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Abstract 
Performing artists have frequently used technology to sense and extend the body’s natural 
expressivity via live control of multimedia.  However, the sophistication, emotional content, and 
variety of expression possible through the original physical channels of voice and movement are 
generally not captured or represented by these technologies and thus cannot be intuitively transferred 
from body to digital media.  Additionally, relevant components of expression vary between different 
artists, performance pieces, and output modalities, such that any single model for describing 
movement and the voice cannot be meaningful in all contexts.  This dissertation presents a new 
framework for flexible parametric abstraction of expression in vocal and physical performance, the 
Expressive Performance Extension Framework.  This framework includes a set of questions and 
principles to guide the development of new extended performance works and systems for 
performance extension, particularly those incorporating machine learning techniques.  Second, this 
dissertation outlines the design of a multi-layered computational workflow that uses machine 
learning for the analysis and recognition of expressive qualities of movement and voice.  Third, it 
introduces a performance extension toolkit, the Expressive Performance Extension System, that 
integrates key aspects of the theoretical framework and computational workflow into live 
performance contexts.  This system and these methodologies have been tested through the creation 
of three performance and installation works: a public installation extending expressive physical 
movement (the Powers Sensor Chair), an installation exploring the expressive voice (Vocal 
Vibrations), and a set of performances extending the voice and body (Crenulations and Excursions 
and Temporal Excursions).  This work lays the groundwork for systems that can be true extensions of 
and complements to a live performance, by recognizing and responding to subtleties of timing, 
articulation, and expression that make each performance fundamentally unrepeatable and unique. 
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1. Introduction: Expressive Extension of Physical and Vocal 
Performance 

1.1. New Visions of Performance 
The human body and voice are two powerful instruments that every person possesses.  They are 
infinitely expressive, extremely personal, and deeply compelling.  Indeed, the majority of our 
performance traditions center on performers’ ability to communicate emotions, evoke experiences, 
and take the audience on a journey through their bodies and their voices.  When a pianist thrusts his 
hands down on the keys, a dancer sinuously curves his body through space, or an opera singer softly 
glides to the top of a melodic phrase, their physical actions send meaningful, metaphorical, and 
emotional information to the audience.  With the integration of new technologies into live 
performance, artists have frequently attempted to use technology to sense and extend the body’s 
natural expressivity into live control of a range of digital media: rich sounds, compelling 
visualizations, rapidly changing lighting, and even robotic movement.  However, with this increasing 
use of technologies in performance contexts, the expressive power of the live human performer is at 
risk.  The sophistication, emotional content, and variety of expression possible through the original 
physical channels are generally not captured or represented by these technologies, and thus cannot be 
intuitively transferred from body to digital media.  Why should a performer stay behind a laptop, 
controlling multimedia through the standard interaction paradigms of a computer, or be 
overwhelmed by giant projections and sound that have no direct connection to the live 
performance?  What tools and techniques are needed to create technologically-enhanced 
performance works that not only retain but actually enhance the expressivity of a live performer?  To 
envision some of the risks and opportunities of new technologies in performance, let us imagine two 
rather different kinds of performances.   
 
In the first performance, a man stands at a table onstage behind his laptop computer.  A projection 
screen behind him shows colors and shapes.  The man stares at his computer screen while speakers 
on either side of the stage emit low sounds and melodies.  As the man mouses, clicks, and types, the 
patterns of sound and light change.  Sometimes, the sound changes when the man appears to be 
doing some action.  Occasionally, his actions do not cause any obvious change.  Other times, sound 
or projection patterns seem to change while he is not doing anything.  Although the musical and 
visual results of this performance may be interesting, the connection between the performer and the 
performance is unclear.  The audience knows, academically, that the piece is being created or at least 
controlled live, but the connection is hidden.  It is not clear what portion of the audience’s 
experience has anything to do with the performer’s actions; indeed, the entire production could have 
been pre-composed and played back with a few clicks of the mouse.   
 
Now let us imagine a second performance with similar visual and sonic content.  The projection 
screen displays shifting colors, while a soundscape of textures and melodies plays over the 
speakers.  In this performance, a man stands alone onstage facing the audience.  As he stands 
completely still, the screen grows static and dim and a quiet low drone is the only sound in the 
space.  With a sharp flick of his hand, colored shapes dance across the screen and a high note 
plays.  A smooth sweep of his arm and curl of his hand expands and morphs the drone 
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texture.  Gentle beats of his hand are echoed by an emerging rhythm.  When he wraps his hand into 
a fist, the music grows louder and harsher, pausing at this crescendo until he relaxes his hand and it 
regains its original rhythm.  He begins to rapidly, nervously shake his hands, and the rhythmic 
pattern becomes increasingly unstable while the images grow brighter.  He stops suddenly with his 
hands up, breath held: the projected color stays bright and steady and the sound maintains a loud 
drone.  As he drops his hands slowly, the colors fade and the sound diminishes to a whisper.  In this 
second performance, the behavior and development of the digital media appear continually 
connected to the performer’s body.  The fluctuations of the performer’s timing, intensity of 
movement, and smoothness or sharpness, seem to shape the sonic and visual material.  The 
audience’s focus is on the physical expressivity of the live performer and the ways that expressivity is 
extended into digital domains.   
 
How can computational systems support artists in extending the body’s natural expressivity into the 
control of multimedia elements?  How can expressive qualities of movement and the voice be 
described and represented?  What tools and methodologies are necessary for artists to create 
performances and installations with media extensions that are shaped by a live performance in rich, 
thoughtful, and evocative ways?  These are questions that this dissertation seeks to address. 

1.2. Thesis Objectives: Framework, System, Examples 
The research described in this thesis is designed to support performances and installations that use 
technologies to capture and extend physical and vocal performance into digital media.  It provides 
guidelines and systems for creating such performances and for developing compelling connections 
between physical behavior and output media.  Through my prior research, I have found that current 
computer systems lack the kind of high-level analysis of physical and vocal qualities that would 
support artists in taking advantage of movement or vocal data to augment a performance work in 
meaningful ways.  Additionally, current analysis systems are not flexible enough to handle the 
expressive variation between different artists, performance pieces, and output modalities.  By 
applying machine learning techniques to expressive analysis of movement and voice, the work 
presented here aims to help the field of performance and technology overcome some of these 
hurdles. 
 
This research on technologically extended performance has several primary components:   

• The Expressive Performance Extension Framework, a new framework of parametric 
abstraction of expression in vocal and physical performance 

• A collection of guidelines, questions, and principles to assist in the development of new 
extended performance works and systems for performance extension 

• A multi-layered computational workflow that incorporates machine learning for the analysis 
and recognition of expressive qualities of movement and voice 

• A set of expressive parametric axes for describing vocal and physical qualities 
• The Expressive Performance Extension System, a toolkit for live performance that 

incorporates key aspects of the theoretical framework and computational workflow 
• New performance and installation works centered on extending expressive physical 

movement and the expressive voice 
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The goal of the Expressive Performance Extension Framework is to analyze and recognize 
continuous qualities of movement rather than to perform traditional gesture recognition.  Similar 
goals are true in a vocal context, where the aim is to recognize expressive vocal qualities, not to 
recognize particular notes like a score-following system, or particular words like a speech recognition 
system.  Though gesture and speech recognition could be added to this framework at a later stage, 
this research focuses on the aspects of expression in performance that can be captured and extended 
purely through the analysis of continuous qualitative parameters.   
 
While users should be able to define their own sets of expressive axes that they find most meaningful 
for a particular performance work, I also provide a core set of axes developed through my research 
and exploration that can serve as a useful starting point for expressive analysis.  This example set of 
expressive parametric axes includes six parameters: energy (calm to energetic), rate (slow to quick), 
fluidity (legato to staccato), scale (small to large), intensity (gentle to intense), and complexity (simple 
to complex).  These axes can be combined to form a high-level expressive space.  Other potential sets 
of expressive axes could include Laban’s effort model of weight, time, space, and flow, as well as 
frameworks for describing emotion through parameters such as arousal, valence, and stance.  Positions 
in and trajectories through any selected parametric space can then be mapped to control values for 
multimedia.  The Expressive Performance Extension Framework includes guidelines for the process 
of selecting axes that are meaningful for a particular work. 
 
Throughout this work, I seek to examine several key questions in the field of technological extension 
of physical performance.  How can raw sensor data be abstracted into more meaningful descriptions 
of physical and vocal expression?  What features of physical performance can convey particular 
expressive and emotional content?  How can we create evocative high-level descriptions of 
movement and voice so that they can be used intuitively and creatively in the process of 
choreographing, composing, and performance-making?  How can we create tools that encourage 
metaphorical, meaningful, and rich associations between movement and media, rather than naïve 
one-to-one sensor to output mappings?  What principles should systems for performance extension 
follow in order to be easily incorporated into existing creative processes?  What are good practices for 
extending live physical and vocal performance through machine learning techniques?   

1.3. The Current State of Interactive Performance Systems: Data is Easy, 
Information is Hard 

We are now at a point in the practice of technologically-extended performance work where it is 
relatively straightforward to collect substantial amounts of data about a live performance, not only 
through specialized devices such as motion capture systems and wearable sensors, but also through 
readily available and affordable systems such as webcams, microphones, and even the Microsoft 
Kinect.  Even wearable sensor systems have become affordable and easy to implement, through the 
prevalence of microcontroller boards such as Arduinos and wireless devices such as XBee 
modules.  However, while our sensing systems have become increasingly precise, cheap, and easy to 
use, analysis systems have not made comparable progress in determining the expressive significance 
of all of this performance data.  How do we make sense of a performer’s movement?  Indeed, what 
does it mean to “make sense of movement” in an expressive context?  As the field has moved past the 
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question of how to sense data about a physical performance, we can explore how to best interpret that 
data to turn it into useful information and use it to create compelling performance work.   
 
For the continuing practice of technologically-extended expressive performance and installations, it 
is vital that we step away from the details of specific sensor setups and data streams to shape these 
works through more meaningful descriptions of performance expression.  Imagine a system that you 
can teach how you move and sing.  In performance, it knows when you are moving in a tiny, 
delicate manner, when you make a sharp and bold movement, how gently and smoothly you are 
singing, or how energetically you are singing.  Now imagine you are asked how you would like to use 
the information given by the system to control and shape music or sound, or a generative 
visualization, or theatrical lighting, or other digital media in a performance.  While your answers 
would likely vary in different performance contexts, it is easy to begin imagining interactive 
relationships between the body and media.  In contrast, most existing performance capture systems 
speak in terms of the values of individual data streams (e.g. the XYZ coordinate of your right hand, 
the amplitude of your voice, the amount of acceleration along the X axis of the accelerometer 
mounted on your arm) and low-level features analyzed from this data (e.g. the derivative of your 
hand’s position, your voice’s average volume over the last second, how many pixels changed in a 
particular region of the webcam since the previous frame).  Which kinds of information do you 
think would be more helpful or inspirational in your creative process of mapping your physical 
performance input to your desired digital output?  I argue that the more closely that the input 
parameters you are given by the system describe expressive aspects of a performer’s movement or 
voice that are relevant for a given performance, the easier and more intuitive it is to create 
meaningful relationships between the performance and the digital extension of that performance.  
 
