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Abstract

Te last 130 years of musical invention are punctuated with fascinating musical instruments that use the electromechanical  
actuation to turn various natural phenomena into sound and music.  But this history is very sparse compared to analog and  
PC-based digital synthesis.

Te  development  of  these  electromechanical  musical  instruments  presents  a  daunting  array  of  technical  challenges.  
Musical  pioneers  wishing  to  develop  new  electromechanical  instruments  ofen  spend  most  of  their  fnite  time  and 
resources solving the same set of problems over and over. Tis difculty inhibits the development of new electromechanical  
instruments and ofen detracts from the quality of those that are completed. 

As a solution to this problem, I propose Nervebox — a platform of code and basic hardware that encapsulates generalized 
solutions to problems encountered repeatedly during the development of electromechanical instruments. Upon its ofcial 
release, I hope for Nervebox to help start a small revolution in electromechanical music, much like MAX/MSP and others  
have done for PC-based synthesis, and like the abstraction of basic concepts like oscillators and flters has done for analog  
electronic synfhesis.  Anyone building new electromechanical instruments can start with much of their low-level work 
already done.  Tis will enable them to focus more on composition and the instruments' various aesthetic dimensions. 

Te system is written in Python, JavaScript and Verilog. It is free, generalized, and easily extensible. 

Tesis Advisor: Tod Machover, Professor of Music and Media
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1 Introduction

Tis thesis documents Nervebox, a hardware and sofware platform 

providing a general control system for electromechanical musical 

instruments.  

Since the time of Taddeus Cahill's Telharmonium, musical 

experimenters have generally spent more of their time re-solving the 

same technical problems than creating music [1]. Tis has had a 

detrimental efect on the whole feld of experimental electronic and 

electromechanical music in two ways.  First, time spent on technical 

problems is time not available for musical and aesthetic 

experimentation, though there is a small potential overlap.  Second, the 

difculty of the technical problems has created a barrier to entry for 

many potential musical pioneers. 

Tis was the state of PC-based sound synthesis before it was 

revolutionized by mature sofware like MAX/MSP, Chuck, 

Supercollider, cSound, and others. Tese have freed experimental 

musicians from needing to each re-invent low-level synthesis before 

being able to start making music [2].  

I am hopeful that bringing a similarly-enabling platform to the feld of 

electromechanical music will catalyze a slow but ever-growing 

explosion in new types of music and expression.  

An efective platform for developing electromechanical instruments 

must include a way to abstract the system's necessary internal 

complexity into a set of simpler concepts that combine in powerful 

ways.  While electromechanical musical instruments vary wildly in 

their designs, there are commonalities among nearly all of them that 

can be used to simplify the ways we imagine and create them. Such a 

system must also be able to represent musical data in a way that is rich 

enough to encompass the expressive dimensions of the input devices 

and open enough to accommodate the musical subtleties of never-

before-imagined instruments. 

Tis abstraction of the elements of electromechanical music, with a 

focus on representation, is the subject of this research. 

I think of it as a nervous system that brings music into machines.
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2 Electromechanical Musical Instruments

2.1 Defnition

All musical instruments are cultural artifacts, and can be categorized 

into a boundless number of ontologies.  For example — musical styles, 

tuning systems, note ranges and timbres, cultural origins, or the 

mechanics of sound production.  Te defnitions of these categories 

serve to describe their location in an ontology and diferentiate them 

from their ontological neighbors.  

As all musical instruments are machines, they can be categorized by 

their underlying technologies.  It is into this ontological tree that I am 

placing my defnition of electromechanical musical instruments.

Defnitions exist for many types of instruments using modern 

technologies: electo-acoustic instruments, hybrid digital-acoustic 

percussion instruments[3], prepared pianos, etc.  I have not found in 

the literature a clear general defnition of electromechanical musical 

instruments, perhaps because they are ofen taken for granted as a 

superset of more specifcally-defned types of instruments.  So I will 

originate a defnition for the purposes of this thesis.  

I am defning electromechanical musical instruments as instruments 

that use  electromechanical actuation to produce motions that generate 

musical signals.  

Tese signals may be acoustic, directly generating sound.  Tey may be 

electronic, made audible through an amplifer and loudspeaker.  Or 

they may exist in various other media, such as wave energy in water or 

resonating strings.  

Tis defnition is intentionally broad, but diferent from its ontological 

neighbors.  Analog or digital synthesizers are not electromechanical 

musical instruments because they do not generate their musical signals 

using electromechanically-induced motion.  Tere is an overlap 

between electromechanical musical instruments electro-acoustic 

instruments[4].  But electro-acoustic instruments that generate their 

musical signals using synthesizers, samples, or recordings do not ft this 

defnition of electromechanical musical instruments.  Prepared pianos, 

on the other hand, are a subset of electromechanical musical 

instruments.

2.2 Selected Historical Examples

Elisha Gray is generally credited with inventing the frst 

electromechanical musical instrument, the Musical Telegraph, in 1876 

[5].  Te Musical Telegraph was a small keyboard instrument which 
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used a series of tuned primitive oscillators to vibrate a series of metallic 

bars.  In the language of the patent, in which it is called the “Telephonic 

Telegraph”, we can see Mr. Gray needing to explain ideas and 

abstractions that we can call by single-word names today.  

Te patent begins:

“Be it known that I, Elisha Gray, of Chicago, in the county of Cook and 
State of Illinois, have invented certain new and useful improvements in 
the art of and apparatus for generating and transmitting through and 
electric circuit rhythmical impulses, undulations, vibrations, or waves 
representing composite tones, musical impressions, or sounds of any 
character or quality whatever, and audibly reproducing such impulses, 
vibrations, or waves, of which art and apparatus the following is a 
specifcation.”

Te Musical Telegraph contained the seeds of the modern synthesizer: a 

keyboard, oscillators, and a predecessor of the loudspeaker.  It also 

contained the seeds of the telephone, for which he famously lost the 

patent rights by submitting his patent one hour later than Alexander 

Graham Bell's.  
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Mr. Gray was prescient enough to see the potential for transmitting 

music  over distances and to multiple receivers.  He also fled a patent 

for an “Electric Telegraph for Transmitting Musical Tones” [6].  Tis 

leveraged the ubiquity of telegraph lines, using them as a transmission 

network for music.  

Taddeus Cahill extended that concept in 1897 with the completion of 

his frst Telharmonium[7], the Mark I.  Te Telharmonium, also called 

the Dynamophone, leveraged the telephone and telephone network for 

music transmission.  

Music was played by live musicians on unique and complex keyboards 

that were inspired by the consoles of church organs[8].  Pressing the 

keyboard keys closed circuits between enormous electromechanical 

dynamos and telephone lines.  Te music could be heard through the 

telephone by asking a telephone operator to connect you to the 

Telharmonium.  

Te instrument preceded the invention of the electrical amplifer, 

requiring a signal generation process which switched a volume of 

electrical power unusual for any musical instrument.  He describes the 

signal generation in his 1895 patent application:

“By my present system, I generate the requisite electrical vibrations at 
the central station by means of alternating current dynamos, or 

alternators, as we may briefy term them.  ...  Te musical electrical 
vibrations which I thus throw on the line are millions of times more 
powerful, measured in watts, than those ordinarily thrown upon the 
line by a telephone microphone of the kind commonly used, ...”

Te alternators produced clean, sine-like waves.  Te sound was pure 

and sweet, but lacked character and timbral variety.  Te Telharmonium 

could produce more complex timbres by borrowing a technique from 

pipe organs.  Pipe organ consoles feature a control interface called 

organ stops, which open and close the airfow to ranks of pipes which 

vary by timbre or octave range.  Opening diferent stops will cause any 

note pressed on the keyboards to be expressed on diferent ranks of 

pipes, thereby producing diferent timbres.  Multiple stops can be 

opened simultaneously to produce complex combinations of timbres.

14
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Cahill's patent includes a set of sliding drawbars, an afordance enabling 

players to add various harmonics to any note played on the 

Telharmonium.  Te additive synthesis of multiple harmonics is 

acoustically similar to the simultaneous sounding of multiple ranks of 

organ pipes.

Te Mark I weighed 7 tons.  It was followed by the Mark II and Mark 

III, which each weighed 200 tons.  

Te enormous mass of these instruments echoes the enormity of the 

challenges facing early pioneers of electromechanical music.  Te 

illustrations from the patents remind us that these inventions came 

from a time when every component had to made by hand from a 

limited palette of materials.  Tese economics and the general lack of 

knowledge about electricity are enough to explain the sparse 

development eforts during the early years of electrical invention.  

Tese instruments may seem a bit crude and naïve.  But the times were 

not naïve mechanically or musically.  Tis was the short-lived golden 

age of mechanical music, in which the concepts of the player piano and 

the barrel organ combined and  mutated into the orchestrion — a 

pneumatically-actuated whole-orchestra-in-a-box,  including piano 

strings, organ pipes, woodwind instruments, drums, cymbals, wood 

blocks, and more.  

Te most sophisticated models contained 3 or 4 full-sized violins, 

which were fngered by felted mechanical paddles and bowed by an 

ingenious circular horsehair bow.  Te speed and pressure of the bow, 

the fngering of notes and even vibrato, all of this musical expressivity 

was actuated by pneumatically-powered mechanical components.  Te 

score was encoded in holes punched on a wide paper roll which was 

read pneumatically.  

We may have seen the development of more sophisticated, electrically-

actuated orchestrions if it were not for the explosion in popularity of 

radio in the early 1920s.  Te Musical Telegraph, the Telharmonium, 

the Phonograph, the orchestrion, and the radio were all attempts to 

provide music without the need for musicians.  Each had their 

drawbacks.  But radio was the clear winner by the 1920s [8].  

Te mid-20th Century brought the Hammond Organ, which borrowed 

many ideas from the Telharmonium.  Laurens Hammond's 1934 

patent[9] entitled "Electrical Musical Instrument" shows an instrument 

featuring racks of spinning tonewheels which power "alternators", 

drawbars controlling additive synthesis of harmonics, and complex 

custom keyboards inspired by pipe organs.

Unlike previous electromechanical instruments, which were all 

commercial fops,   Hammond organs were wildly popular.  Te 
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Photo 2: Pneumatically-actuated violins in an orchestrion.



Hammond Organ Company produced 31 major electromechanical 

models between 1935 and 1974.   

Many models included other electromechanical features such as a Leslie 

rotating speaker cabinet and vibrato scanner [10].  Te Hammond 

vibrato scanner produces a  vibrato efect through an impressive 

electromechanical method involving a primitive electronic memory 

written to via the capacitive coupling of rotating plates.  

Te 1960s brought Harry Chamerlin's Mellotron, a keyboard 

instrument in which each key triggered playback of samples of 

approximately 8 seconds each[11][12].  Tis instrument's sound 

generation process seems less physical, as it is essentially a multichannel 

tape player connected to a keyboard.  But it is interesting as a link 

between the golden age of electromechanical instruments and the 

present age of music composed of samples.  

Te Hammond Organ, Mellotron, and other electromechanical 

instruments of the mid-20th century eventually fell out of fashion. 

Tey were heavy, delicate, and expensive to develop and maintain. Tey 

were also, to some degree, novelty instruments.  And new novelties 

continued to arrive.  

Te arrival of commercial modular synthesizers by R.A. Moog 
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Company and Buchla & Associates in 1973 introduced a new direction 

in keyboard instruments that was more portable and ofered exciting 

new sonic frontiers [13].  Te frst commercial digital samplers were 

introduced in 1976 and 1979.  By the late 1980s, a new sample-based 

popular music aesthetic was overtaking the synth-pop of the early- and 

mid-1980s.  By the late 1990s, PC-based music composition and 

performance was providing far more options than any dedicated 

sampler or sampling keyboard.

2.3 Art, Maker Culture and Electromechanical Music

Surprisingly, we are entering another age of electromechanical music – 

one of greater experimental and creative breadth than any before it.  

Tese new instruments are not intended for mass markets.  Tey are 

unique and individual, emerging from the intersection of sound art, 

installation art, robot fetishism, maker culture, and musical innovators 

pushing beyond the world of laptop music.  

It is misleading to post just a few examples, as there are more new 

machines than I can ever keep up with.  But here are 4 interesting 

examples:
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Tim Hawkinson's Überorgan [14] features 11 suspended air bladders 

the size of city buses and forces air from them through various devices 

and actuated membranes to produce sound and music.  Te score is 

painted on a very long plastic sheet (at right in Photo 5, below) and 

read as the sheet is scrolled by motors across an array of  photosensors. 

Part of its appeal is the absurdity of it size and its exaggerated 

physicality.  

LEMUR's Guitar-bot [15] is comprised of 4 identical units which play 

together as a single instrument under computer control.  Each unit can 

pluck a guitar string and mechanically actuate fngering and glissando 

along a fretless fngerboard.  It does not represent a new way to make 

music.  But it is fascinating to watch and is clearly informed by a heavy 

dose of robot fetishism. 

Ensemble Robot's Whirliphon [16] spins 7 corrugated tubes at precisely 

controllable speeds to produce 3 octaves of continuous musical notes. 

It's interesting because it is the frst playable instrument to create music 

in this way. Its unique timbre has been described to me as "a chorus of 

angry angels" and "kind of like snifng a whole fstful of magic 

markers".  

Dan Paluska and Jef Lieberman's Absolut Quartet [17] is comprised of 

3 multi-segment instruments.  Te most memorable and impressive is 

the Ballistic Marimba, which launches rubber balls in parabolic arcs, 

landing them on specifc marimba bars at precise times.  Tis adds a 

unique performative value: the pleasure of tension, expectation and 

resolution in both the visual and aural modalities.  

2.4 Electromechanical Music vs. Electronic Synthesis

Why would musicians and musical inventors bother to create 

electromechanical musical instruments in 2010, when digital samplers 

and digital synthesis are so accessible, ubiquitous, easy and 

inexpensive?  In place of a scientifc explanation, I ofer 4 arguments 

from personal observation.

2.4.1 Acoustic Innovation 

Electromechanical instruments open the potential to create music in 

entirely new ways.  Tere are natural phenomena that create sound, but 

require the precision control of a machine to make music.  To name just 

a few: spinning corrugated tubes, polyphonic musical saws, 

synchronized water droplets, artifcial larynges, the chamber resonance 

of architectural spaces, and the highly-expressive-but-nearly-

impossible-to-play daxophone[]. 

