware of important constraints, and shielding them from
unnecessary complexities.

A. Future Work

We have found these techniques and tools to be quite useful,
and though many have seen use across a variety of robots, new
challenges arise with every new project and there is always
room for improvement.

Safety is an important feature for a system that enables non-
roboticists to author content to be played out on delicate, one
of a kind robotic platforms. Our system has several levels of
checking for safety while executing animations and performing
functional control of the robot but there is certainly more to
be done in this area. For example, we currently don’t check
for self-collisions on a model level.

Full confidence in a comprehensive safety system would
allow for very fast iteration and development, with less time
spent double-checking new content and procedures.

Another area for improvement is for better preview tools
for the animator. We currently integrate joint limits into the
model, but integrating velocity and acceleration limits would
eliminate another possible source of error. Even better would
be to provide a preview tool that incorporated physics, so the
animator could quickly view a very realistic rendition of how
an animation would affect the robot.

Finally, we would like to see the animator gain the ability to,
early in the authoring process, view how their animations will
be later blended together (as in section IV). Each animation
is currently viewed independently in the authoring tool, yet
they will be combined in different ways during the robot’s
behavior - it might be interesting, for example, for an animator
developing a postural overlay animation to be able to watch
it affect existing gestures as they author it.

REFERENCES

[1] C. Breazeal, A. Brooks, J. Gray, M. Hancher, J. McBean, D. Stiehl,
and J. Strickon, “Interactive robot theatre,” Communications of the ACM,
vol. 46, no. 7, p. 85, 2003.

[2] C. Breazeal, A. Brooks, J. Gray, G. Hoffman, J. Lieberman, H. Lee,
A. Lockerd, and D. Mulanda, “Tutelage and collaboration for humanoid
robots,” International Journal of Humanoid Robotics, vol. 1, no. 2, pp.
315–348, 2004.

[3] G. Hoffman and C. Breazeal, “Effects of anticipatory perceptual simu-
lation on practiced human-robot tasks,” Autonomous Robots, pp. 1–21,
2009.

[4] J. Lee, R. Toscano, W. Stiehl, and C. Breazeal, “The design of a semi-
autonomous robot avatar for family communication and education,” in
Robot and Human Interactive Communication, 2008. RO-MAN 2008. The
17th IEEE International Symposium on, 2008, pp. 166–173.

[5] B. Blumberg, M. Downie, Y. Ivanov, M. Berlin, M. P. Johnson, and
B. Tomlinson, “Integrated learning for interactive synthetic characters,”
ACM Transactions on Graphics, vol. 21, no. 3: Proceedings of ACM
SIGGRAPH 2002, 2002.

[6] M. Downie, “Behavior, animation, and music: The music and movemnt
of synthetic characters,” Master’s thesis, MIT, 2000.

[7] C. Rose, M. F. Cohen, and B. Bodenheimer, “Verbs and adverbs:
Multidimensional motion interpolation,” IEEE Computer Graphics and
Applications, vol. 18, no. 5, pp. 32–40, 1998.