And what if you could pick your own set of sensors and your own output media?  If you could select, 
define, and refine your own set of qualitative descriptions in rehearsal as you develop the 
performance content of a piece?  If you could easily change your sensors, select and train a new set of 
expressive descriptors, adjust mappings, go back to yesterday’s model?  Each performance creator 
needs this kind of flexibility in technologies, definitions of expression, and relationships between 
sensing and output to create interactions that are meaningful in the context of a specific performance 
or installation. 
 
While there exist a variety of systems and frameworks designed for digitally enhancing performances, 
none of these systems yet allow the amount of flexibility and high-level expressive description 
envisioned here.  The majority of the systems for mapping some performance input to a digital 
output do not incorporate any definition of higher-level expressive parameters.  Those that do have 
some conception of expression, such as EyesWeb (Ricci, Suzuki, Trocca, & Volpe, 2000), generally 
limit their definitions and analysis to predefined sensing setups and sets of descriptions.  A variety of 
systems incorporate techniques from the machine learning repertoire for gesture recognition or note 
identification, but these sorts of binary recognition processes are not sufficiently conducive to 
sophisticated continuous control of media.   
 
Additionally, most mapping systems are structured to facilitate the typical approach of mapping a 
particular input sensor dimension to a particular output control value.  This methodology seems 
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more suitable for technologists wanting to create artistic work than for artists hoping to integrate 
technology into their performances and installation works.  Certainly, it is possible to make rich 
mappings by carefully choosing a gestural or vocal vocabulary, implementing sensor systems 
designed to detect that vocabulary, and writing software to process that specific data and associate it 
with the desired control values.  I have used this design process in some of my early gestural analysis 
projects, such as the Vocal Augmentation and Manipulation Prosthesis, a glove that allows a singer 
to manipulate his own voice (Jessop, 2009).  However, that design process required me to be a 
computer scientist and electronics engineer as well as a performance creator.  Especially when a 
system incorporates machine learning algorithms, the majority of existing systems require high levels 
of technical knowledge to obtain desirable results.  In order for those who are not primarily 
programmers or machine learning specialists to be able to create interesting mappings, it is necessary 
to abstract the meaningful movement and vocal information away from the specifics of sensors, 
streams of input data, and pattern recognition algorithms. 
 
In addition, any definition of “meaningful movement and vocal information” is likely to vary 
between different performance-creators, between different performance and installation works, and 
perhaps even within different sections or moments of a particular piece.  Similarly, different pieces 
will capture movement and vocal data through different sensing mechanisms, guided by other goals 
and constraints of the work.  No pre-programmed or pre-trained system would be able to provide a 
sufficient qualitative movement or vocal description to satisfy every user’s needs.  Instead, such a 
system would give one fixed structure about how to describe movement and the voice.  Ideally, 
systems should suggest ways to think about qualitatively analyzing the voice and the body in 
expressive contexts, but allow users flexibility in creating their own definitions and expressive 
models.  While existing systems provide some of this flexibility for simple gesture recognition tasks, 
allowing users to define their own gestures, no existing system has provided the ability to flexibly 
define continuous, high-level expressive parameters.  
 
The Expressive Performance Extension System (EPES) presented in this dissertation allows users to 
capture raw input data, compute expressive features, perform pattern recognition to identify desired 
vocal and physical qualities, and manually map information about these high-level expressive 
parameter spaces to output control parameters for digital media.  No prior mapping systems have 
allowed a user to train that system to recognize specific continuous qualities of movement and voice, 
rather than classifying movement into emotional categories or into particular labeled gestures.  
Additionally, this architecture differs from existing work in its support for creative practice at a 
higher level of abstraction than either raw sensor data or computational feature spaces.  I will not be 
focusing on quantitative evaluation metrics for the Expressive Performance Extension System, as in-
depth quantitative evaluation would be impractical within the scope of this thesis.  More valuably, 
and more relevantly given the context in which these systems are designed to be used, these systems 
and methodologies are evaluated in the tradition of qualitative analysis of artistic practice, 
particularly focusing on their utility and expressivity as artistic tools. 

1.4. Outline of Thesis 

This chapter has introduced the concept of expressively extending physical and vocal performance 
through technology and highlighted the need for systems that allow creators to flexibly define their 
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own high-level descriptions of expression.  It also has outlined the goals and deliverables of my 
research: a creative framework for performance extension, a computational system for high-level 
analysis and mapping of physical and vocal qualities, and several example performances and 
installations.   
 
Chapter 2 places my research in a larger artistic and technical context, reviewing prior work on 
technological extension in live performances and public installations, particularly extension of 
movement and voice.  It examines methodologies for movement and voice analysis and description 
from various domains including human-computer interaction, dance notation, gesture recognition, 
and digital musical instrument design.  The concept of “mapping” and a variety of existing tools and 
strategies used to create mappings for interactive performance systems are also discussed.  This 
chapter examines these existing models from multiple domains to derive important principles for 
performance extension technologies and to suggest necessary additions to the field.  This chapter also 
provides definitions for the key concepts in this dissertation such as gesture, quality, and expression. 
 
Chapter 3 analyzes some of my prior interfaces for expressive movement and vocal extension, with a 
particular focus on how features of these works suggest some principles for extended interface 
design.  This section includes analysis of three primary projects: the Vocal Augmentation and 
Manipulation Prosthesis (VAMP), a wearable gesture-based instrument for a singer to control an 
extension of his own voice; the Gestural Media Framework, a system for abstraction of gesture 
recognition and Laban-inspired qualities of movement; and the Disembodied Performance System 
(DPS), a sensing, analysis, and mapping framework for extending the expressive behavior of an opera 
singer through transformations of sound and scenography.   
 
Chapter 4 presents the Expressive Performance Extension Framework, a theoretical and technical 
framework for the technological extension of body and voice in performance and interactive 
installations.  This includes a set of the key principles, guidelines, and necessary questions that 
should be considered by practitioners seeking to design technologically-extended performances, 
particularly those that incorporate machine learning techniques for movement and vocal 
analysis.  This framework also outlines a workflow for incorporating machine learning of high-level 
expressive qualities into performance and rehearsal contexts.  Through examination of the concepts 
of expression and liveness, and discussion of some of my additional projects at the Media Lab 
(including an online extension to the show Sleep No More, the interactive Chandelier 
Hyperinstrument in Death and the Powers, and Bibliodoptera, an interactive public art installation), I 
propose guidelines and best practices for incorporating technologies into performance and 
installation contexts and for designing systems to extend live performance.  
 
Chapter 5 describes the Expressive Performance Extension System (EPES), a flexible system for 
sensing, analyzing, and mapping expressive parameters.  This system incorporates the use of machine 
learning techniques to support mappings using abstract parametric qualities, allowing users to 
capture raw input data, compute expressive features, perform pattern recognition to identify desired 
vocal and physical qualities, and manually map information about these high-level expressive 
parameter spaces to output control parameters.  EPES extends the mapping program designed for 
the Disembodied Performance System (Torpey, 2009) to concretely implement the design principles 
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outlined in Chapter 4.  This chapter outlines the structure and features of EPES, walks through the 
EPES workflow for defining and learning abstract qualities of movement and voice, and discusses the 
process of incorporating EPES into a performance or installation and its integration with other 
technical systems. 
 
Chapter 6 describes and discusses the three key projects created for this dissertation research that 
have incorporated the Expressive Performance Extension System for analysis and extension of the 
voice, the body, and the body and voice together.  The first of these is the Powers Sensor Chair, a 
movement-based instrument designed for the general public to shape their own musical experience 
with the sonic world of Death and the Powers.  The second project outlined is Vocal Vibrations, a 
public art installation designed to encourage participants to explore their own voices and the 
vibrations generated by their voices, augmented by musical and tactile stimuli.  By expanding the 
Opera of the Future group’s work in technologies for sophisticated measurement and extension of 
the singing voice in performance, we aim to create new kinds of powerful vocal experiences in which 
everybody can participate.  The third project incorporated in this thesis is a series of performance 
and installation pieces, Crenulations and Excursions and Temporal Excursions, where a performer’s 
body and voice control a sonic environment.  This chapter also discusses a variety of other works 
that have incorporated EPES, from the Death and the Powers global interactive simulcast and second-
screen experience, to a short multimedia theatrical performance for the Hacking Arts Festival, to a 
series of performances and installations developed by Blikwisseling workshop participants in the 
Netherlands.  This chapter addresses the design goals of these experiences, their development 
processes, the ways in which they incorporate the technologies and frameworks described in this 
dissertation, and the ways in which they illustrate various design principles for technical performance 
extension.   
  
Chapter 7 summarizes this dissertation’s contributions: a framework and set of guidelines for 
developing technologically extended performances and performance systems; a flexible software 
system for incorporating machine learning technologies into extended performances; and a set of 
new performance and interactive installation works centered on the expressive voice and the 
body.  This chapter also addresses the next steps for this research, lessons from the research that may 
be relevant for other fields, and future directions for extended performance. 
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2. Background and Context 

This chapter seeks to place my work in technologies for extending expressive physical performance 
into a larger artistic and technical context.  It examines historical and recent work in interactive 
installation and performance systems, qualitative and quantitative systems for voice and movement 
analysis, the use of voice and body in human-computer interaction, and systems and strategies for 
mapping input sensor information to output media.  It also defines the key terminology and 
concepts used in this dissertation, and highlights ways that the research presented in the remainder 
of the dissertation connects different areas of study and addresses issues in existing systems.     

2.1. Terminology and Definitions 
There have been many efforts to study and categorize bodily movements and their relationship to 
emotional effects or linguistic concepts.  Many of these have focused on taxonomies of gesture, from 
Quintilian’s advice on appropriate gestures for Ancient Roman orators (Kendon, 2004) to the 
systematized set of gestures in Delsarte’s acting technique, developed from his observations of 
naturalistic movement (Delaumosne, 1893).  Many gesture categorization techniques have also been 
created by researchers in the psychology of gesture and speech (Efron, 1972; McNeill, 1992).  
However, the definition of the term “gesture” is not precisely fixed.  Kurtenbach and Hulteen define 
a gesture broadly as “a movement of the body that conveys information” (Kurtenbach & Hulteen, 
1990).  Adam Kendon uses “gesture” as the label for movement that appears intentionally 
communicative and deliberately expressive:  

“…if movements are made so that they have certain dynamic characteristics they will be 
perceived as figure against the ground of other movement, and such movements will be 
regarded as fully intentional and intentionally communicative... ‘Gesture’ we suggest, then, is 
a label for actions that have the features of manifest deliberate expressiveness.” (Kendon, 
2004)   

Such movement is often identified by having sharp onsets and offsets and being a temporary 
excursion from a position.  This implies that certain temporal and spatial characteristics indicate a 
meaningful gesture.  In addition, the term “gesture” can also be extended past physical actions into 
musical and sonic domains: for example, Hatten broadly describes gesture as “any energetic shaping 
through time that may be interpreted as significant” (Hatten, 2006). Many examples of gestures in 
musical contexts can be found in (Godøy & Leman, 2009; Gritten & King, 2006).  
 