2.4.2 Performance:  visible creation vs. music from a laptop

Digital performances using sequencers or other sofware can face a 
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Photo 4: Whirliphon (2005), Ensemble Robot (disclaimer: 
I designed this instrument)

Photo 5:  Te Überorgan (2000),  Tim Hawkinson at  
MassMoCA [Photo by Doug Bartow]

Photo 6: Absolut Quartet (2008), Dan Paluska and Jef 
Lieberman

Photo 3: Guitar-bot (2003), Eric Singer and LEMUR



serious problem:  Te audience cannot see digital music being created. 

Tere is no visual causation.  Tis can leave an audience feeling 

disconnected from the performance.  Some performances add light 

shows, dancers, live experimental projections, etc.  But a feeling that 

nothing is “happening” can persist.  

In many of the new generation of electromechanical musical 

instruments, the audience can see the physical motions that create the 

music.  Tis can be very compelling, and at its best, downright 

wondrous and hypnotic.  

Dan Paluska and Jef Lieberman's Absolut Quartet and LEMUR's 

Guitar-bot both demonstrate this hypnotic quality very well.  

2.4.3 Acoustic Richness: [electro]acoustic vs. digital

Te naturally rich acoustic sounds of the physical world have a 

complexity and physicality that many digital sources strive 

unsuccessfully to match.  Tese rich sounds of the physical world are 

full of emotional associations, making them musically accessible and 

semiotically numinous.  

Te Whirlyphon is an excellent example of this.  Much of its unusual 

timbre comes from the glassy-sounding interaction of upper 

harmonics.  Tere are many arguments about which complex sounds 

can be reasonably synthesized.  But they are moot in this case, as even 

high quality speakers cannot reproduce this highly spatialized sound — 

including the way in which the geometry of the Doppler efect on the 

spinning tubes changes with the listeners' proximity to the instrument.

2.4.4 Contribution:  new instruments vs. sofware with new 

confgurations

Electromechanical musical instruments remain a relatively unexplored 

frontier.  Tere is still the opportunity to create profoundly new and 

compelling instruments, sounds, music, and performance experiences. 

Te excitement created by Tim Hawkinson's Überorgan is among the 

best examples of success based on spectacle..

2.5  Te Barrier

Tese are all good reasons to make electromechanical music.  So why , 

then, would musicians and musical inventors not want to create 

electromechanical musical instruments?  

Creating an instrument of expressive quality, as opposed to a sound 

efect, can be an arduous undertaking.  Te creation of articulate sound 

is an art and a science.  And it is also technically challenging.  Section 

2.5.1 shows a real-world example of the problems that are solved over 

and over again.
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Te technical challenge has had a detrimental efect on the whole feld. 

It sets a high technical barrier to entry for musical explorers.  It limits 

the production of high-quality instruments because their creation 

requires a high degree of technical and aesthetic skill.  And it limits the 

quality of the music created, as most of an explorer's fnite time, 

attention and ingenuity go into engineering rather than composition. 

[1]

2.5.1 Example: Absolut Quartet

Dan Paluska was kind enough to send me a summary of the control 

system he and Jef Lieberman developed for the Absolut Quartet.  It 

makes an excellent example of the set of problems facing creators of 

electromechanical musical instruments.  Dan explained their control 

system to me as a list of electronic paths, as shown below.
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Figure 1: Electronic Paths in the Absolut Quartet System

1 Flash interface receives melody input from user

2 Max/MSP patch receives text packet of notes and times

3a Computer analyzes some and expands into ~2 1/2 minute song using an equation 
composition template.

3b MIDI score is appropriately filter for note ranges, allowed speed of note firings(reload time).

3c Pre-delays are added to account for air time of the rubber balls.

4 Computer outputs data as MIDI

5 Doepfer MIDI-to-TTL interface converters MIDI notes into on/off signals

6 Custom buffer board queues TTL signals and routes them 

7 Control network routes signals to actuation sites.

8 Custom boards local to each ball shooter, wine glass, or percussion element that take TTL 
pulse and do some local control specific to the instrument.

9a Marimba Shooters: a sequence of 4 timed operations which fires and then reloads the 
shooter.

9b Wine Glasses: solenoid pull

9c Percussion: solenoid pull with 8 levels of strength for midi volume.

Key to color tags in Listing 1:

mapping input data to an internal musical representation

routing the music data to multiple output devices

mapping the musical data into actuation control

actuation circuitry
Te color tags above show how the tasks of the electronic paths can be abstracted into tasks common to all electromechanical musical 
instruments: mapping input data to an internal musical representation, routing the music data to multiple output devices, mapping the 
musical data into actuation control, actuation circuitry.  

Developing solutions to handle these tasks required commercial data conversion products and multiple custom circuit boards, the invention of 
an internal data format (on top of MIDI), custom circuitry to map the musical data to actuation, custom motor controllers, and  the solving 
of many smaller problems within each task.



3 Nervebox

3.1 Te Big Idea

While electromechanical musical instruments vary wildly in their 

designs, there are commonalities among nearly all of them that can be 

used to simplify the abstractions by which we imagine them and to 

expedite the processes by which we create them. 

To that end, I present Nervebox, a hardware and sofware platform, as a 

generalized control system for machines that make music.  

3.2 Abstractions and Processes: Evolution of Electronic Music

Abstractions matter, intellectually and economically.  For instance, the 

collective development of higher abstractions in electronics has enabled 

an economy of portable ideas and modular components.  Shared, 

portable ideas are needed to build a culture which supports a 

technology.  And modular components representing those abstractions 

transform the design and development processes, empowering 

experimenters and engineers with to build with greater complexity and 

speed.  

We can see the evolution of abstractions and processes in electronics in 

the patents already referenced.  

Tough this diagram (Illustration 6) of the Telharmonium's alternators 

does contain some symbols for electrical abstractions such as wires and 

inductive coils, it is mostly defned in very physical terms: materials, 

tolerances, springs, blocks, diameters of wire, numbers of windings. 

Cahill could not treat these parts as modular components because 

every component had to be made and tested by hand [8].  

37 years later, this diagram (Illustration 7) of the Hammond organ's 

alternators is more schematic and abstract, focusing more on electrical 

concepts and taking most of the materials and components for granted. 

Tis level of abstraction describes far greater complexity  than the 
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Illustration 6: diagram of alternator circuits from 
1897 Telharmonium patent



previous diagram.  

41 years later, in 1975, we see the continuing evolution of abstractions 

in Robert Moog's patent for his frst commercial modular synthesizer. 

Te schematic diagram in Illustration 8 describes the circuitry almost 

entirely in modular blocks, high above the level of by-then-cleanly-

abstracted standard electronic components.  Once again, this level of 

abstraction describes at least one order of magnitude more complexity 

than the diagram in the previous patent.  

25

Illustration 8: High-level block diagram from Robert Moog's synthesizer  
patent

Illustration 7: diagram of alternator circuits from 1934 
Hammond patent



It also  echoes advances in the design process.  Wrapping complex 

circuits in reductive abstractions frees engineers and experimenters 

from needing to invest their time and ingenuity in lower-level tasks, 

such as making precise resistors from scratch, or stable voltage-

controlled oscillators.  Portable abstractions such as various types of 

oscillators, amplifers, and flters continue to co-evolve with 

commercially available standardized components, enabling engineers 

and experimenters to think and build at increasing levels of abstraction 

and complexity.  

A similar evolution has taken place in the feld of digital synthesis.  In 

1966, when Paul Lansky was beginning to compose music on digital 

computers, the very basics of digital synthesis were just being 

developed[18].  Making music with digital computers required a 

signifcant knowledge of algorithms, music theory, and the workings of 

mainframe computers.  His work process involved writing instructions 

on stacks of punch cards, waiting for his job to write the instructions to 

digital tape, and carrying the tape across the street to "play" on another 

computer.  Composing his frst piece took one and a half years.  He was 

so surprised and disappointed by the results that he destroyed all 

evidence of the piece.  

Today, anyone with access to a PC can compose music in real-time with 

digital synthesis.  No knowledge of algorithms, music theory, or 

computer science is necessary.  Various music sofware packages such 

as SuperCollider, Digital Performer, cSound, and PureData hide these 

complexities under the surfaces of high-level abstractions.  Tis 

simplicity, which brings computer-based composition processes within 

the reach of millions, has precipitated a boom in new music and 

musical ideas[19].  

Electromechanical music technology, by comparison, has not gone 

though a similar evolution in the last 50 years.  It still lacks the level of 

empowering abstraction found in analog and digital synthesis 

technologies.  One result is that musical explorers working with 

electromechanical music must invest signifcant time and ingenuity 

solving low-level problems from scratch.  

3.3 Nervebox Abstraction

Te Nervebox platform encapsulates the inherent complexity of control 

systems for electromechanical music into a set of general abstractions 

that can be used to bring music into nearly any electromechanical  

musical instruments, musical robots, or sound installations.  It is not 

limited to any particular type of music, actuation, or sound-producing 

natural phenomena.  

Illustration 9 shows the Nervebox platform's abstraction of the 
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functions that are common to almost all electromechanical 

instruments.  Tese are abstracted into 5 components: input mapping, 

internal representation, control network, output mapping, and 

actuation.  

Te names of some of the abstractions are inspired by names of brain 

structures: cerebrum, cerebellum and medulla.  Te Brum interprets 

diverse inputs and abstracts them into a common representation.  It 

manages the user interface (Nervebox UI), stores mappings and 

confgurations, and coordinates the actions of the Bellums.  Each 

Bellum receives abstracted musical data from the Brum and converts it 

into machine control commands appropriate to its instrument.  Since 

each type of instrument is diferent, each Bellum is confgured 

diferently.  Tis pushes the various instruments' diferences out to the 

periphery of the architecture.  Te Dulla is the actuation interface,  

where the bytes meet the volts.  It controls motors and other actuators. 

It also reads data from sensors for closed-loop operations.

3.3.1 Input Mapper  - Te Brum

In this system, mappings convert one form of data to another, and ofen 

serve musical and aesthetic purposes in the process.  Te Nervebox 

platform assumes there will be one or more simultaneous streams of 

input.  Capturing and encoding these streams is the frst function of the 

Brum, or input mapper.  Diferent stream types are handled by diferent 
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Illustration 9: Top-level view of Nervebox abstraction



modules, making it easily expandable to new input types.  Te next 

function of the Brum  is to convert elements of the incoming data into 

musical events and assign them to one or more instruments.  Te 

output of the Brum is a stream of musical events encoded in a unifed 

format that serves as the Nervebox platform's internal musical 

representation.  

3.3.2 Internal Music Representation - NerveOSC

In all electronic and electromechanical musical instruments, music is 

abstracted into an internal data representation that can be processed,  

manipulated, mapped and routed.  Tis may be analog or digital, 

single- or multichannel, serialized or real-time.  

MIDI is a great standard and has enabled a revolution in electronic 

music.  But MIDI's reductiveness and limitations cause many musical 

inventors to fnd it necessary to create their own formats.  Even when 

these formats piggy-back on top of MIDI, they are ofen proprietary, 

ad-hoc, time-consuming to create, and not portable. 

Te Nervebox platform represents data in a unique favor of the Open 

Sound Control format [20], called NerveOSC.  I chose OSC over MIDI 

because its address patterns and fexible data arrays make possible a 

data format which can describe complex musical concepts within the 
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clear semantics of the format, as opposed to the ad-hoc and convoluted 

hacks of MIDI.  NerveOSC is intended to be able to reasonably 

represent all the richness of musical expression created by input devices 

and all of the musical and timbral possibilities of any instruments used 

as output.  Tis is covered in greater detail in section 3.4 - Detail of 

NerveOSC.

3.3.3 Control Network - TCP/IP 

Most systems require an electronic network to route their inputs and 

internal signals to multiple devices or actuators.  For example, the 

Telharmonium used the telephone network and the Hammond organ 

used matrices of wires from the manuals to the tonewheels.  NerveOSC 

is built on top of OSC, which uses TCP/IP and UDP as its wire-level 

protocols.  Basing Nervebox's control network around TCP/IP 

eliminates the need to create a proprietary wire-level protocol.  

3.3.4 Output Mappers  - Te Bellums

Tis mapping layer takes NerveOSC data as input and maps it to 

machine control commands that drive the electromechanical actuation 

that creates music.  In doing so, it abstracts the mechanical and 

electronic details away from the rest of the system.  One Bellum will 

exist for each instrument or major component thereof.  And separate 

code modules will be required by diferent types of instruments (see 3.8 

Development Process below).  

3.3.5 Actuation Control  - Te Dulla

Tis abstraction layer is the fnal stage where the bytes meet the volts 

(that drive the machines that make the notes).  Here I defne actuation 

as the mechanisms that convert machine control signals into musically 

vibrating air.  Tis could be an electric organ's motorized tone wheels 

and speaker, motors spinning corrugated tubes, solenoids striking 

resonant metal chimes, or the bellows and pneumatic valves of a church 

organ.  Te possibilities are boundless.  Actuation has 2 components: 

the acoustic machinery that vibrates the air and the electromechanical 

systems that control that machinery.  
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Any attempt to standardize the acoustic machinery that vibrates the air 

will be working against the innovative spirit I'm seeking to support and 

promote.

But the electronic control of the machinery can be abstracted in this 

way:  From a gross perspective, the Dulla is a black box that receives 

standardized machine commands from the Bellum and produces the 

precisely-timed high-current signals that drive the instrument's 

actuators.  In closed-loop actuation systems, there are also lines of 

sensor data running from the instrument back to the black box.  

Within that black box are 2 layers.  Te frst is an FPGA that receives 

machine control commands from the Bellum.  Almost all machine 

control circuitry is created within the FPGA: signal generators, PWM 

sources, H-bridge logic, stepper motor controllers, A/D converters, 

quadrature decoders, and more.  Compared with microcontrollers, 

FPGAs are well suited here because of their ability to perform multiple 

time-sensitive tasks literally simultaneously.  Compared to discrete 

electronic components, FPGAs are compact and very power-efcient.  

But most importantly, they enable this platform to use one standard set 

of electronic hardware to perform any and all machine control tasks. 

And FPGAs are confgured with Verilog or VHDL code, making 

complex circuitry as portable and easily reproducible as sofware.
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Te second layer is simply multiple channels of high-current switches 

that amplify the low-current output of the FPGAs to the high-current 

signals that drive the actuators.  

Nervebox presents a standard amplifer circuit and standard H-bridge 

circuit, freeing musical experimenters from the need to design their 

own.  