Volpe defines “expressive gestures” as movements that convey particular types of information: 
expressive content or implicit messages.  He also describes a method to broaden this definition 
through the use of technology: if a movement of the body results in expressive content through, say, 
music or visuals rather than only through the pure movement content, it is an “extended” expressive 
gesture.  These “extended expressive gestures” are the result of a juxtaposition of several dance, 
music, and visual gestures.  However, Volpe argues that they are not simply the sum of these 
gestures, since they incorporate the artistic view of a director and are perceived as multimodal stimuli 
by audiences (Volpe, 2003). 
 
For the purposes of this dissertation, I will define a gesture to be a vocal or physical action that 
conveys information. A gesture is what a performer does. Similarly, I define quality as the elements 
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of movement or voice that convey individual variation, such as dynamics, timbre, and timing.  As 
described by Kendon and Hatten (Hatten, 2006; Kendon, 2004), these temporal (and spatial, where 
appropriate) elements delineate an expressive gesture.  This is how a gesture or action is performed.  
The research presented in this dissertation does not focus on analyzing the semantic or emotional 
content contained in a particular gesture (raising the hand, for example), but instead focuses on the 
expressive content contained in the quality of that movement.  The recognition and classification of 
gestures is not a focus of this framework.  We are more interested in the how than the what. 
 
I additionally define expression as emotional and evocative communication through movement or the 
voice.  It is important to clarify, as highlighted in Juslin (2003), that expression is not a single-axis 
phenomenon of which a performance has “more” or “less,” but a space outlined by multiple 
qualitative parametric axes.  In this context, a parameter refers to a value that varies over time within 
a clearly-defined semantic space.  This semantic space may be something that can be defined 
quantitatively, such as the numerical value range of a particular sensor data stream, or it may be 
qualitative, such as complexity, rate, or intensity.  These qualitative parameters change over time 
though they may not have one obvious numerical value.  For example, the rate of a performer’s 
movement will vary throughout a performance.  It is important to note that this definition differs 
from the standard mathematical definition of parameter, where parameters are values for configuring 
a mathematical model to produce particular results given particular inputs.  This dissertation 
particularly focuses on high-level expressive parameters, metrics of movement and vocal quality whose 
definitions vary in different performance contexts, as discussed further in following 
chapters.  Handles adjusted over time to control the shaping of output media are typically referred to 
as output control parameters. 
 
As with gesture, expression, and quality, the concepts of performance and installation are quite broad 
and may have a variety of definitions.  In this thesis, a performance is an expressive artistic 
presentation for an audience that is carried out in a specific space during a specific point in time and 
that varies with each presentation.  A key aspect of this definition is the concept of an audience, as it 
limits the definition of performance to presentations that are observed.  Another aspect of this 
definition to highlight is that a performance must vary with each presentation, it must be “different 
every night.”  This variation may be subtle or significant, from slight nuances of timing or 
articulation coming from a performer’s internal state to complete changes of content, such as in the 
case of an improvisational performance.  Importantly, this definition excludes works that have no 
temporal component to their experience (such as a painting or sculpture) and works that are 
experienced temporally but are fixed and unchanging with each presentation (such as screenings of 
film or video).  I additionally define a performance to be a work that is observed during the same 
period of time in which it is presented, though it may take place or be experienced in different spaces 
simultaneously, as is the case for some of the remote performance extensions that are described in 
this dissertation. 
 
The term installation will generally be used to refer to a space that is augmented artistically so that a 
visitor to the space becomes immersed and involved in the experience of observing and exploring the 
space.  Frequently, a visitor to an interactive installation becomes not only an audience member 
observing the work but also a performer shaping the work through his actions.  An interactive 
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installation may be considered a particular type of performance.  A specific performance or 
installation will be referred to interchangeably in this document as a work, a piece, or a production. 
 
While many different kinds of technologies are currently incorporated into performance art and 
artistic installation contexts, the most relevant for this dissertation are technologies that extend a live 
performer or installation visitor’s expressive actions into the behaviors of digital media.  Such 
performance extension technologies are the core of this dissertation, and an extended performance 
incorporates these kinds of technologies.  In these cases, the behavior of the technology is affected by 
or is shaped by a live human, whether or not that human is conscious of the manner in which the 
technology is under his control.  Thus, I would consider a video projection in an artistic installation 
that changes its content depending on how quickly a visitor is walking through the installation space 
to be a technological extension of a performance.  However, a video projection in a different 
installation that changes content based on the projected weather forecast would not be a 
technological extension of performance, despite the fact that it may be different every time it is 
experienced.  Similarly, a digital musical accompaniment that is randomly generated according to a 
stochastic algorithm would not be considered a performance extension technology.   
 
Finally, in almost all technologies for performance extension, the concept of mapping must be 
addressed. The standard mathematical definition of mapping is an operation that associates each 
element of a given set (the domain) to one or more elements of another set (the range).  In the 
context of this dissertation, a mapping is the associations between some performance input and a 
desired output, and creating a mapping is the process of defining this associative space.  This 
definition of mapping does not constrain the form of the input (sensor data, expressive parameters, 
random processes) or the form of the output.  Mappings may be constructed by human 
performance-makers, learned or developed by a computer, or any combination of these 
methodologies.   

2.2. Technologies for Extended Performance and Interactive Installations  
As my research in movement and voice extension technologies is specifically designed for 
performance and installation scenarios, it is useful to locate this research in its broader artistic 
context.  This section examines some prior work in technological extension for live performances 
and public installations, particularly the extension of movement and voice. 

2.2.1. Technology in Performance 

Throughout the history of performance, new technologies have been incorporated and explored to 
add to the expressive potential of a work, from electric lighting to digital video to networked systems 
to robotics.  As Steve Dixon describes in Digital Performance, 

“Digital performance is an extension of a continuing history of the adoption and adaptation 
of technologies to increase performance and visual art’s aesthetic effect and sense of spectacle, 
its emotional and sensorial impact, its play of meanings and symbolic associations, and its 
intellectual power.” (Dixon, 2007, p. 10)  
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Performance-makers have frequently sought out new technologies to incorporate into their 
productions.  The Ancient Greek and Roman theaters were full of technological developments in 
mechanical stage engineering, such as the Greek mechanisms for lowering a performer from the 
heavens onto the stage (deus ex machina) and revolving prism-shaped set pieces to allow for quick 
scene changes (periaktoi).  Simultaneously, performance practices have often been a driving force in 
technological development and adoption, as performance-makers push the boundaries of existing 
technologies.  For example, the widespread adoption of electrical grids across the United States was 
due in part to the needs of theaters across the country that were experimenting with and 
incorporating electric lighting into their productions (Dixon, 2007). 
 
The field of dance has also incorporated many early examples of technology in performance.  Loie 
Fuller, one of the first modern dancers, created solo dance pieces that combined new electric lighting 
techniques with flowing costumes of her own design to produce never-before-seen visual effects that 
extended her live dance performance, transforming the shape and movement of her body by the way 
that the costumes caught the light.  She even created a dance where her costume glowed, thanks to 
the use of radium (Mazo, 1977).  While these technologies did not vary their behavior based on 
Fuller’s performance, she created effects that relied on the interplay between technology and her 
body.   
 
Today, computational technologies are present in theater, music, dance, and opera performances, as 
well as many performances that combine or fuse different types of performance practice.  These 
technologies include sophisticated robotics and set mechanisms, complex theatrical lighting 
equipment, sound amplification and manipulation tools, multimedia projection, live cameras, digital 
music and instruments, and many other techniques.  As will be discussed further in Chapter 4, live 
performance provides a particularly challenging use case for new technologies, requiring great 
flexibility, temporal precision, speed of response, and control over technological effects.  In addition, 
technologies for performance, particularly for extending a physical performance, have to reliably act 
in a way expected by performers: their behaviors should be learnable, predictable, and repeatable. 
 
As formerly-separate artistic modalities become more and more integrated, performances also have 
started to require the technological control of multiple synchronous media.  As an example, Cirque 
du Soleil is known for its elaborate circus productions incorporating projection, lighting, sound, and 
robotic scenery.  While much of this technology is non-interactive, Canadian director Robert 
Lepage’s show Totem for Cirque du Soleil also incorporates interactive elements through projections 
that are generated in real time and affected by the movement of the performers.  Infrared cameras 
positioned around the stage detect performers’ movements so the system can produce “kinetic effects 
such as ripples, splashes and reflections in the water and the flames” (“TOTEM Set Design and 
Projections,” n.d.). 
 
Lepage has also included interactive technologies in opera productions.  His 2008 staging of Hector 
Berlioz’ La Damnation de Faust for the Metropolitan Opera uses microphones to capture the pitch 
and amplitude of the performers’ voices and the orchestra’s music, as well as infrared lights and 
cameras to capture motion.  The data from these sensors is used to shape projected images in real 
time, such as projected curtains waving behind dancers and giant projected flames that vary based on 
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a singer's voice (Wakin, 2008).  Lepage’s Ring Cycle for the Metropolitan Opera similarly 
incorporates dynamic projections affected by the performer’s voices and movement and the 
orchestra’s music.  This Ring features a giant robotic set that serves as a continually varying surface 
for projection (Wakin, 2010).  While the level of interactivity in these contexts is quite limited, 
Lepage’s goal is to create technology that can be flexible and responsive to constant variation in 
performance:  

“Now machines allow us to make use of a bit of luck or spontaneous improvisation, so for 
instance movement, silence or the singer's vocal density, which is never quite the same from 
one performance to the next, directly influence the images being projected. Humans drive 
the electronic play." (Machart, 2010) 

 
Other opera productions that have centered on the use of technologies include Tod Machover's 
Valis, which uses two digitally-extended instruments to create the musical score and performance, 
with computer-generated music extending the live performance of a digital piano and a percussion 
instrument.  Lost Highway, an opera based on the film of the same name by David Lynch, 
incorporates intricate live and prerecorded video streams and a rich synthesized soundscape to 
translate a complex movie into a live musical performance.  This production was directed by Diane 
Paulus with video design by Philip Bussman (Hewett, 2008).  StarChild (Oliverio & Pair, 1998) is 
an example of a “multimedia opera,” incorporating surround-sound technology, planetary data 
sonification, and precise synchronization between a number of audio and video streams. 
 
Another modern opera that draws on highly sophisticated technology as an integral part of the 
performance is Tod Machover's Death and the Powers (Death and the Powers, n.d.; Jessop, Torpey, & 
Bloomberg, 2011; Torpey, 2012), discussed further in Chapter 3.  In this opera, the main character 
of Simon Powers seeks to extend his life and influence in the world by uploading himself into his 
house.  The actor leaves the stage to be replaced by the theatrical set: bookshelves that communicate 
through a language of light, color, and movement; a chandelier that is also a musical instrument; a 
chorus of robots that serve as characters and scenic elements; and surround sound throughout the 
performance space.  All of these elements are expressively shaped in real time by the live performance 
of the actor playing Simon Powers. 
 
For the remainder of this dissertation, I will primarily constrain the discussion of technological 
performance systems to interactive systems that extend the behavior of a human performer in real 
time.  The majority of current uses of technology in performance still remain non-interactive, 
whether that technology comes in the form of a projected backdrop, a computer-generated audio 
track, or the pre-programmed movement of a scenic element.  While these technologies may be cued 
by a stage manager or technician, their form remains the same from performance to performance, 
static and unchanging regardless of the variation in the live performance that shares the space with 
them.  For the future development of technology in performance, we want systems that, at their 
core, extend the live expression of a human, that react to the live nuances of a performance.   
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2.2.2. Instrumental Model: Hyperinstruments and Musical Systems 

There is a long history of performance extension through 
technology in the field of digital musical instruments. 
Frequently, these instruments have used the performer’s 
movement as a primary control mechanism.  Tod 
Machover’s paradigm of Hyperinstruments provides 
virtuoso musicians with additional levels of expressivity and 
control through digitally-enhanced traditional musical 
instruments (Machover, 1992).  This model seeks to 
combine the performance appeal of a live musical 
instrument with the flexibility and extended sonic range of 
digital instruments.  Importantly, a Hyperinstrument seeks 
to capture and extend a musician’s existing expressive 
technique, rather than inventing an entirely new vocabulary 
of movement.  For example, Yo-Yo Ma can play the 
Hypercello expertly as he would a standard cello, while 
controlling additional processing and layers of sound 
through his variations in bowing technique, articulation, and other expressive performance elements 
(Machover, 1992).  A Hyperinstrument follows an instrumental model, where the behavior of the 
system is learnable, predictable, and repeatable.  Thus, these kinds of instruments allow a 
professional to take active control of a broader palette of musical manipulation through variations on 
their existing instrumental technique.   
 
Many other researchers have developed digital musical instruments that extend the behavior of 
traditional musical instruments and the existing expression and technique of trained musicians.  For 
example, Overholt et al. have designed a computer vision system to recognize gestures of a flute 
player and use them to cue a computer-generated instrument (Overholt et al., 2009).  Thibodeau 
and Wanderley present an overview of a dozen augmented trumpets, and how their analyses have 
informed the design of their own “standardized” augmented trumpet (Thibodeau & Wanderley, 
2013).  Young’s Hyperbow is designed to pick up the most subtle details of violin playing (Young, 
2002).   
 
In contrast to digital musical instruments that enhance existing vocabularies of performer-instrument 
interaction, other digital musical instruments have novel interaction models.  Particularly relevant to 
the research presented in this dissertation are those instruments that incorporate free gesture as the 
mechanism of control.  The Theremin is an early free-gesture analog instrument where capacitive 
sensing allows the user to manipulate the pitch of a generated tone by the movement of one hand in 
relationship to an antenna, and the amplitude by the movement of the other hand near a second 
antenna.  In this early analog system, the movements of the performer have a fixed mapping to the 
generation of sound.  The “Radio Drum” (Mathews, 1991) is an early example of a computer music 
system controlled by the free gestures of a performer holding drumsticks whose positions are tracked 
in three-dimensional space.  The “Biomuse” system measures EMG data from moving limbs and can 
be used to control musical parameters (B. Knapp, 1992).  In these and later digital systems, 
movement parameters can be mapped to a variety of sonic outputs. 

	  
Figure 1. Yo-Yo Ma playing the Hypercello 
Photo via Tod Machover. 



	   31	  

 
Other gestural instruments include Waisvisz’s “The Hands” (Waisvisz, 1985), Bokowiec’s 
“Bodycoder” system  (M. A. Bokowiec & Bokowiec, 2005), and Sonami’s “Lady’s Glove” (Bongers, 
2000).  All of these are wearable instruments that have been used to trigger and manipulate audio in 
live performance through movements of the performer’s arms and hands, though “The Hands” also 
includes interaction with buttons on the device.  Interfaces such as The Hands, the Bodycoder 
system, and the Lady’s Glove have been designed such that the input sensors on each device are 
separable from the output sound control processes.  The sensors can be mapped to different kinds of 
control for different performance pieces.  For example, the Bodycoder system consists of resistive 
bend sensors on knee and elbow joints and keypad switches in gloves.  These sensors can be mapped 
in a variety of ways to trigger particular sound processing patches, video events, and sound samples, 
as well as to continuously manipulate sounds in different ways.  These mappings can be changed 
from performance piece to performance piece, and between different sections of a performance (M. 
A. Bokowiec & Bokowiec, 2005).      
 
There also have been interfaces developed to capture the expressive movement of a conductor either 
through free gesture or through a handheld device, such as the “Conductor’s Jacket” (Nakra, 2000) 
and the “Radio Baton” (Mathews, 1991).  The Conductor’s Jacket measures the gesture of a 
conductor through a variety of sensing strategies including EMG sensors to detect muscle tension, as 
well as physiological data such as heart rate and galvanic skin response.  Data from conductors 
performing in the jacket has been examined to determine which elements of movement are 
expressive and communicative to performers.  Interestingly, the sensors that measured physiological 
data in the Conductor’s Jacket were found to be connected less to the conductor’s expressive 
intentions and more to the conductor’s own emotional reactions.  The biggest spikes in a 
conductor’s galvanic skin response did not indicate that the conductor was in the middle of an 
emotional passage of music, but instead were correlated with the conductor reacting to his own 
mistakes, mistakes in the orchestra, or events in the audience disrupting the music.   
 
An important extension of the research on capturing expressive performance and extending 
traditional instruments through technology is the use of similar techniques for amateur 
contexts.  Digital technologies allow the separation of the performer’s action from the sound-
generating mechanism in a way not possible with traditional musical instruments.  Thus, simple 
interfaces can allow amateurs meaningful control over complex sonic worlds.  The form of these 
amateur performances can be quite varied, from novel percussion instruments (e.g. Weinberg, 2008; 
Wilkinson, 1997); unconstrained movement, as in the Brain Opera's Gesture Wall (Wilkinson, 
1997); tangible interactions with physical objects, such as the Shapers in Toy Symphony (Machover, 
2004); or vocal explorations, such as the Brain Opera's Singing Tree (Oliver, 1997). 
 
This sampling of prior work shows a wide range of interfaces and interaction models used for 
extending musical performance through sensing the behavior of a live performer.  It is relevant to 
note that these digital musical instruments have a separation between the performer’s input gesture 
and at least part of the output sonic result.  They are not designed to have only one mapping, one 
way that they can sound given a particular input; instead, they are often used in multiple 
performance contexts to create different results.  The sound of a Hypercello is not limited to a 
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particular set of sonic samples and manipulations as a real cello is.  Instead, the same sensing 
strategies and analysis can be connected to a variety of different sonic outputs (such as manipulations 
of the real cello sound and additions to the real cello sound) for different performance pieces and 
even for different moments within a piece.  For an interface like the Bodycoder system that does not 
incorporate any analog sound generation, the relationships between action and resulting sound are 
completely determined within a computer.   
 
Since the relationship between sound and action in a digital musical instrument is not constrained 
by the physics of the input device, any kind of movement can be used to trigger or shape any kind of 
sound.  The same tiny movement of a finger could cause a small tinkling noise or a giant explosion.  
But what makes sense?  What kinds of relationships seem to be meaningful or clearly 
intentional?  With the dissociation between sound production methods and produced sounds 
granted by digital musical instruments, how can we design digital instruments to be as expressive as 
analog ones?  In designing these instruments, there is a need to create meaningful “action-response 
associations” (Nakra, 2000).   

2.2.3. Technologically Extended Vocal Performance 

In the research world of new interfaces for musical expression, there is also a long tradition of 
performers manipulating and augmenting their voices through a range of technologies, including 
keyboards and mixers, handheld devices such as Waisvisz’s “The Hands” (Waisvisz, 1985), and 
wearable devices.  The majority of technologically enhanced performances that center on the voice 
do not use the voice itself as a control mechanism, but instead as material that can be controlled by 
other interfaces such as gesture or tangible interfaces.  Gestural interfaces for vocal manipulation 
have perhaps been particularly popular, including Sonami’s solo vocal work with the Lady’s Glove, 
where she shapes her voice via her gesture (Bongers, 2000); the Bokowiecs’ use of the Bodycoder 
system in vocal performances such as “Etch” and “V’Oct (Ritual)” (M. A. Bokowiec, 2011; M. A. 
Bokowiec & Bokowiec, 2005); Pamela Z.’s and Laurie Anderson’s performances with the 
BodySynth in works such as “Voci” (Lewis, 2007; McBride, 1997); and Imogen Heap’s recent 
performances with the Mi.Mu Glove (Mitchell, 2011; The Gloves Project, n.d.).  Other interfaces for 
augmenting a live vocal performance through movement include the “One-Person Choir” interface 
(Maes, Leman, Kochman, Lesaffre, & Demey, 2011), Knapp and Cook’s Integral Music Controller 
(R. B. Knapp & Cook, 2005),  and my own Vocal Augmentation and Manipulation Prosthesis 
(Jessop, 2009). 
 
It is important to note that each of these gestural models of vocal augmentation presents a very 
different relationship between movement and the sonic extensions of the voice.  Some recognize 
specific gestures to trigger changes of vocal effects, to bring in synthesized vocal accompaniment, or 
to record live vocal material and play it back on command.  Other interfaces use continuous 
movement to control live processing and effects on the voice.  Some interfaces have a fixed set of 
behaviors, while others are flexible controllers with a range of effects determined for a particular 
composition.  Clearly, there is no single, obvious mapping that relates movement and vocal 
processing.  However, all of these interfaces intend to support an integrated physical and vocal 
performance experience, where body and voice act in concert to produce the desired sonic effects.  
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Blonk and Levin’s Ursonography presents an interesting variation, in which projected text is 
synchronized with the performer’s tempo and shaped by the performer’s vocal dynamics 
(“Ursonography - Interactive Art by Golan Levin and Collaborators,” n.d.).  Levin and Lieberman 
have also incorporated graphics modified by the voice into public installations in Messa di Voce, 
Hidden Worlds, and RE:MARK (Levin & Lieberman, 2004).  In these experiences, the amplitude and 
spectral content of visitors’ voices are used to affect projected graphics.  Another public installation 
where content is controlled solely by the voice is Oliver’s “Singing Tree” (Oliver, 1997), with which 
visitors interact by singing into a microphone.  The “pitch, noisiness, brightness, volume, and 
formant frequencies” of their voices are measured and used in real time to shape the behavior of 
music and video generation systems.  
 
Other systems for extending performance with the solo voice as input do not necessarily focus on the 
qualities of the vocal signal, but rather on the text that is spoken.  Sparacino’s Improvisational 
TheaterSpace provides an environment for an actor to improvise a scene.  The system recognizes 
simple gestures and certain words and phrases, and determines what text to project in 
response.  Additionally, the projected text can have multiple expressive variations of typography and 
word movement, which are determined by the system in interaction with the performer (Sparacino, 
1996). 
 