Illustration 13 shows the schematic diagrams for the amplifer.   For 

simplicity and ruggedness, I presently use TIP120 NPN bipolar 

junction transistors in both designs rather than MOSFETS.  As they've 

been used only in all-on/all-of modes, heat dissipation has not been a 

problem.  But in the future I may upgrade to a more mature MOSFET-

based design.  

While the development of new instruments will still require new 

actuation code to be written, the Dulla handles many underlying 

functions and enables standardization of hardware and circuit designs 

that are easily portable and quickly reproducible.  Also, a future online 

library (see section 5) of Verilog modules could help ease and speed 

development time.  

3.4  Detail of NerveOSC

As mentioned above, this system's internal musical representation is 

called NerveOSC.  It is a unique favor of the fexible OSC protocol. 

OSC supports some features missing from MIDI [21].  
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3.4.1 Structure

Where a typical MIDI channel voice message has the following 3-byte 

structure:

A typical NerveOSC packet has this structure:

device/subsystem [ eventID, frequency (Hz), amplitude, timbre data array]

3.4.2 Address Patterns

Using OSC's address pattern feature, NerveOSC can address any 

number of uniquely-named devices.  And it can address subsystems 

within each, such as a specifc string or a group of strings.  Tis ofers 

far more, and more transparent,  address space per event than MIDI's 

16 channels.  

NerveOSC adds 3 more useful features: arbitrary frequencies, eventIDs, 

and timbre data.

3.4.3 Arbitrary Frequencies

Arbitrary frequencies are described in Hz with 16 bits of precision, 

making it easy to use any tuning system without employing hacks.  

In contrast, MIDI defnes notes as numbers from 0 to 127, with each 

explicitly representing a note in 12-Tone Equal Temperament 

@A=440Hz.  It is possible, at the receiving end of a MIDI message, to 

interpret MIDI note numbers in any way desired.  But if one is using a 

tuning system such as 31-tone equal temperament, MIDI's full 128 note 

range barely describes 4 octaves.  It would be possible to send other 

octave ranges on other MIDI channels, or to accompany every single 

note with a another MIDI message, a pitch_bend command that 

modifes its frequency.  But using a representation system that can 

describe any frequency directly and without ad-hoc hacks is much 

simpler.  

3.4.4 EventIDs

EventIDs are used for mundane but important purposes.  Teir main 

function is to connect initial events (like pushing a key on a keyboard) 

to corresponding update events (like rolling the pitch or mod wheels 

while the key is down).  In this case, the initial and update events would 

carry the same eventID, making them logically connectible 

downstream.  Tis makes it much easier to describe dynamic tones with 

glissando, portamento, tremolo, and changes in timbre.  It also helps to 
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prevent crosstalk between music events that originate from diferent 

input devices.

3.4.5 Timbre

Te third new feature of NerveOSC is timbre data.  Timbre values are 

added to the end of the data array in NerveOSC.  Te considerations for 

the encoding timbre are summarized in the next section.

3.5 Timbre and Representation

3.5.1 Te Negative Defnition

Timbre is ofen negatively defned, as a sort of musical chaf lef over 

afer loudness, pitch and duration have been extracted.  For instance, 

the American National Standards Institute defnes timbre as "[...] that 

attribute of sensation in terms of which a listener can judge that two 

sounds having the same loudness and pitch are dissimilar".  In the 

absence of an authoritative positive defnition, much highly original 

research has attempted to characterize timbre from diferent 

perspectives .

Tese eforts generally fall into two categories, physical measurements 

and perceptual classifcation.  Tough much of the research shows that 

it is difcult to fully separate the two. 

3.5.2 Physical Analysis

In physical terms, timbre can be defned as the change in a sound's 

spectra over time.  Te complexities of raw sound — each frequency, 

phase and amplitude, plus their individual distortions and 

aperiodicities — present an unmanageably large data set.  Terefore, 

much of the work in physical analysis has focused on representing the 

perceptually important aspects of timbre within a reduced number of 

dimensions[22].  

Te fundamental modern work on timbre is J.M. Grey's Timbre Space 

[23], which used human subjects to quantify the perceptual diference 

between pairs of sounds of various orchestral instruments.  Tese 

relationships of perceived diference showed very promising correlation 

when represented in a 3 dimensional graph of quantitative sound 

properties developed by Grey.  Tis work is the foundation cited by the 

majority of subsequent work on timbre.  

Following Grey's initial research, many reductive models parse timbre 

into distinctly spectral and temporal aspects.  Te two primary spectral 

characteristics are a wide vs. narrow distribution of spectral energy and 

high vs. low frequency of the barycenter of spectral energy [24].  

Temporal aspects are slightly more complex, as they deal with changes 

over time.  Much research has focused on the attack portion of a 
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Illustration 15: Grey's Timbre Space

Dimension I: spectral energy distribution, from broad to narrow

Dimension II: timing of the attack and decay, synchronous to asynchronous

Dimension III: amount of inharmonic sound in the attack, from high to none

Illustration 16: Wessel's 2-Dimensional Timbre Space

BN - Bassoon
C1 - E flat Clarinet
C2 - B flat Bass Clarinet
EH - English Horn
FH - French Horn
FL - Flute
O1 - Oboe
O2 - Oboe (different instrument and player)

S1 - Cello, muted sul ponticello
S2 - Cello
S3 - Cello, muted sul tasto
TM - Muted Trombone
TP - B flat Trumpet
X1 - Saxophone, played mf
X2 - Saxophone, played p
X3 - Soprano Saxophone

Timbre Spaces



sound's envelope, because that period has been shown to play an 

inordinately important role in how we identify sounds [25].  Te 

primary temporal characteristic used by Grey is whether the high or 

low frequencies emerge frst during the attack period.   

A highly reductive 2-dimensional timbre space was developed in 1978 

by David Wessel [26] for use as a timbre-control surface for synthesis. 

Te idea was that by specifying coordinates in a particular timbre 

space, one could hear the timbre represented by those coordinates. 

Such a 2-dimensional timbre controller brings to mind the "basic 

waveform controller"from Hugh LeCaine's 1948 Electronic Sackbut 

[27].  Where LeCaine's 2-dimensional timbre controller uses "bright <-

> dark" and "octave <-> non-octave" as its axes, Wessel's timbre space 

uses "bright <-> dark" and "more bite <-> less bite".  Te term "bite" in 

this case refers to a collection of characteristics of a sound's onset time. 

In 2004 Geofroy Peeters and others from the Music Perception and 

Cognition and Analysis-Synthesis team at Ircam collected timbral 

description systems from all available literature and extracted 71 

timbral descriptors.  Nervebox does not use these 71 timbral 

descriptors, but I've listed them in Appendix B because they provide a 

sense of the number of quantitative dimensions that afect timbre. 

Peeters and company used incremental multiple regression analysis to 

reduce the 71 timbral descriptors down to an optimal set of 5 

psychoacoustic descriptors: 

1. spectral centroid

2. the spectral spread

3. the spectral deviation

4. the efective duration and attack time

5. roughness and fuctuation strength

Tis is interesting as an attempt to incorporate all known timbral 

descriptions.  But its efectiveness in predicting perceptual timbral 

diferences has not yet been tested.

3.5.3 Perceptual Classifcation

All of this research into the physical aspects of timbre can help us better 

understand the perceptual aspects.  For instance, sounds having a 

higher-frequency barycenter of spectral energy are generally said to 

sound 'brighter'. 

But perceptual classifcation and the creation of useful timbral 

description systems are much more difcult.  Some interesting attempts 

have been made, such as Te ZIPI Music Parameter Description 

Language [28] and SeaWave [29].  But timbre, like consonance, seems 

to be at least partly a cultural construct [30][19] – making it even more 

difcult to fnd an unbiased solid ground on which to build a 
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classifcation system. 

Quietly lurking behind most of this work is the subject of identity — 

identifying individual musical instruments out of an orchestra or 

specifying exact timbres out of the palette of all possible sounds.  Carol 

L. Krumhansl's research[22] revealed the existence of uniquely-

recognizable perceptual features for certain instruments, such as the 

odd-harmonic of a clarinet, the mechanical "bump" of a harpsichord, 

coining the term specifcities.

3.5.4 In Electromechanical Instruments

Te requirements of timbral data description in NerveOSC are more 

focused.  We are controlling physical instruments with natural timbral 

dimensions, not synthesizers.  For practical purposes, we're interested 

in only the aspects of an instrument's timbre which are variable and 

controllable via actuation.  Te timbral variations of any one 

instrument should generally be expressible in a small number of 

dimensions.  In fact, the timbral parameters of the attack time are 

unlikely to vary for any one instrument, according to Dr. Shlomo 

Dubnov :  “Tis efect, which for time scales shorter than 100 or 200 ms 

is beyond the player, is expected to be typical of the particular 

instrument or maybe the instrument family.” [25]  

3.5.5 Perceptual Classifcation and Nervebox

I'd like to have built the NerveOSC timbral data format on top of the 

physical analysis of timbre because of the precision it provides.  But I 

built it on top of the perceptual classifcation of timbre, because users of 

the system are unlikely to have access to the tools or knowledge 

necessary for physical analysis.  

I believe that any perceptual ontology of timbre will grow unwieldy in 

size long before it becomes inclusive and detailed enough to be useful 

for this purpose.  So Nervebox users are able to defne their own 

collection of timbral terms for each instrument.  I expect to see terms 

with names implying a boundless number of possible classifcation 

schemes, for instance: pinkness, maraca, sidetoside, heavenly, those that 

belong to the Emperor [31] and rusty.  

Users developing a new instrument are responsible for fnding and 

naming the timbral variations that can be made via actuation.  Users 

creating new input mappings will be able to map selected ranges of the 

expressive dimensions of input devices to selected ranges of the user-

defned timbre values.  Tis is covered in more detail in section 3.8 – 

Development Process.

In this way, the timbre data format can represent the expressive 

capabilities of nearly any input devices, the timbral capabilities of nearly 
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any experimental instruments, and the mapping of the former onto the 

latter.  In section 4 I will be evaluating success in this based on tests of 

Nervebox's expressivity and fdelity. 

3.6 Nervebox UI

Te purpose of Nervebox's user interface (Illustration 17) is to enable 

users to create new mappings between streams of musical input such as 

MIDI keyboards, composition sofware, network streams, or custom 

devices and various instruments.  It can also be used to debug 

mappings and connections and to test all instruments prior to a 

performance.  

Te user interface enables users to create new mappings for the Brum 

without writing any code or needing to understand the inner working 

of the instruments.  Tis high level of abstraction greatly speeds and 

simplifes the process of composing and performing.  I am describing it 

here in some detail because improvements in abstraction and process 

are much of the motivation behind Nervebox.

3.6.1 Mapping Mode

Mappings are created using a patchbay metaphor in the main area (1).  

Right-clicking on the workspace brings up a menu of available modules 

(1.a).  Clicking a menu item causes a module's interface element to be 

created at the click's coordinates.  So far I've only written the modules 

for mapping MIDI inputs.  Modules for OSC and other input formats 

will be written in the next version.  Modules can be dragged by their 

blue top bars (1.b) and deleted by clicking their "x" buttons (1.c).  

Te green connector (1.d) at the top of a module is its main inlet.  Te 

one or more green connectors (1.e) at the bottom of a module are its 

outlets.  Connections between modules (1.f) can be created by 

sequential mouse clicks, causing the outlet of one module to be routed 

to the inlet of another.  Te connections can be destroyed by clicking on 

the connection line itself.  

Te green connectors (1.g) on the right side of of the MIDI-to-OSC 

modules are timbre inlets, setting timbre values that will be sent to the 

Bellums with each NerveOSC packet.  Each type of instrument has a 

diferent set of timbre inlets, representing each instrument's timbral 

dimensions.  

Mappings are listed, created, loaded, saved, and deleted in the panel  

labeled Manage Mappings (2).  

3.6.2 Debug Mode

Te Enable Trace and Enable Debug features greatly simplify the 

debugging process by causing the internal behavior of the mapping 
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Illustration 17: Te Nervebox UI



process to be shown in the UI.  

Te Control Panel (3) in the upper lef corner enables a user to set 

global functions for the interface.  For instance, the Enable Trace button 

is blue, indicating it is in its "true" mode.  When Enable Trace == true, 

the contents of messages passed between modules are displayed (1.h) 

next to the inlet connectors of each module.  

Enable Debug causes internal system messages to be displayed in the 

System Messages (4) pane.  

3.6.3 Go Mode

When preparing for a performance, this interface can be used to show 

in real-time which input devices (5) and instruments (6) are connected. 

Te next version will show more data about the exact status of each 

Bellum, such as whether its Dulla, amplifers, and senors are connected 

and responding.  

It is also expected that each Bellum will feature built-in test sequences, 

allowing users to run thorough checks of each instrument's tuning, 

timing, etc., prior to a performance.  

3.6.4 Example Mapping

A walk though the fow of a mapping may help clarify what these 

mappings can do and how they work.  

Te mapping in this example is called "Hammond Chandelier", as 

indicated by the label in the upper right and by the highlight in the list 

of mappings.  It is created for the Chandelier, an instrument envisioned 

by Tod Machover which is capable of playing rich and complex 

harmonics.  

A MIDI-to-OSC module's timbre inlets refect the timbral dimensions 

of the selected instrument.  In this case, the Chandelier is selected, so 

the timbre inlets refect the Chandelier's timbral dimensions: vibrato 

depth, vibrato speed, an undertone, and the frst 7 steps of the 

harmonic series.  Tis mapping enables a player to adjust the 

harmonics added to each note played on the keyboard by using controls 

on the keyboard that are mapped to diferent MIDI channels.  In my 

tests I use a keyboard featuring assignable sliders, which I use to mimic 

the drawbars of a Hammond organ.

Te Sources pane shows one MIDI source (0) with a green light, 

indicating the one MIDI interface that is plugged into the Brum.  

A MIDI Source Stream module (1) is set to listen to the MIDI stream 

that is present: "/dev/midi1".  Tis module parses MIDI messages from 

the input stream and adds appropriate eventIDs to each.  Its outlet is 

connected to the inlet of a MIDI Channel Filter module (2).  

39



40

Illustration 18: Example mapping in Nervebox UI



In the MIDI Channel Filter, MIDI messages having a channel value of 0 

are routed to the main inlet of a MIDI Command Filter module (3). 

Messages having channel values of 1-8 are routed to the timbre inlets of 

a MIDI to OSC module (4).  

Te MIDI Command Filter module (3) is routing MIDI messages with 

command values of "note of" to the main inlet of a MIDI-to-OSC 

module (5) and messages with command values of "note on" to the 

main inlet of another MIDI-to-OSC module (4).  