Opera is another field where interactive technologies have been used to extend the performer’s voice 
into both audio or visual media.  Lepage’s Damnation of Faust and Ring Cycle, mentioned at the 
beginning of this chapter, incorporate information from the performer’s voices to shape dynamically 
generated projections (Wakin, 2008; 2010).  Machover’s Death and the Powers, discussed further in 
Chapter 3, extends the expression of a performer’s voice into patterns of light and color on the set, as 
well as into robotic movement and vocal processing, including the movement of sound in the 
performance space (Jessop et al., 2011).  

2.2.4. Technologically Extended Dance Performance 

Extended performance, where the movement of the performers is captured and affects other 
elements of the performance in real time, has been especially popular in the field of dance.  As early 
as 1965, Merce Cunningham's Variations V incorporated photoelectric sensors and antennae to 
mark the positions of dancers; the data gathered then controlled electronic musical devices (Mazo, 
1977).   Cunningham also worked with performance capture technologies in a variety of ways, some 
interactive and some static.  He incorporated technology into aspects of the compositional process, 
the structure, and the content of his pieces.  Between 1991 and his death in 2009, Cunningham 
choreographed the majority of his dances with the support of DanceForms, a program allowing a 
choreographer to record sequences of movement (frequently using live dancers and advanced motion 
capture systems), and then manipulate those sequences virtually in a three-dimensional environment 
(“Credo Interactive Inc.,” n.d.).  DanceForms provides tools for quickly assembling and reordering 
sequences of movement, which supported Cunningham’s aleatoric choreography practices.  Motion  
capture technologies were also used for creating projected dancers in Cunningham’s Biped (1999), 
with visuals designed by Paul Kaiser and Shelley Eshkar.  For this piece, Kaiser and Eshkar worked 
with movement fragments of Cunningham’s that had been previously recorded via motion capture 
technology, created a choreography of those fragments, and transformed the motion capture data 
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into animated three-dimensional figures that performed on scrims as a counterpart to Cunningham’s 
live dancers (Dixon, 2007).     
 
The work of the dance company Troika Ranch is dedicated to the integration of technology and 
dance.  In various performance pieces, Troika Ranch has used dancers’ movements to shape visual 
and sonic elements.  The actions of the dancers are detected by laser beams crossing the stage, impact 
sensors on the floor, or computer vision systems that track points on a dancer’s body (Stoppiello & 
Coniglio, 2003).  In these works, the interactions between dancer and media are frequently related 
to a dancer’s location on stage or directly to the values of a sensor on a particular limb.  The 
performer is not given an instrumental level of control over the media.  Mark Coniglio and Dawn 
Stoppiello, the creative directors of Troika Ranch, have developed the mapping software Isadora for 
controlling live video mixing and video effects in performance.  Isadora is capable of taking in 
movement input via bend sensors on the performers’ bodies and external sensing systems 
(“TROIKATRONIX | live performance tools,” n.d.).  
 
A system similar to Isadora that has been used frequently in interactive performance environments is 
EyesWeb (Ricci et al., 2000).  This modular system allows a user to plug in tools for capturing dance 
movement, analyzing that movement through a variety of techniques, and using that movement to 
control some output.  EyesWeb will be discussed in more depth in Section 2.6.2.  
 
Yamaha’s Miburi system (Vickery, 2002), Aylward and Paradiso’s Sensemble (Aylward & Paradiso, 
2006), and the Danish Institute of Electronic Music’s Digital Dance Interface (Siegel & Jacobsen, 
1998), have also been used for the real-time generation of music to accompany dancers onstage.  All 
of these systems constrain the possible mappings between movement and digital media through the 
systems’ description of movement, such as the amount of bend in particular joints (the Miburi 
system) or the amount of activity detected among a number of moving performers (Sensemble). 
 
Camera systems for tracking motion are also particularly popular in interactive dance and 
performance.  Falling Up, a performance piece by Todd Winkler, uses one such camera system, the 
Very Nervous System designed by David Rokeby.  In this performance, live video is processed to 
determine the location and speed of an onstage performer.  These data streams are then mapped to 
manipulations of the sound and the live-captured, projected image of the performer (Winkler, 
2002).  The Very Nervous System has also been used by Rokeby in a variety of installation scenarios, 
where different areas of the camera screen are mapped to different instrumental controls.  A user's 
activity and movement in those areas shapes aspects of a music-generating program (“David Rokeby: 
Very Nervous System,” n.d.).  Stichting Eleckro-Instrumentale Muzeik (STEIM) has developed 
another camera-based performer tracking system called BigEye (“BigEye | STEIM,” n.d.), often used 
for performances where performers trigger sound or music events by moving into particular areas of 
the stage (Siegel & Jacobsen, 1998).  The German dance company Palindrome uses their own 
camera-tracking system EyeCon to detect contact between dancers or differences in the amount that 
dancers are moving and use that information to shape musical phrases (Dixon, 2007). 
 
Sparacino’s DanceSpace (Sparacino, Wren, Davenport, & Pentland, 1999) is a space for 
extended performance and interactive installation that allows both novices and experts to generate 
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musical and graphical output through their movement.  Using computer vision techniques to track a 
performer, DanceSpace creates a representation of the performer’s body and associates different 
instrumental sounds with different parts of the body.  By moving different parts of her body, the 
performer can trigger some particular sounds and shape the pitch of others.  This system does not 
require any special sensors to be worn, and is designed to focus on tracking the movement of specific 
body parts rather than metrics of “overall movement.”   
 
Sparacino’s work in dance and theater also includes the concept of Media Actors, software agents to 
recognize gestures and text from live performers and respond via expressive text, video, and/or 
sound.  In this model, the agents’ behavior is driven by a combination of information gathered from 
external sensing technologies such as microphones and camera systems, and by the agent’s own 
internal motivations and programmed behaviors.  There are no direct mappings created between a 
live performer's movements and the resulting media, since the media manipulations are controlled 
by an individually-acting software agent. 
 
Marc Downie’s work at the MIT Media Lab also incorporates artificially intelligent software agents 
that are not only influenced by live performance data but also shaped by their own motivations and 
patterns of perception (Downie, 2005).  Downie’s interactive agent paradigm sidesteps the question 
of mapping input data to output media results, taking a different approach to the relationship 
between live performance and digital media.  Biologically-inspired, artificial intelligences can 
algorithmically generate visual and sonic elements of a performance: these systems perceive live 
performance information, but have autonomous goals and behavior.  These goals can be shaped by 
an artist creating a piece with these agents, but the specific mappings between the agents’ perceptions 
and their reactions are determined and learned by the agents.  For example, in the collaboration 
between choreographer Trisha Brown and the OpenEndedGroup (Downie, Kaiser, and Eshkar), 
How long does the subject linger on the edge of the volume, interactive agents generate visualizations that 
are linked to the bodies of particular dancers and projected on top of each dancer.  The dancers wear 
retro-reflective markers picked up by infrared cameras, and the movement information of each 
dancer is segmented.  An agent has the goal of moving across the stage, traveling along on the body 
of the dancer.  While this overall goal for the agent has been determined by the artists, the agent 
itself is responsible for figuring out when to attach and detach itself to and from different dancers to 
move across the stage.  As the agent learns the choreography, it also learns how to predict more 
accurately which of its actions will help carry it toward its goal (Soerensen & Lyng, 2005). 

2.2.5. Categorizations of Technological Systems for Performance and Interactive Installations 

One dimension along which we can examine technological or algorithmic systems in performance or 
installation contexts is in terms of their relationship to a live performer.  Robert Rowe outlines 
classification categories for interactive musical systems in (Rowe, 2004), which can be extended 
beyond musical performance.  In particular, Rowe distinguishes between two paradigms of 
interactive systems, the instrument paradigm and the player paradigm. In the instrument paradigm, 
the system serves as an “extended musical instrument,” where aspects of a human performance are 
analyzed and used to control an output that goes beyond the traditional response of an instrument 
but still feels like it stems from a human’s live performance.  In the player paradigm, the system 
serves as an “artificial player,” with its own musical behavior affected to various extents by the 
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human performer.  This is the case in interactive performance systems like the work of George 
Lewis, whose generative music system observes Lewis's live performance on the trombone, but itself 
decides how and when to use that information in determining what it is going to play for its part of 
a duet (Rowe, 1993). 
 
I categorize the relationship between system and performer into four different models:  

• Static systems 
• Stage management systems 
• Agent systems 
• Instrumental systems   

 
The behavior of a static system is not influenced in any way by the input of a live performer.  This 
includes systems where the output is fixed and unchanging, such as tape music or a pre-edited video 
projection.  This category also includes systems where the output is stochastic or probabilistic, and 
systems where the output is influenced by external, non-performer-related data (about the weather, 
the stock market, etc.).  In all of these cases, while the actual output of the system may vary every 
performance, there is no relationship whatsoever between the live performance and the behavior of 
the system.  
 
In stage management systems, the digital material is often static and is not influenced by any performer 
onstage, but aspects of the material may be controlled by technical staff.  In this model, cues may be 
triggered at particular times by a live technician, such as a stage manager calling “go” on a lighting 
cue, a sound effect, or a preprogrammed rigging cue.  Material may also be manipulated live by 
other technicians: for example, a light board operator changes lighting palettes as he is inspired by a 
live rock show and a sound engineer mixes a production based on the levels he hears.  These cues 
and shaping may be completely dependent on the behavior of performers.  The stage manager calls a 
lighting cue when a performer says a particular line, or crosses to Stage Left.  The sound engineer 
adjusts the level of a particular singer’s microphone from moment to moment based on the singer’s 
volume.  However, in these systems, the technology is not seen as an extension of the performance.  
Those who might be said to be “performing” with the technology (the theatrical technicians) are 
typically offstage and are not generally seen by the audience as a component of the 
performance.  The precise timing and shaping controlled by technicians can play a large part in the 
audience’s overall experience of a production.  However, these tasks are more likely to have limited 
expressivity and limited creative input.  
 
In agent systems, input from or analysis of a live performer is used to feed and inform a system’s own 
generative processes, though that input is not the only thing used by the system in determining its 
output.  These systems are perhaps better seen as agents that interact with a live performance, but 
have their own goals and behaviors.  Downie’s interactive agents for How Long Does the Subject 
Linger on the Edge of the Volume are an example of such a system in the domain of dance 
performance (Downie, 2005).  The autonomous behavior of agents such as Downie’s and 
Sparacino’s (Sparacino et al., 1999) avoids naïve mappings between the live performance and the 
media elements, but the resulting interactions are generally not reproducible and do not give the 
performer a sense of control. 
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A final category of interactive system is the instrumental system, where the behavior of the system is 
under the direct control of a live performer.  An instrumental system has as input some elements of a 
performer’s behavior and uses those elements to shape its behavior in ways that are sufficiently 
learnable, repeatable, and perfectible by the performer.  This is the category of system that is most 
examined and explored in this dissertation.   
 
These categories are, of course, not completely separable; instead, there is a continuum of all of these 
modes of interaction between performer and system.  For example, an instrumental system where a 
performer’s behavior shapes generated music might have a layer of stochastic behavior, such that a 
performer might be able to control the general timbre of the sounds produced by the system, but not 
be able to intentionally trigger specific individual sounds.  A given performance piece might also 
have many different kinds of systems overlaid, or different system models at moment to moment.  
 