Messages with command values of "mod wheel" and "pitch bend" are 

routed to the timbre inlets of MIDI-to-OSC module (4), enabling the 

player to change the depth and speed of the vibrato by rolling the 

keyboard's mod wheel and pitch bend wheel.

Te MIDI-to-OSC modules (4, 5) convert incoming MIDI messages to 

NerveOSC messages  with this format:  

device/subsystem [ eventID, frequency (Hz), amplitude, {timbre data}]

A packet from MIDI-to-OSC module (4) in this mapping might look 

like this:

'/chandelier/freq/' [1, '75.216257354', 100, 127, 0, 0, 0, 0, 0, 0, 0, 0, 0] 

Tis music data is sent to the Chandelier and converted into music.

A mapping like Hammond Chandelier can be created in less than 2 

minutes.  Even mappings controlling complex interactions between 

multiple input streams and instruments can be created quickly and 

easily using these high-level abstractions.

3.7 Implementation — General

So far, my explanation of Nervebox has been largely conceptual.  But I'll 

need to explain details of my present implementation to provide 

context for the upcoming major sections: Development Process, 

Evaluation, and Conclusion.

3.7.1 Hardware

Te Brum and Bellums of Nervebox are built to run on commodity 

PCs.  I've been using a variety of laptops and netbooks from Dell and 

HP.  I chose Dell netbooks for their excellent Linux support and 

because their low price can help keep Nervebox accessible to other 

users.  Te Dullas are currently built with Xilinx Spartan 3-AN 

development boards.  

3.7.2 Operating System

Te Brum and Bellums are built on top of Ubuntu Linux 9.10, and 

should be forward-compatible with future versions.  I chose Linux 
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because it's easy under Linux to access byte-level I/O from any 

peripheral device, such as MIDI and RS-232 interfaces.  It is also easy to 

set priorities for individual processes — which is important because 

music performance sofware must have the highest possible process 

priority to ensure the lowest possible latency.  

3.7.3 Languages

Te Brum and Bellums are written in Python 2.6.4 and are expected to 

be forward-compatible with Python 3.x.  I chose Python because of its 

ever-growing popularity and its potential accessibility to inexperienced 

programmers.  

Te circuitry of the various Dullas is defned using Verilog.  I chose 

Verilog because the only other mature option, VHDL, is frightful to 

behold.  

Nervebox UI is written purely in JavaScript.  I chose Javascript for 

Nervebox UI because I prefer for user interfaces to run in a browser. 

Te Web paradigm inherently supports multiple users and can be run 

instantly from any modern computer without installers and drivers.

3.7.4 Brum Implementation

Te Brum is the switchboard at core of Nervebox.  It handles the 

connection and disconnection of devices, such as MIDI sources, OSC 
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sources, Bellums and browsers.  And it manages multiple persistent 

channels of communication with each — via raw sockets, UNIX 

character devices, and OSC and HTTP over TCP/IP.  It stores mappings 

and system states; serves and stores data for Nervebox UI; consumes 

several sources of confguration data — conf fles, frequency and 

keyboard maps, instrument specifcations, and MIDI and OSC input 

device specifcations.

One of its more complex functions is the metaprogramming module 

called pachinko.py.  Tis module converts the text-based mappings into 

runnable code.  For instance, the example mapping from Illustration 16 

is dynamically generated by Nervebox UI and is stored on the server as 

the text below.

pachinko.py creates a runnable mapping by instantiating runnable code 

for each module defned in the "# modules" section above.  It then 

confgures the modules using parameters from the "# functions" section 

and creates a fow control network based on the fow control implied in 

the rules of the  "# connections" section.

3.7.5 Bellum Implementation 

Te function of the Bellum is to convert incoming NerveOSC messages 

into machine control commands, which are sent to the Dulla.  
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Figure 2: example mapping

[ # modules
{action:"new", type:"modules", name:"0", param:"MIDI_Source_Stream", 
client_x:23, client_y:14}, 
{action:"new", type:"modules", name:"1", param:"MIDI_Filter_Command", 
client_x:27, client_y:251}, 
{action:"new", type:"modules", name:"2", param:"MIDI_to_OSC", 
client_x:55, client_y:321}, 
{action:"new", type:"modules", name:"3", param:"MIDI_Filter_Channel", 
client_x:383, client_y:159}, 
{action:"new", type:"modules", name:"4", param:"MIDI_to_OSC", 
client_x:26, client_y:476}, 
# functions
{action:"setSendOnPitchBend", type:"function", name:"0", param:false}, 
{action:"setOSCPath", type:"function", name:"4", param:"/chandelier/kill/"}, 
{action:"setFreqMap", type:"function", name:"4", param:"et31_offset_0_l"}, 
{action:"setInstrument", type:"function", name:"4", param:"chandelier"}, 
{action:"setFreqMap", type:"function", name:"2", param:"et31_offset_0_l"}, 
{action:"setOSCPath", type:"function", name:"2", 
param:"/chandelier/freq/"}, 
{action:"setInstrument", type:"function", name:"2", param:"chandelier"},
{action:"setSendOnModWheel", type:"function", name:"0", param:true}, 
{action:"setMIDIDevice", type:"function", name:"0", 
param:"General_midi"}, 
{action:"setPath", type:"function", name:"0", param:"/dev/midi1"}, 
# connections
{dest_inlet:0, dest_name:"2", type:"connection", action:"add", 
src_name:"1", src_outlet:1}, 
{dest_inlet:0, dest_name:"3", type:"connection", action:"add", 
src_name:"0", src_outlet:0}, 
{dest_inlet:0, dest_name:"1", type:"connection", action:"add", 
src_name:"3", src_outlet:0}, 
{dest_inlet:1, dest_name:"2", type:"connection", action:"add", 
src_name:"1", src_outlet:3}, 
{dest_inlet:2, dest_name:"2", type:"connection", action:"add", 
src_name:"1", src_outlet:6}, 
{dest_inlet:0, dest_name:"4", type:"connection", action:"add", 
src_name:"1", src_outlet:0}, 
{dest_inlet:3, dest_name:"2", type:"connection", action:"add", 
src_name:"3", src_outlet:1}, 
{dest_inlet:4, dest_name:"2", type:"connection", action:"add", 
src_name:"3", src_outlet:2}, 
{dest_inlet:5, dest_name:"2", type:"connection", action:"add", 
src_name:"3", src_outlet:3}, 
{dest_inlet:6, dest_name:"2", type:"connection", action:"add", 
src_name:"3", src_outlet:4}, 
{dest_inlet:7, dest_name:"2", type:"connection", action:"add", 
src_name:"3", src_outlet:5}, 
{dest_inlet:8, dest_name:"2", type:"connection", action:"add", 
src_name:"3", src_outlet:6}, 
{dest_inlet:9, dest_name:"2", type:"connection", action:"add", 
src_name:"3", src_outlet:7}, 
{dest_inlet:10, dest_name:"2", type:"connection", action:"add", 
src_name:"3", src_outlet:8}

]



Each Bellum features a core of generic code that handles all of the 

common features.  Tese include a socket connection for receiving 

NerveOSC messages and 2 unidirectional raw sockets for 

communication with the the Brum.  It also manages communication 

with one or more Dullas via RS-232 ports.  Each Bellum also features 

code that is specifc to the instrument it controls.  See 3.8 Development 

for more details.

3.7.6 Dulla Implementation 

Te present Dulla implementation is functional.  But its inspiration lies 

in a design concept that was beyond the scope of this thesis.  Here I 
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describe the Dulla's inspiration and its present state.

Te Dulla is conceived as an all-purpose PC peripheral for reading data 

from virtually any sensors and for controlling virtually any type of 

actuation.  Tis design is is, in part, a reaction to my frustration with 

the exorbitant costs and limited functionality of commercial motor 

control products.   At its core is an FPGA (Field-Programmable Gate 

Array), not a microcontroller.  I chose FPGAs because they can operate 

in a parallel fashion without encountering clock division problems.

Te Dulla design is conveniently modular, with pre-designed current-

switching circuits to amplify the small signal from the FPGA into high-

power signals for driving actuators.  Tese circuits are very simple and 

inexpensive because all processing functions occur within the FPGA. 

For instance, the pulse-width-modulated signals output by the H-

bridge will be generated by sof PWM circuitry within the FPGA.  Te 

H-Bridge is just switching power.  

Te important result is that users can control their new instruments' 

actuators without designing and creating new hardware.  Tis removes 

a substantial barrier; users with no knowledge of circuit design can 

create their own electromechanical musical instruments.  

Of course users may create their own circuit modules.  But the basic 4 

should be enough for most projects: amplifer, H-bridge, digital input, 

ADC input.  

Te main diference between the current implementation and the 

design concept is that the design concept features a mainboard with the 

FPGA and 32 slots for small daughter boards.  Tese daughter boards 

would hold the aforementioned circuit modules.  

Te Dulla's mainboard and daughter boards have not yet been designed 

and fabricated, as that is beyond the scope of this thesis.  

Currently the Dulla exists in the form of Xilinx development boards 

and circuits occupying  number of breadboards.  I have written and 

tested Verilog modules for RS-232 communication, packet 

accumulation, channel demultiplexing, PWM and signal generation, 

and quadrature decoding.  And I've breadboarded and tested the 

amplifer, H-bridge, and digital input circuits. 

I've been using the Xilinx XC3S700AN device from the non-volatile 

Spartan 3-AN family.  It runs at 50MHz and features 372 general-

purpose I/O pins and 700,000 system gates.  Te chip costs about $40 

and requires few supporting components.  

3.7.7 Nervebox UI Implementation

Tere are 3 main components that make Nervebox UI work: the Brum, 
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the HTTP connections, and the Client.  

Te Brum does not serve up the Client like a series of web pages.  Te 

Client is a persistent, free-standing program, running in the browser. 

Te Brum and Client exchange only data, formatted as JSON 

(JavaScript Object Notation) [32].  Te Brum pushes data about 

Nervebox's confguration and state to the Client.  And the Client sends 

data about changes to mappings and Client state to the Brum.  Figure 3 

shows a list of Brum functions called by the Client.

Nervebox UI's HTTP connections do not use the normal HTTP 

request/response cycle.  Tey use two unidirectional connections, a 

receive and a persistent transmit.   

Requests are sent from the Client to Apache, the HTTP server, as usual. 

Apache is confgured with mod_python, enabling it to run python 

scripts as subprocesses of its main process.  Incoming HTTP requests 

are passed of to a small script, rx.py, which parses requests and passes 

them to the Brum via a TCP/IP socket connection.  Te Brum does not 

return a response to the request at this point.  Te Brum returns only a 

JSON-encoded "true" for any request; or an error message if an 

exception was encountered.  

Responses to the request return to the Client via a persistent HTTP 

connection, also known as HTTP server push.  Tis is maintained 

through tx.py, another script that runs as a subprocess of Apache and 

connects to the Brum via TCP/IP socket connections.  

Te server push channel exists because the server constantly needs to 

send data to the client that the client did not request.  In HTTP (prior 
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Illustration 22: Nervebox UI's communication cycle

Figure 3: remote script names

getInputs getMapping ping_client
getBellums getMappingNames trace_source
getMidiDevices getCurrentMappingName trace_component
getNoteMaps deleteMapping trace_timbre
getFreqMaps saveMappingAs

saveBlankNewMapping



to HTML5), the client is intended to the Client only when requested.  A 

nontrivial amount of hacking and fne tuning is required to make server 

push work reliably.  

Te server push channel is used to send all data.  Even data that could 

travel in the response to a request from the Client.  Tis is done partly 

for the simplicity that comes with consistency.  But it is also intended to 

prevent connection deadlock.  Browsers can only keep a limited 

number of connections open to any one server.  Since the server push 

connection is already persistently open, I'm ensuring all other 

connections are as short as possible, lessening the chance that the 

browser will reach its connection limit.  

Te client is written in entirely in JavaScript, with styles defned with 

Cascading Style Sheets.  It does not use 3rd-party libraries like jQuery, 

Dojo, or ext.js.  Instead, it uses a framework called mrClean that I wrote 

previously and fnished for this project.  

mrClean is a framework for creating rich, desktop-like applications that 

run inside a browser. It provides core libraries for HTTP 

communication, error handling and reporting, saving and restoring 

GUI state, drag and drop, skins, event routing, and more.  Much of its 

functionality is dedicated to desktop-like user interaction.  It also 

includes a library of constructors for 33 JavaScript object, from foating 

dialog boxes to date-manipulating libraries to folder trees.  

All of the rich and responsive interactivity you see in Nervebox UI 

comes from mrClean.

3.8 Development Process

Again, I'm proposing that Nervebox's value is the way in which it 

empowers musical experimenters to create new musical machines more 

quickly and easily.  Tis section covers the development process on a 

practical and detailed level.

3.8.1 Creating New Mappings

Te most common development activity will be the mapping of various 

inputs to various instruments, as I expect that each instrument 

developed will likely be used for more than one composition or 

performance context.

I covered the process of creating mappings in detail in sections 3.6 and 

3.6.*.  Tese mappings leverage many underlying systems of the Brum 

as discussed above — functionality that would otherwise take many 

days to code from scratch.  

Using the abstractions presented in Nervebox UI, complex mappings 

can be created, tested, and debugged within minutes.  No coding is 
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required.  And robust tools exist to help in debugging.

3.8.2 Creating New Pachinko Modules

Nervebox currently supports 6 types of mapping modules.  So far I've 

been able to build all if the mappings I've needed using only these.  But 

future users will inevitably want others, particularly modules for 

fltering and routing OSC inputs or raw audio streams.  

To create new pachinko modules, new code must be written in 

pachinko.py and the Web client fles nervebox.js and app.css.  I can 

create a new module in under an hour.  But new users will face a 

daunting learning curve in the metaprogramming of pachinko.py, the  

pure-JavaScript GUI architecture of mrClean, and the unusual HTTP 

communication technique that connects them.  So the development of 

new pachinko modules will currently be difcult for users.

A future version of Nervebox UI may include a way for users to create 

new pachinko modules without needing to understand the underlying 

architecture.  A purely graphical method will be included in Nervebox 

UI 2.0.

3.8.3 Creating a New Instrument

Unlike the creation of new mappings and new pachinko modules, the 

creation of control systems for new instruments requires some 
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Illustration 23: Te Nervebox actuation path



engineering.  

Nervebox provides hardware and sofware that greatly expedite the 

process of developing control systems for new electromechanical 

instruments.  But I don't believe the convex hull of all these 

instruments' possibilities can be realistically predicted.  And any 

attempt to limit those possibilities would be working against the 

exploratory spirit I'm seeking to support and promote with Nervebox.  

Te design of new instruments requires a chain of decisions that starts 

at the instrument and works backwards towards the fow of incoming 

musical data.  I will use the Chandelier as an example of the process of 

creating an actuation path.

a.  Choose actuation methods

Te FPGA in the Dulla is able to generate almost any type of control 

signal for electrically-controlled actuators: stepper and servo motors, 

solenoids and electromagnets, electro-pneumatic and electro-hydraulic 

valves and more.  So users are free to choose any type of actuator that 

suits their instrument.

Te Chandelier is designed to use 48 separate electromagnets to excite 

48 strings.  And it uses 48 brushless DC  motors to engage or release 

padded levers that can damp the strings.  Te electromagnets are driven 

by square waves of varying frequencies.  And the damper motors are 

engaged when a simple DC current is on, and disengaged via spring 

return when the DC current is of.  Tis makes for 96 channels of 

actuation.

b.  Choose current-switching circuits

Te function of the current-switching circuits is to amplify the low-

power control signals generated by the output pins of the FPGA into 

high-power signals for driving actuators, or to act as a safe electrical 

interface between incoming sensor data and input pins of the FPGA.  

Te current-switching circuit modules of the Dulla ( from section 3.7.6) 

should be able to power and control almost any actuators drawing up to 

60V @ 8A.  So users generally won't need to design their own circuits. 
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Figure 4: Verilog module for variable-frequency square wave generator

module square_waves (
    input clock, // wire from system clock
    input [23:0] period, // 24 wires setting value for square wave period
    output square_wave_pin_out // wire to FPGA output pin
);
  reg [24:0] period_counter = 0; // 25-bit register for period counter
  reg wave_bool = 0; // boolean value sent to pin square_wave_pin_out
  always @(posedge clock) // at the positive edge of every clock cycle
      period_counter <= ( period_counter > period*2)?0: period_counter+1;
      // increment register period_counter, reset  to 0 when it exceeds period*2
  always @(posedge clock) // at the positive edge of every clock cycle
      wave_bool <= (period_counter  > period)?1:0;
      // set register wave_bool  to 1 if  period_counter  > period, otherwise 0
  assign  square_wave_pin_out = wave_bool;
      // continuously assign value of wave_bool to square_wave_pin_out 

endmodule;



But they will need to create the circuits on circuit boards or 

breadboards.  Section 6 includes ways future Nervebox versions could 

expedite the creation of circuit boards.

Te Chandelier uses the same simple amplifer circuit for all 96 of its 

actuators.

c.  Write Dulla confguration to produce actuation signals

Te function of the Dulla's FPGA is to convert incoming motor control 

commands from the Bellum into signals that control the actuators.  Te 

Dulla is confgured using Verilog.  

I'm aware that FPGAs and Verilog are not part of the current standard 

hacker toolkit.  Tis is likely to be the most challenging part of the 

development process.  Nervebox contains a few Verilog modules, such 

as an RS-232 receiver, that will help expedite common tasks.  And 

section 6 covers ways this could be made easier in the future.  

In the Chandelier, each of the 48 electromagnets and 48 damper motors 

is controlled by the output of a separate pin on the the Xilinx 

XC3S700AN.  Te signals for the electromagnets are all square waves of 

diferent frequencies.  Listing 4 shows an example of the Verilog code 

from which each variable square wave oscillator is created.

A more complete listing of the Chandelier's Verilog code can be found 

in Appendix A.  

d.  Write Bellum logic to convert music data into actuation 

commands 

Many of the complex functions of the Bellum are already built into the 

platform code:network and RS-232 communications, OSC parsing, 

event management, and the formalities of registering with and 

unregistering from the Brum.  And there is a growing library of musical 

logic such as multithreaded classes for vibrato, tremolo, arpeggio, and 

the future scheduling of events.  

Te task of the users' code is to convert the NerveOSC input into the 

machine-control commands  consumed by the Dulla.  Tis is where the 

music meets the machinery.  Tis conversion process contains the 

musical logic of the instrument, which may be very simple or very 

complex.  

I'll continue to use the Chandelier as an example for consistency, even if 

it is a rather complex example.  

Te Chandelier's rich sound is the result of the use of harmonics and a 

slow, shallow vibrato.  Illustration 21 shows the meaning of the values 

in an example packet of NerveOSC.  
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Te OSC address ends in 'freq', indicating that the note value should be 

interpreted as a frequency in Hz.  

While the vibrato speed and vibrato depth values are both set to 0, the 

Chandelier Bellum still uses a baseline vibrato.  So a single, sustained 

note event arriving as a packet of NerveOSC is converted into a 

constant stream of changing frequencies sent to the Dulla until the 

Bellum receives a NerveOSC packet with a matching eventId and an 

address of 'chandelier/kill/'.  

Te harmonics array has non-zero entries for the second and sixth 

harmonics, indicating that additional notes are to be sounded 

concurrently with the fundamental frequency.  Tese notes have 

amplitude values of 64/128 and 32/128, adjusting for zero-based 

counting.  Like the fundamental note, each of these harmonics will also 

be converted by the vibrato process into a stream of ever-changing 

frequencies.  
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0 0 0 0 0 1 0 0 1 1 1 0 1 1 1 0 1 1 1 1 1 0 0 1

red bits encode the id of the target string, in this case string 1
blue bits encode the period of the string in 50MHz clock cycles, in this case 28409 cycles, or a 
frequency of 440Hz.  

Illustration 24: Bellum -> Dulla data format for Chandelier

'/chandelier/freq/' [ 1, '75.216257354', 100, 0, 0, 0, 63, 0, 0, 0, 31, 0, 0 ]

address eventId note amplitude

vibrato 

speed

vibrato 

depth harmonics

Illustration 25: example NerveOSC packet for the Chandelier



Te user must also decide on the data format to be sent from the 

Bellum to the Dulla.  For instance, data is sent from the Chandelier's 

Bellum to its Dulla is in the format shown in Illustration 24.

Te standard Bellum code includes functions to simplify the process of 

encoding binary data for the Dulla.

See Appendix A for the Python code that performs these operations.
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4 Evaluation

4.1  Measuring Generality, Expressivity, and Fidelity

Te initial goals of Nervebox will be satisfed if it provides a platform 

encapsulating the complex technical problems encountered in the 

development of electromechanical musical instruments behind a set of 

high-level abstractions that can be combined to control almost any such 

instrument.  I label this ability to control many diferent types of 

instruments the generality of Nervebox.

I evaluated the generality of Nervebox by using it as a platform upon 

which to build control systems for 2 very diferent electromechanical 

musical instruments — the Chandelier and Ensemble Robot's 

Heliphon.  I then tested these systems to determine their fdelity and 

expressivity.  

I am considering any control system's fdelity to be a measurement of 

its ability to reproduce the intentions of the composer or player to the 

best or its instrument's ability.  Put more simply, the fdelity is the 

measure of the correctness of a control system, the inverse of the 

measure of its errors or artifacts.  

And I am considering a control system's expressivity to be a 

measurement of its ability to defne and exploit the full expressive range 

of the instrument it is controlling — frequency range, dynamics, 

timbres, textures, and specifcities.  Extra credit: adding new, 

compound expressivities that are not naturally inherent to the 

instrument, such as the additive harmonics of the Hammond 

Chandelier mapping in Illustration 16 and section 3.6.4.  

4.2  Te Chandelier

I've already used the Chandelier in earlier examples.  For this section, 

I'll provide a more more thorough description of the instrument and 

the implementation of its controller.

Tod Machover's group has built 3 diferent versions of the Chandelier. 

Te frst one was was built by Mike Fabio and was the subject of his 

2007 thesis Te Chandelier: An Exploration in Robotic Instrument 

Design.  Tis Chandelier was an instrument featuring 4 groups of 4 

strings, each group being actuated in a diferent way.  

Te second version is commonly referred to as the Chandelier Testbed. 

It is the embodiment of a long series of prototypes developed in the 

process of exploring functional and musical possibilities for the fnal 

version.  Te Chandelier Testbed is a large steel Unistrut frame 
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featuring 32 piano strings tuned in 31-tone equal temperament, 

actuated into vibration by powerful electromagnets.  Electric guitar 

pickups are used to capture and amplify the sounds of the Chandelier.  

Te third version is commonly referred to as the Real Chandelier.  Tis 

is the full-scale 48-string instrument that will be used as a dramatic set 

piece and musical instrument in Tod Machover's upcoming opera 

Death and the Powers.  

My control system was designed to control the third version of the 

Chandelier.  But my tests have been performed using the second 

version, as the third and fnal version is currently still in production.  I  

refer to the Chandelier Testbed as simple the Chandelier hereafer.

4.2.1 Expressive Dimensions of the Chandelier

Tonal Range

Te tonal range of the Chandelier starts at 27.5Hz, also known as 

double pedal A.  Tis note is near the bottom of the human hearing 

range.  Determination of the upper limit of its range has been musically 

unimportant, as its range extends beyond the upper limit of the human 

hearing range.  

Te Chandelier's 32 strings are tuned in 31-tone equal temperament, 

their fundamentals covering the range from 27.5Hz to 55Hz.  Tese 

notes are sounded by using magnetic pulses from the electromagnets to 

set the strings resonating at their fundamental frequencies.  Because 

54

Illustration 26: Intersection of 31-tone equal temperament and frequencies created with upper harmonics



we're driving them with electromagnets, we can also sound each string 

at frequencies from that string's upper harmonic modes.  So each string 

can produce a range of notes, with frequencies corresponding to the 

harmonic series, originating with each strings' fundamental frequency.  

Te notes in each string's harmonic series do not necessarily 

correspond to notes in any equal tempered temperament.  Illustration

26 shows a model of notes producible by the  Chandelier's 48 strings, 

calculated up to each string's 32nd harmonic.  

Te horizontal scale denotes frequency.  Te circles indicate the notes 

that can be produced.  Te vertical scale corresponds to steps in each 

note's harmonic series.  So the top row of green notes shows the 

fundamentals, or frst harmonics, starting at 27.5Hz.  Te next row 

down shows the notes produced by each string's second harmonic, 

which lie an octave above the fundamentals.  Te third row shows the 

third harmonic, 1.5 octaves above the fundamentals.  Each note-circle's 

color indicates how in- or out-of-tune it is compared to 31-tone equal 

temperament.  5 colors of green are used, corresponding to the number 

of cents (1200ths of an octave) each note's frequency deviates from its 

nearest match in 31-tone equal temperament.  Bright green shows a 

perfect match.  Te darkest green show a deviation of 4 cents.  White 

circles have a deviation of 5 or more cents.  A diference of 6 cents or 

less is considered to be imperceptible by most humans [33].  So this 

illustration shows that upper harmonics can be used to create more-

than-full coverage of the notes in 31-tone equal temperament.  

Timbre and Specifcities

Te electromagnetically-driven strings of the Chandelier feature very 

little timbral variation.  Slight shades of upper- and sub-harmonics can 

be introduced by changing the placement of the electromagnet along 

the length of the string, thereby changing its location relative the 

string's nodes and anti-nodes.  But the dominant sound from each 

string is a simple, sine-like wave.

Tese electromagnetically-driven strings have one, very interesting 
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specifcity — a throbbing tremolo that increases with the amplitude of 

the string's vibration.  Tis happens because the tension on a string 

increases with its displacement, thus increasing the frequencies of the 

resonant modes of the string, and temporarily decreasing the resonant 

coupling between the string and electromagnet.  Tis slow oscillation 

occurs as a string with low-amplitude gains resonant coupling with the 

electromagnet, then gains energy and increases amplitude, then 

increases its natural resonant frequency and loses resonant coupling 

then becomes a string with a low amplitude, restarting the cycle.  

Dynamics

I defne the Chandelier strings' amplitude as the ratio between a string's 

length and it's maximum displacement while resonating.  Te strings of 

the Chandelier can be played in a continuous dynamic range from zero 

displacement up to the point where they reach a physical limit to their 

displacement, such as the limit of physical clearance, the limited power 

of the electromagnets, or aforementioned tremolo specifcity.  In the 

current Chandelier setup, the maximum amplitude is around 2%, at 

which point the vibrating strings strike the electromagnets.  Tis 

dynamic range, from 0% to 2%, provides more than enough dynamic 

range for purposes of musical expressivity.

4.2.2 Extra Credit: Synthetic Expressive Dimensions of the 

Chandelier

A good controller should be able to add some additional expressive 

dimensions that are not inherent to the physical structure of the 

instrument.  I call these synthetic expressive dimensions.

As mentioned above, the Chandelier's strings tend to sounds like 

simple, sine-like waves.  Tis sound is pure, but musically dull.  I've 

found 3 synthetic expressive dimensions that greatly enrich the sound 

of the Chandelier.

Slow Vibrato

Driving a string with electromagnetic pulses that are slightly out of 

phase with the string's resonance will cause rich harmonics to bloom in 

the string's sound.  And efective way to keep the pulses continually out 

of phase with the string is to slowly and shallowly change the frequency 

of the pulses.  Te diference in frequencies must remain within a safe 
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band that is shallow enough that it does not interfere with the resonant 

coupling of the pulses and the string.  Slowly changing the frequency up 

and down within this safe band  — efectively a long, shallow vibrato — 

is an efective way to add ringing harmonics and  produce a richer 

sound.  

Multiple Strings per Note 

One efect of the Chandelier's complex tonal space (Illustration 28) is 

that notes from above the frst harmonic can be played on multiple 

strings.  For instance, Illustration 26 shows how an A-440 can be played 

on the 16th harmonic of string 1, the 15th harmonic of string 4, the 

14th harmonic of string 7, and so on.   

Tese notes all ring at slightly diferent frequencies very close to 440Hz, 

as is refected by the range of colors representing them.  Sounding all of 

them at the same time creates a lush sonic fabric full of meshing and 

un-meshing phases.  

Harmonics

One more synthetic expressive dimension that can enrich the sound of 

the Chandelier is the use of carefully controlled additional harmonics 

— as is done with pipe organs and Hammond organs.  
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Illustration 29: all details contributed by user, shown in  
context



4.2.3 Expressivity of Nervebox-based Chandelier controller

Here we test the Nervebox-based controller's ability to exploit and 

control all of the Chandelier's expressive dimensions.