Another dimension along which we can examine systems for technological performance extension is 
the expected expertise of the performer.  This dimension is inspired by Wanderley’s division of 
gestural musical interfaces, which incorporates three different types of gestural systems (Wanderley, 
2001): 

• Digital musical instruments (experts play, generally tactile interfaces, intended for 
specific sonic results, the audience listens to the performers) 

• Interactive music installations (generally free-movement, extreme novices use, 
exploration rather than sound may be the main goal, the performers are also the 
audience) 

• Dance-music systems (the expressive goal is not only the music output but the 
choreographic movement used in producing that output) 

 
Experiences such as the Brain Opera (Paradiso, 1999) fall on one side of the spectrum; visitors to the 
Brain Opera had no prior experience with the novel instruments they encountered, and were given 
no explicit instructions about how to play those instruments.  The instruments had to be designed so 
as to create a compelling interaction without practice or known technique.  On the other extreme 
are solo performance systems from more traditional extended instruments such as the Hypercello 
(Machover, 1992) to novel interfaces such as the Lady’s Glove (Bongers, 2000) or the Hands 
(Waisvisz, 1985).  In these cases, the performer is expected to be a virtuoso, either in the traditional 
instrument that serves as a basis for the interaction or through long practice with the new digital 
musical instrument.  Intermediate conditions include the Toy Symphony instruments (Machover, 
2004), where amateur performers study and rehearse with novel instruments.  One interesting design 
goal for interactive systems is that they have a “low floor and high ceiling”; it is quick to do 
something that is reasonably interesting, but additional practice and repetition will allow for finer 
and finer control of new layers of detail.  The framework and systems described in this dissertation 
are designed to create interfaces for both the novice and expert sides of the scale, as the concept of 
expressive qualities is equally relevant for both.  This work includes examples of both public 
installations for novices and interactive performance extensions designed for experienced performers.   
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2.3. Existing Frameworks for Analyzing and Describing Movement  
2.3.1. Delsarte’s System of Oratory 

In the late 19th century, the former actor François Delsarte attempted to create a comprehensive 
theoretical framework of movement in performance.  This was one of the earliest (and, in fact, one 
of the only) efforts at creating such a framework.  Delsarte sought to develop a theory of oratory and 
aesthetics based on the inflection of the voice, the movements of the body, and the content of 
speech.  His theory explores how these elements conveyed aspects of the speaker’s “life,” “soul,” and 
“mind,” which he saw as three separate but connected entities (Delaumosne, 1893).  In Delsarte’s 
framework, gesture serves to convey a person’s “soul,” that is, their sentiment and emotion, and was 
the most powerful of these elements of oration.  Delsarte states, “The artist should have three 
objects: to move, to interest, to persuade. He interests by language; he moves by thought; he moves, 
interests, and persuades by gesture” (Delaumosne, 1893). 
 
Delsarte proposes ideal forms for conveying desired sentiments to an audience, using a particular 
gesture and stance.  Each emotion is linked to a particular set of positions and movements of the 
eyes, arms, hands, and body.  For example, the head can take on nine separate positions, each of 
which conveys a different emotional state, such as confidence, pride, reflection, or 
veneration.  Similarly, nine different stances of the legs are described to represent different states of 
the speaker's mind, from vehemence to terror.  Additionally, Delsarte believed that gestures should 
be limited, controlled, and focused on individually. 
 
Delsarte also notes a crucial point in the definition of gesture, that gesture is not merely represented 
by static poses and postures.  For Delsarte, the “dynamic” of gesture is contained in the inflictions 
and rhythms of a movement.  This concept of dynamic movement is an important characteristic of 
Delsarte's analysis of gesture: he describes that movement is communicative not only through the 
performer's stance and pose, but also through the way that the shape of the body changes over time.  

2.3.2. Dance Notation and Description Systems 

Contemporary dance performance analysis and notation systems are a valuable resource for exploring 
methods to define movement and expression in movement.  Contemporary dance has a tremendous 
range of choreographic styles and movement vocabularies, ranging from formal ballet technique to 
pedestrian movements like walking, running, and jumping.  As the majority of the various forms of 
dance focus on expression conveyed by the body, we can ask what qualities of movement have been 
identified in prior models used for the study of dance performance and how those have been related 
to the expressivity of the movement.  Some prior models describe movement with either parametric 
or semantic spaces, forming higher-level descriptions of movement than basic physical details.  Such 
descriptions of movement qualities and their identifying features can serve as an interesting context 
for creating frameworks for recognition of expression. 
 
While there exist many frameworks for notating dance movement, the majority of these frameworks 
do not incorporate notions of movement quality.  Such frameworks primarily describe which body 
parts are involved in a movement, the direction of movement, and the amount of time taken for the 
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movement (potentially with some notion of where the accent falls in the movement).  While this is 
sufficient information to represent some form of the movement or choreography, it does not provide 
a conceptual framework for understanding expressive qualities, or the dimensions along which a 
given choreography can vary.  Ann Hutchinson-Guest lays out the aspects of movement that are 
typically analyzed by dance notation, including the timing of actions, the parts of the body used, the 
spatial variation, and the quality of the movement.  She refers to dance notation as “the translation 
of four-dimensional movements (time being the fourth dimension) into signs written on two-
dimensional paper. (Note: a fifth ‘dimension’ – dynamics – should also be considered as an integral 
part, though usually it is not.)” (Guest, 1984 p. xiv). 
 
Different dance notation systems have been shaped by the complexity and key aspects of the forms 
of dance that they represent.  Early dance notation systems, beginning in the 1500’s, were designed 
to represent social dances.  These forms of notation defined sequences of step patterns, where a given 
letter was used to represent a particular (known) sequence of steps (Guest, 1984, pp. 42-46).  As 
social dance routines became more elaborate and more focused on movement patterns around the 
floor, dance notation systems evolved to feature description of spatial movement.  In the 1700’s, 
Feuillet’s notation system presented bird’s-eye views of a dance, notating a dancer’s relationship 
between the music, the steps, the arm movements, and the position in the floor pattern at any point 
in time.  As theatrical dance became more prominent and developed a larger gestural vocabulary, 
notation systems such as Feuillet’s became insufficient to capture the variety of movement that had 
to be represented (Guest, 1984, pp. 62-67).  However, new movement description systems still 
focused on linking specific movement patterns to specific points in a musical score, and found 
limitations when the vocabulary to be described did not 
come from a specified set of movements (such as ballet).    
 
Rudolf Laban’s framework of dance notation is likely the 
most popular system in use today.  Labanotation consists of 
a complex set of symbols that are combined in sequences 
(read bottom to top) to represent sequences of 
movement.  These can include information about travel 
patterns, directionality of the body, actions of each part of 
the body, interaction between dancers, positions of dancers 
in relation to one another and to a space, relative timing 
and spatial relationships between movements, relationship 
of movement to a specific meter, and specific movements 
such as jumps, turns, contractions, and extensions of 
different parts of the body (Brown & Parker, 
1984).  Labanotation can also combine into a single 
notation symbol several different features of a particular 
movement, including its direction (represented by the shape 
of the symbol), its timing (the symbol’s length), its level 
(the symbol’s shading), and the body part used in the 
movement (the symbol’s location on a staff) (Guest, 1984, 
p. 84). 

	  
Figure 2. A dance represented in Feuillet's 
notation system 
Patterns through space are a major component of 
early dance notation systems. Image from (Guest, 
1984). 
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Different variations of Labanotation can define movement sequences with varying degrees of 
specificity and precision.  For example, a notated sequence could describe a dancer traveling forward 
briefly to center stage, then moving on a slow, curving, and indirect path to stage left.  There are 
clearly many ways to perform this sequence of actions that would correctly follow the directions 
given by the notation.  Laban also developed a system to define the kind of muscular activity and 
movement quality used in performing a movement.  This system, Laban Effort Notation, will be 
discussed in the following section.   
 
Benesh Notation plots movement left to right along a five-line stave, following the format of music 
notation.  Patterns of travel, directionality information, information about the location of a dancer 
in a performance space, and relationships of groups of dancers are notated beneath the staff.  The 
positions and movements of key points on the body and limbs, changes of level, and changes of 
weight are marked with simple lines on the staff, with different positions and movements delineated 
with a specific symbolic vocabulary.  Information about rhythm and phrasing, such as the location of 
musical beats, the tempo, and the continuity or separation of movements is marked above the staff 
(Brown & Parker, 1984).  This notation system is concerned with creating a flexible linguistic 
structure for dance notation.  The Benesh notation framework assumes a basic “alphabet” of physical 
movement that can combine in a variety of different ways for various forms of dance.  The specific 
details of how movements are performed in a particular dance form are assumed to be known to the 
person reading and writing the notation system (Guest, 1984, pp. 103-104).  Thus, while this 
system can capture some basic elements of movement, it does not communicate how the movement 
ought to be performed. 
 
While the modern dance critic John Martin did not develop a particular system of notation, he 
carefully analyzed modern dance, describing a variety of features that span both quantitative and 
qualitative aspects of movement.  Martin divides the features of modern dance into four categories: 
space, time, dynamism, and metakineses (Martin, 1933).  In Martin’s definition, space includes the 
features of the volumetric space formed by the dancer’s body, by parts of the body, of bodies in 
relation to a performance space, and of bodies in relationship to other bodies.  Martin states that a 
dance can also be described by temporal elements: its patterns in time, speed, duration of parts of 
movement, rate of succession of movements, and “regularity or irregularity of intervals between 
stresses” (Martin, 1933, p. 55).  Stress and dynamism are defined as the levels and variations of 
intensity in the movement.  Finally, metakineses describes the “overtones” of movement that convey 
intention and emotional experiences. 

2.3.3. Laban’s Theory of Effort  

Rudolf Laban, best known for his work in dance and movement notation was attempting to define 
and categorize movement qualities as early as the 1920’s.  His original model includes four 
qualitative states, all of which are interconnected: force, time, space, and flight.  In Laban’s view, 
movement starts in stillness and ends in stillness, and during the movement each of these four 
parameters can be increasing or decreasing.  Movements that stay the same from beginning to end 
are seen as mechanical.  Laban considers dance not only as a sequence of fixed states, but as the 
process of transformation between states (McCaw, 2011).   
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In 1947, Laban wrote Effort, presenting a Theory of Effort 
for analyzing movement dynamics including strength, 
control, and timing.  This framework was primarily 
constructed for the analysis of the types of movement used 
in industrial contexts in order to increase efficiency, but 
Laban believed it would be applicable to many domains 
(Hodgson, 2001).  Laban describes the quality of a 
movement using a continuous “effort space” with the four 
axes of weight, time, space, and flow.  Weight (measured on 
a scale from strong to light) describes the amount of energy 
and intensity in the movement. Time (sudden to sustained) 
describes the speed of a movement.  Space (direct to 
flexible) describes the way that a movement travels through 
space around the body.  Flow (bound to free) describes a 
movement’s smoothness of energy and tension.  It reflects 
the degree to which a person is struggling against a 

movement or giving into a movement.  Movements with free flow cannot be stopped suddenly or 
easily interrupted, while movements with bound flow are easy to stop at any point.  
 