Illustration 29 shows, in context, the 5 components of a Nervebox-

based controller.  

a) Dulla: selection (and assembly) of current switching circuit modules

b) Dulla: custom FPGA confguration written in Verilog

c) Bellum: defnition.py  (instrument defnition fle)

d) Bellum: custom instrument behavior written in Python

e) Brum/Nervebox UI: mapping created with Nervebox UI

Tis is how the Nervebox platform is confgured to exploit and control 

all of the Chandelier's expressive dimensions.

Tonal Range

Te Chandelier's tonal range is encoded in the Chandelier Bellum's 

defnition.py fle, which is summarized in Appendix A2.  Te fle 

contains a list, freqs_l,  of 991 frequencies (31 tones * 31 harmonics) 

found in the tonal space shown in Illustration 26.  Tese 991 

frequencies appear again in a structure called strings, which groups the  

frequencies by the strings that can play them.

Te custom instrument behavior written for the Chandelier Bellum 

contains a class called TonalStructure which maps the notes of 
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Figure 6: Augmented Verilog module "square_waves"

/* variable frequency square wave generator module */
module square_waves (

input clock, // wire from system clock
input [23:0] period, // 24 wires setting value for square wave period
// 24 wires setting value for square wave duty cycle

         input [23:0] duty_cycle, 
output square_wave_pin_out // wire to FPGA output pin

);
reg [24:0] period_counter = 0; // 25-bit register for period counter
reg wave_bool = 0; // boolean value sent to pin square_wave_pin_out
always @(posedge clock) // at the positive edge of every clock cycle

period_counter <= ( period_counter > period*2)?0: 
period_counter+1;

// increment register period_counter, reset  to 0 when it exceeds 
period*2
always @(posedge clock) // at the positive edge of every clock cycle

wave_bool <= (period_counter  > duty_cycle )?1:0;
// set register wave_bool  to 1 if  period_counter  > period, 

otherwise 0
assign  square_wave_pin_out = wave_bool;
// continuously assign value of wave_bool to square_wave_pin_out 
endmodule;

Figure 5: Verilog for pulse-width modulator

/* pulse-width modulation module */

module PWM(
input clock,// wire from system clock
input [7:0] PWM_in, // 8 wires setting value for duty cycle 
output PWM_out // wire to FPGA output pin

);
reg [8:0] PWM_accumulator;  // 9-bit register for accumulating PWM cycles
always @( posedge clock) // at the positive edge of every clock cycle

PWM_accumulator <= PWM_accumulator[7:0] + PWM_in; 
// continuously assign value of 9th bit of PWM_accumulator to PWM_out

assign PWM_out = PWM_accumulator[8];
endmodule;



incoming OSC messages to the 991 defned notes of the Chandelier.  

In this way, an arbitrary number of octaves of the Chandelier's unusual 

tonal space can be easily mapped.  

Timbre and Specifcities

As mentioned above, the electromagnetically-driven strings of the 

Chandelier ofer very little timbral variation.  Its natural tremolo varies 

with the string's amplitude and can therefor be controlled via the 

dynamics.  

Dynamics

My current implementation of the Chandelier controller did not 

control the Chandelier's dynamics when I started writing this section. 

Tis is because the Chandelier was underpowered during much of its 

development.  And the focus was on producing the largest string 

amplitudes possible for the available current.  Here I describe how this 

was added for purposes of evaluation.  

Te dynamics can be controlled very directly by varying the strength of 

the magnetic pulses that drive the string.  Tis can be done very simply 

by adding a pulse-width modulator  module to each oscillator. 

But high-frequency PWM signals could have complex interactions with 

the electromagnet, which is a large solenoid.  And a low-frequency 

PWM could disrupt the sensitive rhythms of the audio-frequency 

signals that set the string resonating.  

I chose a simpler solution - modifying the duty cycle of the slow, audio-
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Illustration 30: Macro pulse-width modulation
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frequency square waves that drive the electromagnets.  Te square 

waves originally had a 50% duty cycle.  Duty cycles lower than 50% will 

impart less energy to the string, changing the amplitude.  

Illustration 30 shows how the audio-frequency pulse widths were 

modulated by adding one new wire vector, duty_cycle, to the current 

square_waves module in the FPGA.  Listing 6 shows the code that 

generates the new circuit.

Figure 6 below shows a new version of the Verilog module 

square_waves (Appendix A5) augmented to use a variable duty cycle. 

Te wire vector duty_cycle is printed in red, to show where changes 

have been made.
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Illustration 31: latency for note-on and note-of events

Illustration 32: rising latency, showing the slow fooding of the controller



So only a very small change was needed to enable the current 

Chandelier controller to exploit and control the Chandelier's natural 

dynamic range.

Slow Vibrato

Te creation of a slow vibrato requires updating 2 separate fles.

Te custom instrument behavior written for the Chandelier Bellum 

contains a class called Vibr.  Tis class calculates a slow, global vibrato 

that can be applied to all current notes, thereby driving the strings out  

of phase.  Details of the Vibr class can be seen in Appendix A4.  

Te Chandelier's defnition.py fle ( Appendix A2 ), contains a list 

called inlets_l, which defnes the elements of the timbral data array. 

Te frst 2 elements are vibrato_speed and vibrato_depth.  Teir entry 

in inlets_l causes them to show up as mappable timbres for the 

Chandelier in Nervebox UI (as seen in Illustration 16) and also to 

occupy the frst 2 positions in the timbral data array of NerveOSC 

packages addressed to the Chandelier's Bellum.

Values for vibrato_speed and vibrato_depth received by the Chandelier 

Bellum will change the parameters of the Vibr class and accordingly 

alter the speed and depth of the vibrato.

Multiple Strings

Te aforementioned TonalStructure class (Appendix A4) in the 

Chandelier Bellum maps the frequencies of notes in incoming 

NerveOSC packets to the complex tonal space of the Chandelier.  It 

took only a few lines of code to modify it to return all matches, on all 

strings, within a certain number of cents.

Harmonics

Te addition of Hammond Organ-like harmonics is achieved in 3 steps.

First, the values "-1 octave", "+ 3/2 octave", "+ 1 octave", "+ 5/2 octave", 

"+ 2 octaves", "+ 9/4 octaves", "+ 7/2 octaves", and "+ 3 octaves" are 

added to inlets_l in defnition.py.  Tis causes them to become 

mappable timbres in Nervebox UI ( see Illustration 16 ).  

Second, a mapping is created that assigns values to the new timbre 

parameters.

Tird, the parseOSC function in the Chandelier Bellum's custom 

instrument behavior is extended to create and play new musically 

appropriate notes for each mapped harmonic.  See the parseOSC 

function in Appendix A4.
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4.2.4   Fidelity of Nervebox-based Chandelier controller

To measure the fdelity of the Chandelier controller, I measured its 

errors, latency, and the limits of its throughput.  

I performed these tests on a Dell Inspiron 1525 laptop with 2GB of 

RAM and a 1.66GHz Intel Core2 Duo processor.  Te laptop was 

running Ubuntu 9.10 and Python 2.6.4.  

Te test harness for these measurements records the time, in 

microseconds, when MIDI events frst enter the Brum and when they 

leave the Bellum via its serial port.  I would have preferred to take 

measurements from the very end of the chain, from the Dulla's current-

62

Illustration 34: measurement of minimum intervals between note-of events

Illustration 33: measurement of minimum intervals between note-on events



switching modules.  But I did not have the means with which to sync 

the microsecond precision of processor-based measurements with any 

time measurements of the current-switching side of the Dulla. 

Nonetheless, these timing measurements span the components of the 

Chandelier controller that do the complex processing and heavy lifing. 

First I measured the total end-to-end latency of events.  Illustration 29 

shows the distribution of latency in 200 note-on and 200 note-of 

events.  Te note-of events took considerably less time than the note-

on events.  Tis is expected, as the note-on events require the Bellum to 

to scan the Chandelier's tonal space multiple times for each event and 

each harmonic.  Illustration 29 shows this disparity by displaying these 

latencies sorted from high to low.  Te mean latency for note-on events 

is 8921 microseconds and the mean latency for note-of events is 2448 

microseconds.  Te mean latency for both note-on and note-of events 

is is the one that afects performance, since they occur in pairs.  Tis 

value is 5680 microseconds, which I consider to be comfortably small.

Next I measured the maximum end-to-end throughput.  I did this by 

adding a function to the test harness that generates MIDI notes slightly 

faster than the Chandelier controller can process them.  Illustration 30 

shows how the latency of a stream of 300 events slowly increases when 

MIDI notes are entering the system at a rate slightly higher than the 

maximum throughput.  Te slow increase in latency demonstrates that 

the controller is saturated with events during the testing period.  Te 

rate at which events emerge from the other end of the stream is a good 

measure if the maximum throughput.

Te throughputs for note-on and note-of events were noticeably 

diferent in early testing.  So I created new tests that show the two 

patterns separately.

Illustration 33 shows the intervals between 300 sequential note-on 

events.  Te mean interval value is 5309 microseconds.  Tis 
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Photo 7:  Te Heliphon
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Illustration 36: measurement of minimum intervals between note-on events

Illustration 37: measurement of minimum intervals between note-of events

Illustration 35: latency for note-on and note-of events



corresponds to a throughput of 188 events per second.

Illustration 34 shows the intervals between 300 sequential note-of 

events.  Te mean interval value is 10634µs.  Tis corresponds to a 

throughput of 94 events per second.  

Te test harness measuring the input and output of the system also 

scanned for dropped packets, incorrect ordering, and incorrect values. 

Te total count for each of these types of errors was zero.  

4.2.5 Conclusion

Te system latency is acceptably low — especially for a controller that 

must perform so many tonal calculations for every note.  

Te throughput is surprisingly low.  Te two note-on and note-of 

values average out to about ~141 events per second.  Tis is fne for the 

Chandelier, which has a very slow attack time.  

It is surprising that the throughput for note-of events is lower than that 

for note-on events, as they require fewer calculations.  

An error rate of zero, even when the controller is saturated with 

messages,  is a pleasant surprise.  Tough it is clear that if the input rate 

exceeds the maximum throughput for too long, then bufers 

somewhere in the chain will overfow and packets will be lost.  I'm not 

interested in measuring this threshold, as the important rule is to 

prevent the input rate from exceeding the maximum throughput.  

4.3 Te Heliphon

Te Heliphon (see Photo 8) is a simple electromechanical musical 

instrument developed by Ensemble Robot.  It features 25 tuned metal 

bars that are struck by 25 linear solenoid actuators.  Te Heliphon is far 

simpler than the Chandelier, both musically and mechanically.  

4.3.1 Expressive Dimensions of the Heliphon

Tonal Range

Te Heliphon plays 25 discreet, unbendable notes, from G3 to G5.  

Timbre and Specifcities

Te only timbral dimension I've been able to identify in the Heliphon is 

a certain plinkiness that increases with the amplitude.  Tis is caused by 

an increase in the duration of contact between the bar and the solenoid 

rod.  

Dynamics

Te Heliphon has a small dynamic range which can be accessed by 

charging a bar's solenoid for diferent periods of time.  Tis causes the 

solenoid rod to strike the bar at diferent velocities.  Te efective range 
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is small.  If the charge period is lower than ~20ms, the solenoid fails to 

reach the bar.  If the charge period is greater than ~55ms, the rod 

connects with the bar for too long, damping it and creating an 

inharmonic timbre.  

4.3.2 Extra Credit: Synthetic Expressive Dimensions of the Heliphon

Te Heliphon has one interesting dimension — speed.  Te instrument 

was built to play faster than any instrument in a Balinese Gamelan.  It 

can play the same note up to 8 times per second.  And the speed at 

which it can play sequences of diferent notes is limited only by this 

~125ms return time for each note.  

Trill

To exploit the Heliphon's speed, I've created a synthetic expressive 

dimension that I call trill.  Trill is a term for several similar efects — 

single repeating notes, 2-note trills, and arpeggios.  

Trill has 4 parameters — speed, depth, direction and contour.  

Tere is no minimum speed required by the instrument.  But it is not 

practical for the trill's top speed to exceed the instrument's top speed. 

Trill depth can range from a single note to an arpeggio of all active note 

to an arpeggio of all active notes plus an extrapolation thereof.  Trill 

direction denotes the tonal direction of an arpeggio.  And trill contour 

denotes whether the trill increases or decreases over time. 

4.3.3 Expressivity of Nervebox-based Heliphon controller

As the Heliphon is a simple instrument, the evaluation of its 

expressivity is simpler than that of the Chandelier.

Tonal Range

Nervebox can exploit and control the tonal range from G3 to G5 in 12-

tone equal temperament without any special code or mapping.  Te list 

of available frequencies are simply added to the Heliphon's 

defnition.py fle.  

Timbre and Specifcities

Tis instrument's one timbral dimension is linked to dynamics, and not 

independently controllable.

Dynamics

Once the range of valid solenoid charge durations had been measured, 

it was a simple matter to map the amplitude values of incoming 

NerveOSC packets to the solenoid charge durations in Bellum.  Te 

solenoid charge durations are passed to the FPGA, which handles the 

charge and discharge of the solenoids.  

Corresponding note-of events are automatically generated for each 
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note-on, with the delay in between based on amplitude values.  So 

incoming note-of events are ignored.

Trill

Adding the trill dimension and its 4 parameters required adding 

"trill_speed", "trill_depth", "trill_direction" and "trill_contour" to the 

inlets_l list in the Heliphon's defnition.py fle.  Tis made these timbral 

values available for mapping within Nervebox UI.  

Custom code for the Bellum was added to parse these values from the 

timbral data array and pass them to a multithreaded class called Triller, 

with produces all of the trill efects listed in 4.2.2.  

Te extrapolation of a scale, which occurs when trill_depth is set to its 

maximum value, is achieved simply by using notes from an octave 

above or below to double each note.

4.3.4 Fidelity of the Nervebox-based Heliphon controller

I measured the errors, latency, and throughput of the Heliphon 

controller using the same experimental setup that was used for the 

previous Chandelier test.  

Te Heliphon controller is diferent from the Chandelier controller in 

that it uses a diferent mapping in the Brum, diferent custom code in 

its Bellum, a diferent FPGA confguration, and a diferent defnition.py 

fle.

Te custom code in the Bellum is much simpler than that of the 

Chandelier.  Its tonal mapping is a simple one-to-one list, as is its 

amplitude mapping.  Its only non-trivial feature is the Triller class, 

which is much simpler and far less computationally expensive than the 

Chandelier's Vibr class.  