Laban uses combinations of weight, time, and space to characterize eight basic different categories of 
movement or Effort Actions, each of which can be performed with either free or bound flow.  These 
include punching (direct, strong, quick), pressing (direct, strong, sustained), slashing (flexible, 
strong, quick), wringing (flexible, strong, sustained), dabbing (direct, light, quick), gliding (direct, 
light, sustained), flicking (flexible, light, quick), and floating (flexible, light, sustained) (McCaw, 
2011).  Among the four effort dimensions, it is also possible for different actions at the same point 
on the spectrum to have different dimensions as a focus.  For example, “crushing fruit” and “cutting 
leather” are both seen as direct, strong, and sustained, but the former places an emphasis on weight 
as the primary dimension of interest, the latter on direction (McCaw, 2011).   
 
It is important to notice that these effort dimensions, as well as those of other frameworks like 
Martin’s, are subjective and not defined by any particular quantitative values.  What is the “quickest” 
movement or the “most sustained” movement?  The descriptions of a dimension may have an 
intuitive sensibility, but actually identifying a given movement as having particular effort values will 
require consideration of the context.  For example, the range of time values with which one 
particular action can be performed may be different than the range of time for another particular 
action.   
 
Laban’s framework has been adapted or used as inspiration by many researchers examining affective 
and qualitative movement information, including Fagerberg et al., Volpe, and Zhao and Badler 
(Fagerberg, Ståhl, & Höök, 2003; Volpe, 2003; Zhao, 2001).  In looking at Laban Effort Notation, 
Volpe identifies that expressive content is likely to be contained in the trajectories of a movement 
through this effort space over time, rather than of the particular values at any point in time.  

	  
Figure 3. Laban’s effort space 
The four dimensions of effort identified by Laban.  
Image by Raphaël Cottin, reprinted from (Cottin, 
n.d.) 
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2.3.4. HCI Approaches  

For computer processes to identify information about movement and voice from a stream of data 
over time, we can apply techniques from machine learning.  Pattern recognition is a machine learning 
technique where a computer is trained to discover a function that maps between input examples and 
output labels, with the goal of generalizing from known examples to appropriately handle new 
inputs. If the desired output of the system is discrete categories, such as the identification of a 
specific gesture, this process is classification.  If the desired output is real values, this recognition 
process is regression.  Regardless of the algorithms used, the process is similar: input sensor data 
undergoes feature extraction to obtain a set of features that may be particularly descriptive of the 
input; selected examples of this processed data are used to train a model that represents a best guess 
at the relationships between the input feature vectors and the specified output values; finally, that 
model is presented with new inputs and tested.  Depending on how much is known about the 
desired relationship between inputs to and outputs of the pattern recognition algorithm, the training 
process may be supervised, which means that input data provided for the training process is labeled 
with the desired corresponding output values.  Alternately, the process may be unsupervised and 
given unlabeled data when the goal is figuring out how to categorize or extract features from the data 
when the desired output labels are not known beforehand.  An example of an unsupervised learning 
algorithm is the K-means clustering algorithm, which has as its goal figuring out how to group a set 
of data points into K clusters.  This is unsupervised learning, as we do not know which cluster a 
given data point should belong to at the beginning.  In semi-supervised learning, the algorithm can be 
provided with not only a set of labeled data, but also a set of unlabeled data that can be used to 
improve the algorithm’s classification assumptions. 
      
In the field of Human-Computer Interaction, a significant amount of research has gone into pattern 
recognition techniques for movement capture, particularly in the field of gesture 
recognition.  Gesture recognition in HCI has been performed using a variety of input technologies, 
including computer vision systems (Ko, Demirdjian, & Darrell, 2003; Starner, Weaver, & Pentland, 
1997), handheld devices (Bahl, Jelinek, & Mercer, 1983; Schlömer, Poppinga, Henze, & Boll, 2008; 
Strachan, Murray-Smith, & O'Modhrain, 2007), wearable systems (Benbasat, 2000), and EMG 
sensors (Zhang et al., 2009).  Additionally, this research has used and expanded a variety of pattern 
recognition and machine learning algorithms, such as Hidden Markov Models (Eickeler, Kosmala, 
& Rigoll, 1998; Starner et al., 1997; Zhang et al., 2009), Principal Component Analysis (Billon, 
Nédélec, & Tisseau, 2008), Dynamic Bayesian Networks (Avilés-Arriaga & Sucar, 2002), and 
Neural Networks (Modler, Myatt, & Saup, 2003).  Many gestures and poses with applications for 
HCI, as well as a number of gesture recognition technologies, are summarized in Saffer (2008).  
However, there are limitations in the adaptation of HCI technologies for performance contexts.  
Typical gesture recognition systems work best for applications where there is a predetermined 
gestural vocabulary and all movements made by the user are expected to fall into that set vocabulary.  
These systems generally have no concept of the expressiveness of a gesture, and have little ability to 
pick out important gestures from a variety of other types of movement. 
 
Another limitation with most standard gesture recognition tasks in expressive contexts is that they 
are best used in situations that expect a one-to-one mapping between input and output.  A specific 
gesture is recognized and used to trigger a specific result.  These discrete trigger gestures need to 
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throw away the majority of information about gestural variability in order to perform well at 
recognition.  If a system has to recognize when you raise your right hand with a flat palm, and 
perform some action based on the recognition of that action, it needs to compress many variations of 
the same basic gesture (the hand raised at different speeds, with different acceleration curves, with a 
direct or slightly curved path, with different amounts of rotation, with different amounts of tension 
in the hand and arm, etc.) into a binary value: is this the desired gesture, or is it not the desired 
gesture?  This single bit of information removes the majority of expressive information in the 
movement.   
 
One example of a system that illustrates this limitation is the g-speak system developed by Oblong 
Industries (“g-speak - oblong industries, inc.,” n.d.).  In this system, individual gestures are 
recognized and mapped in software directly to keystrokes and mouse movement and clicks.  This 
standard computer interaction model can then be used in writing g-speak software programs.  While 
the system allows spatial interaction with large projected displays, the real “interaction” with the 
system can be no more complex or interesting than that which could be performed with a keyboard 
and mouse.  This significantly limits g-speak’s use in expressive contexts.  For example, in a 
prototype g-speak audio application developed by Adam Boulanger, the user could “pluck” strings 
with g-speak’s mouse click and release gestures, and quiet the system by raising both hands, palms to 
the screen.  The use of discrete gestures for plucking discrete strings appeared effective.  However, 
the result of the gesture to quiet the system was not a decrescendo, but a sudden drop in volume in 
the middle of the gesture being performed at the moment when the system recognized the 
gesture.  The system’s inability to capture continuous information about movement was not an 
acceptable relationship between gesture and result in this context.   
 
Other HCI researchers have focused on recognition of particular movement parameters or qualities.  
Fagerberg et al. propose a three-dimensional space (the affective gestural plane model) consisting of 
shape, effort, and valence for analysis of emotional movement.  This model has been used to help 
users express emotion in text messages.  These authors’ principles for the design of interfaces include 
embodiment (focusing on the connection between body and emotion); “natural but designed 
expressions” (a specifically-designed set of interactive gestures, but inspired by natural behavior so as 
to be easy to learn); the affective loop (having users perform expressions of emotion and have their 
emotions shaped by those movements and by the results of that movement in the application); and 
ambiguity, allowing for personal interpretation of emotions (instead of having labeled emotion 
buttons, for example) (Fagerberg et al., 2003).  This model blends aspects of Laban’s Effort Theory 
with Russell’s Circumplex Model of Affect (Russell, 1980).  Russell’s studies have shown consistency 
in people’s mental maps about how emotions are distributed in a two-axis space along axes of arousal 
(energy/intensity) and valence (positivity vs. negativity).  An important thing to note about Russell’s 
model is that it positions emotions in a continuous space, rather than as a set of discrete categories.  
 
Manfred Clynes’s research on “sentic forms,” cross-cultural “spatio-temporal curves” of emotions,  
explores temporal features of movement (Clynes, 1977).  The shape of these essentic forms have 
been determined by many users performing a simple button-press action.  The button has two axes 
of displacement, vertical and horizontal displacement.  Subjects push the button while focusing on a 
particular emotional state, such as joy or anger.  Clynes argues that the resulting curves of the 
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button’s displacement over the length of the push action, 
when normalized in time, form similar shapes across many 
users.  An important thing to take from Clynes’s research is 
the use of dynamic and time-dependent shapes, rather than 
static positions, to describe an emotional space.  Taking a 
single snapshot of the button’s displacement would provide 
very different content than examining the button’s 
movement through time.  Clynes’ work also suggests some 
concept of parametric universality: some ability to 
communicate expression from person to person.  One 
person can do something expressive and someone else can 
understand something about the expression and emotion 
being communicated, though the labels for that 
information may vary. 

2.3.5. Specific Needs of Expression Recognition for 
Digital Music Interfaces 

Traditional gesture recognition systems still lack many 
aspects necessary for expressive analysis tasks, as they 
generally rely on a known set of sensors and a pre-
determined vocabulary of recognized gestures (often trained 
with samples from many users).  As discussed by Gillian, 
systems for gesture recognition in performance contexts need to handle input and output ambiguity, 
as well as user-specific vocabularies: users may incorporate a variety of different sensors to detect 
performance input, choose their own vocabularies of recognition for particular pieces, and have the 
results of the pattern recognition algorithms control many different kinds of output (Gillian, 
2011).  To perform pattern regression in the domain of expression recognition, both classification 
and regression algorithms are necessary.  In addition, each of these types of algorithms may need to 
be paired with labeled, unlabeled, or weakly labeled data. 
 
There has been some prior work in creating systems for flexibly mapping gestures to specific sonic 
results.  Merrill’s FlexiGesture is a multi-degree-of-freedom gestural input device that allows a user to 
associate particular inertial gestures with specific sounds for playback, as well as to map specific 
degrees of freedom of the device to desired continuous control parameters (Merrill & Paradiso, 
2005).  While the FlexiGesture’s technology is limited to a specific input device, it seeks to address 
the problem of mapping in digital musical interfaces, where any input data stream can be connected 
to any output control value.  This device provides a methodology for instrument-creators to quickly 
experiment with different mappings and demonstrate examples of interesting gestures.   
 
Gillian’s gesture recognition extension package for the EyesWeb mapping system allows a musician 
to quickly train a system to recognize a desired vocabulary of physical gestures given a limited 
number of examples.  Gillian states that in the design of a digital musical instrument for a specific 
performance, it is not as important to have a gesture recognition system be good at generalization 
across many users as for a system to be adept at learning one user’s behavior from a small set of 

	  
Figure 4. Clynes's sentic forms 
The curves in each pair represent the X and Y 
displacement of Clynes’s Sentograph button over 
time.  From (Clynes, 1977). 
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training data (Gillian, 2011).  Gillian’s system also supports the user in exploring a variety of 
machine learning algorithms, allowing a user with limited experience in machine learning to 
experiment with the recognition results of different algorithms.   
 