I measured the total end-to-end latency of events.  Illustration 33 shows 

the results, ordered by latency values.  Te simplicity of the Heliphon's 

behavior is refected in the very low latency shown in the tests.  Te 

mean end-to-end latency of the Heliphon controller is only 2107 

microseconds.  

Next I measured the maximum end-to-end throughput using the same 

fooding technique used with the Chandelier.  Note-on events emerged 

from the Bellum with mean intervals of 975 microseconds, as shown in 

Illustration 36.  

Te results for note-of events were similar, with a mean of 1100 

microseconds.  

Te average of the mean intervals for note-on and note-of events is 

1037.5 microseconds, which corresponds to a throughput of 963 events 
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per second.  

Once again, the test harness scanned for dropped packets, incorrect 

ordering, and incorrect values.  Te total count for each of these types 

of errors was zero.  

4.3.5 Conclusion

A controller built with the Nervebox platform can easily exploit and 

control all of the expressive parameters of the Heliphon.  

Te systems latency is imperceptibly low.  And again no errors were 

found during testing.

Te throughput of 963 events per second is plenty for even a timing-

sensitive instrument like the Heliphon.

To judge whether 963 events per second this is a good value, we can 

compare it to the nominal maximum value for MIDI transfers.  MIDI's 

hardware transport has a nominal maxim throughput of  1042 messages 

per second.  

So this controller's end-to-end throughput is nearly as high as data 

fowing unprocessed through a MIDI cable.  And these NerveOSC 

events carry more musical data than MIDI messages.
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5 Conclusion

Te abstractions presented by the Nervebox platform seem to be well 

placed. 

Using the Nervebox platform, I was able to relatively easily build 

control systems for two very diferent electromechanical musical 

instruments.  Aspects the the development process that were common 

to all electromechanical instruments were neatly abstracted behind 

generalized sofware and hardware.  Tese include the gritty details of 

input mapping, internal music representation, the control network, 

output mapping, actuation, and a user interface. 

Development time was spent only on the unique aspects of the 

instruments.  And the Nervebox-based controllers were able to exploit 

and control all of each instrument's expressive dimensions. 

Te current implementation could use improvement.  Te throughput 

for even complex musical processing should run at a speed that can 

keep up with precise music. 

My personal experience as a user of Nervebox, rather than as a 

developer, was full of pleasant surprises.  Te Nervebox UI enabled me 

to create mappings in minutes that before had taken a day or more of 

hand-coding to write. 

But I discovered that the idea of FPGAs is more appealing than the 

reality.  Verilog is a powerful and elegant way to express the idea of a 

complex and time-sensitive machine.  But the FPGAs themselves, from 

both major manufacturers, are full of strange quirks that can only be 

learned through experience. 

Still, I found the process of developing control circuits with an FPGA 

faster and easier than with integrated circuits and discrete components 

— if only because I could test and iterate designs continuously without 

needing to buy or spec parts. 

Of course, the most important test of Nervebox's usefulness will 

happen if and when other musical experimenters use it to build 

controllers for their own instruments.
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6 Future: Openness and Community

It will take more than new technologies and abstractions to create a 

new boom in electromechanical music. It will take a community.

Tere are many individuals and small groups making 

electromechanical instruments. Tese instruments, ideas and 

technologies are evolving separately in isolation, like animals of the 

Galapagos Islands.

I hope that by building a website around an open-source version of 

Nervebox, I can help create a community of these far-fung groups and 

individuals.

Visitors will be able to download the Python, Verilog and Javascript 

code, as well as circuit board layouts in various popular formats such as 

DFX and PDF.

More importantly, visitors will be able to share their own modular code 

and circuits, and their machines, music, and inspirations.

It is my hope that the feld of electromechanical music can fnally enjoy 

the type of vibrant community already enjoyed by the felds of digital 

and analog synthesis. 

70



Appendix A: Code and Circuits
A1: example mapping for Chandelier 

[
# modules
{action:"new", type:"modules", name:"0", 
param:"MIDI_Source_Stream", client_x:23, client_y:14}, 
{action:"new", type:"modules", name:"1", 
param:"MIDI_Filter_Command", client_x:27, client_y:251}, 
{action:"new", type:"modules", name:"2", param:"MIDI_to_OSC", 
client_x:55, client_y:321}, 
{action:"new", type:"modules", name:"3", 
param:"MIDI_Filter_Channel", client_x:383, client_y:159}, 
{action:"new", type:"modules", name:"4", param:"MIDI_to_OSC", 
client_x:26, client_y:476}, 
# functions
{action:"setSendOnPitchBend", type:"function", name:"0", param:false}, 
{action:"setOSCPath", type:"function", name:"4", 
param:"/chandelier/kill/"}, 
{action:"setFreqMap", type:"function", name:"4", 
param:"et31_ofset_0_l"}, 
{action:"setInstrument", type:"function", name:"4", param:"chandelier"}, 
{action:"setFreqMap", type:"function", name:"2", 
param:"et31_ofset_0_l"}, 
{action:"setOSCPath", type:"function", name:"2", 
param:"/chandelier/freq/"}, 
{action:"setInstrument", type:"function", name:"2", param:"chandelier"},
{action:"setSendOnModWheel", type:"function", name:"0", param:true}, 
{action:"setMIDIDevice", type:"function", name:"0", 
param:"General_midi"}, 
{action:"setPath", type:"function", name:"0", param:"/dev/midi1"}, 
# connections
{dest_inlet:0, dest_name:"2", type:"connection", action:"add", 
src_name:"1", src_outlet:1}, 

{dest_inlet:0, dest_name:"3", type:"connection", action:"add", 
src_name:"0", src_outlet:0}, 
{dest_inlet:0, dest_name:"1", type:"connection", action:"add", 
src_name:"3", src_outlet:0}, 
{dest_inlet:1, dest_name:"2", type:"connection", action:"add", 
src_name:"1", src_outlet:3}, 
{dest_inlet:2, dest_name:"2", type:"connection", action:"add", 
src_name:"1", src_outlet:6}, 
{dest_inlet:0, dest_name:"4", type:"connection", action:"add", 
src_name:"1", src_outlet:0}, 
{dest_inlet:3, dest_name:"2", type:"connection", action:"add", 
src_name:"3", src_outlet:1}, 
{dest_inlet:4, dest_name:"2", type:"connection", action:"add", 
src_name:"3", src_outlet:2}, 
{dest_inlet:5, dest_name:"2", type:"connection", action:"add", 
src_name:"3", src_outlet:3}, 
{dest_inlet:6, dest_name:"2", type:"connection", action:"add", 
src_name:"3", src_outlet:4}, 
{dest_inlet:7, dest_name:"2", type:"connection", action:"add", 
src_name:"3", src_outlet:5}, 
{dest_inlet:8, dest_name:"2", type:"connection", action:"add", 
src_name:"3", src_outlet:6}, 
{dest_inlet:9, dest_name:"2", type:"connection", action:"add", 
src_name:"3", src_outlet:7}, 
{dest_inlet:10, dest_name:"2", type:"connection", action:"add", 
src_name:"3", src_outlet:8}
]
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A2: defnition.py fle for Chandelier 

Red ellipses (...) indicate truncations in this 1081-line fle.

defnition={
  "name":"chandelier",
  "present_b":False,
  "network":False,
  "inlets_l":[
    "vibrato_speed",
    "vibrato_depth",
    "-1 octave",
    "+ 3/2 octave",
    "+ 1 octave",
    "+ 5/2 octave",
    "+ 2 octaves",
    "+ 9/4 octaves",
    "+ 7/2 octaves",
    "+ 3 octaves"
  ],
  "paths_l":[
    "/chandelier/freq/",
    "/chandelier/string/1",
    "/chandelier/string/2",

    ...

    "/chandelier/string/31",
    "/chandelier/kill/",
    "/chandelier/test/",
  ],
  "tuning":["equal_temperament", 31.0, 8.1757989156],
  "freqs_l":[
    ["27.5"],
    ["28.12"],

    ["28.76"],

    ...

    ["1721.08"],
  ],
  "strings":{
    "00":[ 
"27.5","55","82.5","110","137.5","165","192.5","220","247.5","275","302.5","
330","357.5","385","412.5","440","467.5","495","522.5","550","577.5","605",
"632.5","660","687.5","715","742.5","770","797.5","825","852.5","880" ],
    "01":[
"28.12","56.24","84.37","112.49","140.61","168.73","196.85","224.97","253.
1","281.22","309.34","337.46","365.58","393.71","421.83","449.95","478.07
","506.19","534.31","562.44","590.56","618.68","646.8","674.92","703.05","
731.17","759.29","787.41","815.53","843.65","871.78","899.9"],
    "02":[
"28.76","57.52","86.27","115.03","143.79","172.55","201.3","230.06","258.8
2","287.58","316.33","345.09","373.85","402.61","431.37","460.12","488.88
","517.64","546.4","575.15","603.91","632.67","661.43","690.18","718.94","
747.7","776.46","805.22","833.97","862.73","891.49","920.25"],

    ....

    "31":[
"53.78","107.57","161.35","215.14","268.92","322.7","376.49","430.27","48
4.05","537.84","591.62","645.41","699.19","752.97","806.76","860.54","914
.33","968.11","1021.89","1075.68","1129.46","1183.25","1237.03","1290.81
","1344.6","1398.38","1452.16","1505.95","1559.73","1613.52","1667.3","1
721.08"],
  },
}
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A3: Generic Nervebox Python code for Bellum

import sys
import osc
import time
import json
import math
import copy
import threading
import ConfgParser 

try: 
  sys.path.index('/opt/nervebox')
except ValueError: # if nervebox is NOT in the path 
  sys.path.append('/opt/nervebox')
from bellums import bellum_network
from bellums import bellum_serialPort

import defnition

confg = ConfgParser.ConfgParser()
confg.read(['/opt/nervebox/nervebox.cfg'])
BRUM_IP = confg.get('network','BRUM_IP')
BROKER_PORT = int(confg.get('network','BROKER_PORT'))
trace_enable = False
freqs_l = defnition.defnition["freqs_l"]
name_str = defnition.defnition["name"]

connections_d = None # global stub, instantiated in registerBellum
serial_port = bellum_serialPort.SerialPort()
serial_port.connect()

class EventManager:
  def __init__(self):

    self.events_d = {}
    self.lock = threading.Event()
  def add(self, event_d):
    self.lock.wait()
    self.events_d[event_d["event_id"]] = event_d
  def remove(self, event_int):
    self.lock.wait()
    del self.events_d[event_int]
  def get(self, event_int):
    self.lock.wait()
    if self.events_d.has_key(event_int):
      return self.events_d[event_int]
    else:
      return None
  def getAllKeys(self):
    self.lock.wait()
    return self.events_d.keys()

eventmanager = EventManager()

def brumListener(msg_j):
  msg_l = json.loads(msg_j)
  src_str = msg_l[0]
  action_str = msg_l[1]
  data = msg_l[2] 
  if src_str == "system":
    if action_str == "trace_enable":
      global trace_enable
      trace_enable = data

def sendSerialData(binaryWord_str):
  if serial_port.connected:
    bwLen_int = len(binaryWord_str)
    if bwLen_int not in [8,14,18,24,25,30,35,40,44,48,52,56,60,64]:
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      print "Error in makeSerialPackets, invalid length for 
binaryWord_str:", bwLen_int
      return
    if bwLen_int == 8:
      stufByteLength_int = 0
    elif bwLen_int <= 14:
      stufByteLength_int = 1
    elif bwLen_int <= 24:
      stufByteLength_int = 2
    elif bwLen_int <= 40:
      stufByteLength_int = 3
    else:
      stufByteLength_int = 4
    payloadLength_int = 8 - stufByteLength_int
    packets_l = []
    packetNumber_int = 0
    while len(binaryWord_str) > 0:
      byteStuf_str = dec2bin(packetNumber_int, stufByteLength_int) # 
packet ordinal
      payload_str = binaryWord_str[0:payloadLength_int] # segment of 
binary word
      binaryWord_str = binaryWord_str[payloadLength_int:] # truncate 
binary word
      packetNumber_int += 1 # increment packet ordinal  
      packet_int = int(byteStuf_str + payload_str, 2) # combine binary 
strings and convert into base-10 value
      packet_chr = chr(packet_int)
      # packets_l.append(packet_int)
      serial_port.send(packet_chr)
  else:
    print "serial port not connected"

def dec2bin(n, fll):
  bStr = ''
  while n > 0:

    bStr = str(n % 2) + bStr
    n = n >> 1
  return bStr.zfll(fll)

def registerBellum():
  global name_str
  global connections_d
  connections_d = bellum_network.init(BRUM_IP, BROKER_PORT, 
brumListener)
  connections_j = json.dumps(
    {"cmd":"register","data":{"name":name_str, 
"server":connections_d["server"]["port"], 
"client":connections_d["client"]["port"], 
"oscServer":connections_d["oscServer"]["port"]}}
  )
  connections_d["client"]["thread"].send(connections_j)
  
class Scheduler(threading.Tread):
  def __init__(self):
    threading.Tread.__init__(self)
    self.queue_l = []
  def run(self):
    while True:
      self.timestamp = time.time() # create timestamp for NOW
      for evt_ord in range(len(self.queue_l)): # loop through all event ints 
in queue
        try:
          evt = self.queue_l[evt_ord] # get reference to event
          if evt["timestamp"] < self.timestamp: # if event's timestamp is 
earlier than NOW timestamp 
            schedule_lock.set() 
            executeOSC(evt["osc_data_d"])# send midi event
            schedule_lock.clear()
            self.queue_l.pop(evt_ord)# delete event
        except Exception as e:
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          print "exception in main.Scheduler", e.args
      time.sleep(0.001)
  def add(self, osc_data_d, delay):
    timestamp = time.time() + delay
    self.queue_l.append(
      {
        "timestamp":timestamp,
        "osc_data_d":osc_data_d,
        "delay":delay
      }
    )

schedule_lock =  threading.Event()
registerBellum()

A4: Chandelier-specifc Python code for Bellum

FPGAClock = 50000000
vibrato_rate = 64.0 # this default rate can be overwritten by MIDI 
values from a keyboard mod wheel 
vibrato_depth = 6 # in cents

class TonalStructure():
  intervalSearchOrder=[
    "tonic", 
    "octave", 
    "ffh", 
    "majorthird", 
    "minorseventh", 
    "majorsecond", 
    "tritone", 

    "minorsixth", 
    "majorseventh", 
    "minorsecond", 
    "minorthird",
    "fourth", 
    "majorsixth",
  ]
  intervalToHarmonic={
    "tonic":[1],
    "octave":[2, 4, 8, 16, 32],
    "ffh":[3, 6, 12, 24],
    "majorthird":[5, 10, 20],
    "minorseventh":[7, 14, 28, 29],
    "majorsecond":[9, 18],
    "tritone":[11, 22, 23],
    "minorsixth":[13, 26, 25],
    "majorseventh":[15, 30, 31],
    "minorsecond":[17],
    "minorthird":[19],
    "fourth":[21],
    "majorsixth":[27],
  }
  def __init__(self):
    pass
  def calcCentsDif(self, freq_lo_foat, freq_hi_foat):
    cents =  1200 * math.log( freq_lo_foat/freq_hi_foat ) / math.log(2);
    return cents
  def freqMatch(self, freq_foat, tolerance_int):
    stringNames_l = defnition.defnition["strings"].keys()
    stringNames_l.sort()
    stringFreq_l = []
    for intervalName in self.intervalSearchOrder:# loop through 
preferred intervals in order
      harmonics_l = self.intervalToHarmonic[intervalName]
      for h in harmonics_l: # loop through harmonic numbers, in order of 
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preferred intervals
        for stringName_str in stringNames_l: # loop through each string
          freqs_l = defnition.defnition["strings"][stringName_str]
          ch_freq = foat(freqs_l[h-1])
          cents = self.calcCentsDif(ch_freq, freq_foat)
          if abs(cents) < tolerance_int:
            stringFreq_l.append([stringName_str, ch_freq])
    return stringFreq_l

tonalstructure = TonalStructure()

class _Vibr(threading.Tread):
  def __init__(self, depth):
    threading.Tread.__init__(self)
    self.depth = depth # vibrato depth, measured in cents
  def run(self):
    global vibrato_rate
    vibrato_increment_f = 0
    while 1:
      vibrato_increment_f = vibrato_increment_f + (vibrato_rate/512)
      vibrato_coefcient = math.sin(vibrato_increment_f)
      # get list of current frequencies from eventmanager
      eventmanager.lock.set()
      eventKeys_l = eventmanager.getAllKeys()
      eventmanager.lock.clear()
      for eventKey in eventKeys_l:
        eventmanager.lock.set()
        evt = eventmanager.get(eventKey)
        eventmanager.lock.clear()
        if evt != None: # if event exists.  it might not if delete immediately 
before get()
          stringFreq_l = evt["freqs_l"]
          for sf_l in stringFreq_l:
            _freq = sf_l[1] if vibrato_rate == 0 else 
self.vibrato_calculation(sf_l[1], vibrato_coefcient)

            bWord_str = makeBinaryWord(sf_l[0], str(_freq))
            sendSerialData(bWord_str)
            time.sleep(.02)
  def vibrato_calculation(self, freq, vibrato_coefcient):
      exponent = vibrato_coefcient * (foat(self.depth) / foat(1200)) # 
there are 1200 cents per octave
      vFreq = foat(freq) *  foat(pow(2, exponent))
      return vFreq

_vibr = _Vibr(vibrato_depth)
_vibr.start()

def parseOSC(*raw):
  global trace_enable
  osc_data_l = raw[0]
  event_d = {
    "osc_addr":osc_data_l[0],
    "event_id":osc_data_l[2],
    "freq":osc_data_l[3],
    "amplitude":osc_data_l[4] if len(osc_data_l) > 5 else "",
    "vibrato_speed":int(osc_data_l[5]) if len(osc_data_l) > 5 else 0,
    "vibrato_depth":int(osc_data_l[6]) if len(osc_data_l) > 6 else 0,
    "-1 octave":int(osc_data_l[7]) if len(osc_data_l) > 7 else 0,
    "+ 3/2 octave":int(osc_data_l[8]) if len(osc_data_l) > 8 else 0,
    "+ 1 octave":int(osc_data_l[9]) if len(osc_data_l) > 9 else 0,
    "+ 5/2 octave":int(osc_data_l[10]) if len(osc_data_l) > 10 else 0,
    "+ 2 octaves":int(osc_data_l[11]) if len(osc_data_l) > 11 else 0,
    "+ 9/4 octaves":int(osc_data_l[12]) if len(osc_data_l) > 12 else 0,
    "+ 7/2 octaves":int(osc_data_l[13]) if len(osc_data_l) > 13 else 0,
    "+ 3 octaves":int(osc_data_l[14]) if len(osc_data_l) > 14 else 0
  }
  if event_d["osc_addr"] == "/chandelier/freq/":
    freq = foat(event_d["freq"]) # convert freq string to freq foat
    event_d["freqs_l"] = [] # 
    sf_l = tonalstructure.freqMatch(freq, 5)
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    if len(sf_l) > 0:
      event_d["freqs_l"].extend(sf_l)
    if event_d["-1 octave"] != 0:
      sf_l = tonalstructure.freqMatch((freq / 2), 5)
      if len(sf_l) > 0:
        event_d["freqs_l"].extend(sf_l)
    if event_d["+ 3/2 octave"] != 0:
      sf_l = tonalstructure.freqMatch((freq * (3/2)), 5)
      if len(sf_l) > 0:
        event_d["freqs_l"].extend(sf_l)
    if event_d["+ 1 octave"] != 0:
      sf_l = tonalstructure.freqMatch((freq * 2), 5)
      if len(sf_l) > 0:
        event_d["freqs_l"].extend(sf_l)
    if event_d["+ 5/2 octave"] != 0:
      sf_l = tonalstructure.freqMatch((freq * 3), 5)
      if len(sf_l) > 0:
        event_d["freqs_l"].extend(sf_l)
    if event_d["+ 2 octaves"] != 0:
      sf_l = tonalstructure.freqMatch((freq * 4), 5)
      if len(sf_l) > 0:
        event_d["freqs_l"].extend(sf_l)
    if event_d["+ 9/4 octaves"] != 0:
      sf_l = tonalstructure.freqMatch((freq * 5), 5)
      if len(sf_l) > 0:
        event_d["freqs_l"].extend(sf_l)
    if event_d["+ 7/2 octaves"] != 0:
      sf_l = tonalstructure.freqMatch((freq * 6), 5)
      if len(sf_l) > 0:
        event_d["freqs_l"].extend(sf_l)
    if event_d["+ 3 octaves"] != 0:
      sf_l = tonalstructure.freqMatch((freq * 8), 5)
      if len(sf_l) > 0:
        event_d["freqs_l"].extend(sf_l)
    eventmanager.lock.set()

    eventmanager.add(event_d)
    eventmanager.lock.clear()
  if event_d["osc_addr"] == "/chandelier/kill/":
    eventmanager.lock.set()
    e_d = eventmanager.get(event_d["event_id"])
    eventmanager.remove(event_d["event_id"])
    eventmanager.lock.clear()
    if e_d == None:                                       
      print "parseOSC /kill no event found"
      return
    f_2l = e_d['freqs_l']
    for f_l in f_2l:
      stringId = f_l[0]
      bWord_str = makeBinaryWord(stringId, "0")
      sendSerialData(bWord_str)

def makeBinaryWord(ch_str, f_str):
  """
  000 sssss (stringId)
  001 sff (stringId, freq)
  010 fff (freq)
  011 fff (freq)
  100 fff (freq)
  101 fff (freq)
  """
  stringId_b_str = dec2bin(int(ch_str)+1, 6)
  if foat(f_str) == 0:
    period_b_str = "000000000000000000000000"
  else:
    period_int = int((FPGAClock)/foat(f_str))
    period_b_str = dec2bin(period_int, 24)
  word_b_str = stringId_b_str + period_b_str
  return word_b_str
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def OSCBind():
  """ associate all paths in defnition with mapper function """
  for path_str in defnition.defnition["paths_l"]:
    connections_d["oscServer"]["thread"].bind(parseOSC, path_str)

OSCBind() 

A5: Verilog code for Chandelier Dulla

/* declare main module */
module chandelier(

input clock,
input RxD,
output square_wave_pin_01,
output square_wave_pin_02,
output square_wave_pin_03,
...
output square_wave_pin_48,

);

/* create 48 register vectors to hold period data*/
parameter periodBitWidth = 23;
reg [periodBitWidth:0] period_01;
reg [periodBitWidth:0] period_02;
reg [periodBitWidth:0] period_03;
...
reg [periodBitWidth:0] period_48;

/* create register vector longpacket to accumulate bits from  RS-232 
deserializer */
reg [39:0] longpacket = 0;
  
/* create 48 variable square wave oscillators */

square_waves CHAN01(clock, square_wave_pin_01, period_01);
square_waves CHAN02(clock, square_wave_pin_02, period_02);
square_waves CHAN03(clock, square_wave_pin_03, period_03);
...
square_waves CHAN31(clock, square_wave_pin_48, period_48);
  
/* create RS-232  deserializer */
wire RxD_data_ready;
wire [7:0] RxD_data;
async_receiver deserializer(.clock(clock), .RxD(RxD), 
.RxD_data_ready(RxD_data_ready), .RxD_data(RxD_data));
  
/* sort incoming packets and store in register vector longpacket */
always @(posedge clock) if(RxD_data_ready) 

begin

/* sort which packet in 8-byte sequence */

case(RxD_data[7:5]) 

3'b000: longpacket[39:35] <= RxD_data[4:0];
3'b001: longpacket[34:30] <= RxD_data[4:0];
3'b010: longpacket[29:25] <= RxD_data[4:0];
3'b011: longpacket[24:20] <= RxD_data[4:0];
3'b100: longpacket[19:15] <= RxD_data[4:0];
3'b101: longpacket[14:10] <= RxD_data[4:0];
3'b110: longpacket[09:05] <= RxD_data[4:0];
3'b111: 
begin
       longpacket[04:00] <= RxD_data[4:0];

/* register vector longpacket is full */
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/* sort which string id */
case(longpacket[38:33])  
/* copy period bits to appropriate period register vector */
6'b000000:period_01 <= longpacket[23:0]; 
6'b000001:period_02 <= longpacket[23:0];
6'b000010:period_03 <= longpacket[23:0];
...

6'b101111:period_48 <= longpacket[23:0];
endcase
end
endcase
end

endmodule

/* variable frequency square wave generator module */
module square_waves (

nput clock, // wire from system clock
input [23:0] period, // 24 wires setting value for square wave 

period
output square_wave_pin_out // wire to FPGA output pin

);
reg [24:0] period_counter = 0; // 25-bit register for period counter
reg wave_bool = 0; // boolean value sent to pin square_wave_pin_out
always @(posedge clock) // at the positive edge of every clock cycle

period_counter <= ( period_counter > period*2)?0: 
period_counter+1;

// increment register period_counter, reset  to 0 when it exceeds 
period*2
always @(posedge clock) // at the positive edge of every clock cycle

wave_bool <= (period_counter  > period)?1:0;
// set register wave_bool  to 1 if  period_counter  > period, 

otherwise 0
assign  square_wave_pin_out = wave_bool;
// continuously assign value of wave_bool to square_wave_pin_out 

endmodule;
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A6: Schematic Diagram of Dulla amplifer module
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Appendix B: Timbral Descriptors

Table 1 Harmonic descriptors I (from Peeters [00]) 
spectrum :
energy 
spec Centroid (global mean spec) 
spec.Centroid (global mean spec) 
spec variation 

harmonic :
spec energy 
spec centroid 
spec std 
spec deviation (of the harmonic computed from the global mean 
spectrum) 
spec slope 
mean of the instantaneous energy 
spec centroid computed on the vector composed of the maximum 
amplitude [lin] of cgsmax each harmonic over time 
spec centroid computed on the vector composed of the mean amplitude 
[lin] of each cgsmoy harmonic over time 
spec centroid computed on the vector composed of the rms amplitude 
[lin] of each cgsrms harmonic over time 
mean of the instantaneous spec centroid [amp lin, freq lin] 
mean of the instantaneous spec centroid [amp dB, freq lin] 
mean of the instantaneous spec centroid [amp lin, freq log] 
mean of the instantaneous spec centroid [amp dB, freq log] 
spectral std computed on the vector composed of the maximum 
amplitude [lin] of each harmonic over time 
spectral std computed on the vector composed of the mean amplitude 
[lin] of each harmonic over time 
spectral std computed on the vector composed of the rms amplitude 

[lin] of each harmonic over time 
mean of the instantaneous spec std [amp lin, freq lin] 
mean of the instantaneous spec std [amp dB, freq lin] 
mean of the instantaneous spec std [amp lin, freq log] 
mean of the instantaneous spec std [amp dB, freq log] 

Table 2. Harmonic descriptors II (from Peeters [00]) 
spectral std computed on the vector composed of the maximum of 
amplitude [dB] of each harmonic over time 
spectral std computed on the vector composed of the mean of 
amplitude [dB] of each harmonic over time 
spectral std computed on the vector composed of the rms of amplitude 
[dB] of each harmonic over time 
mean of the instantaneous spec deviation [amp lin] 
mean of the instantaneous spec deviation [amp dB] 
mean of the instantaneous spec slope [amp lin] 
mean of the instantaneous spec slope [amp dB] 
spec fux using instantaneous spec centroid and cgsmax 
spec fux using instantaneous spec centroid and cgsmoy 
spec fux using instantaneous spec centroid and cgsrms 
spec fux using instantaneous spec centroid and cgsi 
harmonic spectral deviation 
speed of variation of the spectrum 
sum of the variations of the instantaneous harmonic from global mean 
harmonics 
harmonic attack coherence 

envelope :
log-attack time from [rms] 
log-attack time from [max] 
log-attack time from [smoothed rms] 
log-attack time from [smoothed max] 
efective duration 
efective duration [norm by fle length] 
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efective duration [norm by fle length and f0] 
efective duration [norm by fle length and T] 

Table 3. Percussive descriptors (from Peeters [00]) 
log-attack time 
temporal centroid 
temporal std 
efective duration 
maximum value 
ed*cgt 
rms value of the power spectrum 
rms value of the power spectrum [amp weighting dbA] 
rms value of the power spectrum [amp weighting dbB] 
rms value of the power spectrum [amp weighting dbC] 
spec centroid of the power spec 
spec centroid of the power spec [amp weighting dbA] 
spec centroid of the power spec [amp weighting dbB] 
spec centroid of the power spec [amp weighting dbC] 
spec std of the power spec 
spec std of the power spec [amp weighting dbA] 
spec std of the power spec [amp weighting dbB] 
spec std of the power spec [amp weighting dbC] 

skewness of the power spec 
kurtosis of the power spec 
slope of the power spec 
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