Fiebrink’s Wekinator system allows users to work with supervised learning algorithms in real-time 
contexts, training mappings from input features to output control parameters on the fly (Fiebrink, 
2011).  This allows users to rapidly iterate on their mappings by quickly collecting training data 
examples and modifying their machine learning model by adding new data and retraining.  This 
system also features the concept of “play-along learning”: given a score that plays back desired output 
parameters over time, a user can gesture along with the score to generate labeled training 
data.  However, while the Wekinator can handle both classification and regression tasks, this system 
has no concept of parameters that vary over time.  The Wekinator training examples label a specific 
set of input features at a particular moment with a set of output parameter values.  In order to 
represent any concept of temporal parameters, the system needs to include computed features that 
already contain some concept of time, such as derivatives or averages.  Thus, it is perhaps incorrect 
to categorize the Wekinator as a “gesture recognition system”: more generally accurate would be the 
label of “pose recognition system”, where the input to the machine learning algorithms at any given 
moment may not have any relationship to sensor information at prior moments.     
 
A major design decision of the Wekinator system is its choice to have the user directly teach the 
system mappings between inputs and outputs, with no intermediate steps revealed or accessible.  A 
strength of this model is the ability to discover unexpected intermediate mappings between trained 
points.  For example, a user can label one position of a joystick with a specific set of control 
parameter values for a sound generation engine, label another position of the joystick with a different 
set of values for the same parameters, then train the Wekinator on these positions.  After the system 
has been trained, moving the joystick between the two positions will result in a variety of different 
intermediate values for the sound generation parameters.  This is presented as an interesting feature 
of the system, giving instrument-designers the ability to discover unexpected interactions between 
their actions and the sonic result.   
 
However, Wekinator’s process of directly learning a mapping from input to output values limits the 
user’s ability to later switch sensing systems or output systems, or to add control parameters for 
multiple output media, as it does not maintain any high-level or intermediate representation of the 
mapping.  A position (of a joystick, of the user in front of a camera, of another sensor) gets mapped 
to a discrete trigger, or to a position in a set of continuous values.  But what if the user no longer 
wants to use a joystick, but instead a sensor mounted on his arm?  Or to have a system whose 
interaction “feels” similar, but whose output is a different sound generation engine?  The process of 
retraining the system is quick, but the user has to completely start from scratch.  With meaningful 
intermediate mapping stages, inputs and outputs could be more easily switched and 
added.  Additionally, the Wekinator mapping process does not particularly support the user to think 
about making interesting or meaningful mappings, or why a particular position should or should not 
be correlated with a certain set of parameters.   
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Most of these systems presented for movement analysis via machine learning only recognize whether 
or not a specific gesture has been performed,  while I also want to recognize time-varying expressive 
qualities of movement.  No system yet exists that allows a user to train a system to recognize specific 
continuous qualities, rather than classifying movement into emotional categories or into particular 
labeled gestures.  

2.4. Existing Frameworks for Analyzing and Describing the Voice  
Both movement and voice are innately personal and expressive instruments, with many similarities 
in temporal and physical constraints.  However, qualitative analysis of the human voice has generally 
been considered separately from qualitative analysis of movement.  Even researchers studying the 
interaction of gesture and speech frequently focus on the correlation between particular gestures or 
gestural features and words or vocal features (e.g. Sargin et al., 2006), rather than exploring features 
that could describe both movement and voice equally.  As with the analysis of physical movement, 
which includes concepts of both gesture and quality, analysis of the voice has also addressed two 
(generally separated) problems: how to identify the content of the voice (speech recognition) and 
how to describe the qualities of the voice.  

2.4.1. Speech Recognition 

Like the standard Human-Computer Interaction model of movement analysis, the typical vocal 
focus of the field of HCI is on speech recognition.  Given a user speaking a particular set of words, 
can the system classify these into different categories and match them with trained classes of words?  
This is typically treated as an interpersonal classification problem: a system needs to be able to 
recognize the same words spoken by many different users.  Thus, the focus for speech recognition 
tasks typically is not on analyzing how different examples of a word differ from some “standard” 
example, but on how to compress many variations into one category.  As with gesture recognition, 
speech recognition must be able to handle input signals of varying lengths.  An input word should be 
classified correctly regardless of whether the speaker takes a longer or shorter amount of time to 
pronounce it.   
 
Frequently, machine learning techniques are used to address speech recognition tasks.  Hidden 
Markov Models have been a popular stochastic model for speech recognition (e.g. Bahl et al., 1983; 
Baker, 1975; Rabiner, 1989).  Other techniques for performing speech recognition include dynamic 
programming (e.g. Itakura, 1990; Sakoe, 1979) and neural networks (e.g. Waibel, Hanazawa, 
Hinton, Shikano, & Lang, 1989; Wu & Chan, 1993).  Many techniques are collected in (Waibel & 
Lee, 1990) and (Jelinek, 1997).  The basic fundamentals of speech recognition via a computational 
process are described in (Rabiner, 1993).  
 
Rabiner reviews the use of Hidden Markov Models for speech recognition and generalizes the 
process for performing speech recognition tasks computationally (Rabiner, 1989).  In the simpler 
form of the problem, “isolated word recognition,” the challenge is to recognize which individual 
word in a database a given audio sample is most likely to represent. The audio signal is broken into 
many small overlapping windows, each of which is analyzed to compute spectral features.  These 
windows of features can then be used as input to a Hidden Markov Model.  Generally, one model is 
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trained per word that the user desires to recognize.  In cases where the desired vocabulary is long, 
systems may be trained on individual syllables or sounds that can then be connected to form a 
variety of words.  In “connected word recognition,” individual words have to be picked out from a 
longer audio stream consisting of many words.  This requires additional levels of processing to find 
the best way to segment an audio stream into words, and can potentially include semantic or 
syntactic context to predict a most likely sequence of words.  In speech recognition, the 
segmentation problem is less of an issue than in gesture recognition, as breaks between words 
(silences) can often be identified easily from the vocal signal, assisting the system in knowing which 
section of audio represents a segmented word. 
 
Traditional speech recognition techniques may be a useful layer in some performance pieces (if the 
word spoken is X, then extend the expressive performance this way; if the word is Y, then extend the 
expressive performance a different way).  However, for the context of this dissertation, techniques for 
systems to identify particular words are less relevant than techniques for identifying concepts of vocal 
quality or expressive variation.  The next sections summarize various prior work on analyzing and 
describing vocal qualities.  

2.4.2. Qualities of Speech  

A variety of researchers have attempted to come up with frameworks for describing vocal quality, 
though primarily for discussing vocal dysfunction rather than for exploring expression.  Of the 
research in this area that focuses on expression, most comes from the field of speech analysis, but 
many of the principles can be generalized to a broader range of expressive vocalization.  Scherer 
identifies a variety of vocal features that he has found to convey expression, including vocal 
perturbation (short-term variation), voice quality (timbre), intensity, tempo, and the range of the 
fundamental frequency over time (Scherer, 1986).  “Gestures” of the spoken voice have been 
specifically examined in research such as (Maestre, Bonada, & Mayor, 2006), where they have been 
represented as trajectories of fundamental frequency and “energy” over time. 
 
Aspects of “voice quality” have also been defined separately from parameters of vocal prosodic 
contour in analyses such as that of Grichkovtsova et al. (Grichkovtsova, Morel, & Lacheret, 2012).  
In their studies, prosodic contour refers to features such as intensity, fundamental frequency, speech 
rate, and rhythm of the voice.  Their vocal quality metrics, inspired by those defined by Laver 
(1980), include “phonatory, articulatory, and tension components” of the voice (Grichkovtsova et 
al., 2012).  Campbell and Mokhtari primarily focus on “voice-quality” measured from “pressed” to 
“breathy,” arguing that this quality should be a major prosodic parameter used for vocal description, 
along with pitch, power, and duration (Campbell & Mokhtari, 2003).  
 
Vocal quality of spoken words has also been substantially examined by researchers exploring how the 
voice changes with the speaker’s emotional state (Banse & Scherer, 1996; Fernandez, 2004; Frick, 
1985; Ladd, 1985).  Vocal aspects found to be relevant in the identification of affect in speech 
include parameters relating to fundamental frequency range, pitch contour,  intonation, loudness, 
and rhythm.  A summary of features and classifiers that have been explored for emotion recognition 
from speech can be found in (Anagnostopoulos, Iliou, & Giannoukos, 2012).  Most HCI studies in 
these areas focus on classifying emotions from vocal parameters.   
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The goal of many studies on emotional parameters of the voice is to help create more expressive and 
realistic synthesized voices through modification of those parameters.  Cahn’s research addresses 
affective parameters of speech, which she distinguishes from prosody elements (intonation and 
rhythmic patterns).  She presents modifications to the fundamental frequency and timing parameters 
as major features in conveying affect (Cahn, 1990).  Cahn also presents a model with four different 
types of features of the voice: pitch (features related to the fundamental frequency including melodic 
shape), timing (rhythm, word stresses, silences, speech rate), voice quality (describing the voice as a 
whole, includes “breathiness, brilliance, loudness, pause discontinuity, pitch discontinuity, and 
tremor”), and articulation (precision of enunciation) (Cahn, 1990).  
 
We see that in addition to features with more standardized definitions such as “loudness,” “pitch,” 
and “rhythm,” many researchers add a definition of “vocal quality,” which can represent a variety of 
other perceptual parameters.  These elements of vocal quality can be seen as relating to a speaker’s 
emotion, as well as to the individual character of a speaker’s voice.  Specific vocal quality features 
such as “breathiness” or “brightness” or “timbre” have a variety of different mathematical definitions 
that seek to capture a perceptual parameter as an equation.  There is little consensus between 
researchers about how to define “vocal quality,” either in what parameters should be part of the 
concept or in how to define particular parameters.  However, we can see that vocal quality and 
expressive aspects of the voice often relate to spectral characteristics of the signal and temporal 
variation.  Additionally, several studies discuss the role of different lengths of time necessary for the 
analysis of vocal expression, for example, the pitch of the voice at a particular moment versus the 
contour of the voice’s pitch within a word or within a sentence.  It is clear that systems for looking at 
vocal expression require analysis of the signal at different timescales.    

2.4.3. Singing Voice Analysis      

Other researchers have carried out analyses specifically on the singing voice, often with the goal of 
developing better algorithms for singing voice synthesis.  Kim separates features reflecting an 
individual’s vocal physiology (such as the configuration of the vocal folds and vocal tract) from 
features reflecting an individual’s expressive performance (such as how those features vary over time) 
(Kim, 2003).  D’Alessandro et. al. control synthesis of the singing voice from a database of samples 
through a sketch-based interface that incorporates dimensions of voice quality including “tenseness,” 
“vocal effort,” and “registers” (d'Alessandro et al., 2008).  Maestre et al.’s analysis of musical 
articulation gestures in the voice (transitions from note to note) shows that different articulation 
patterns can be described and modeled as frequency and energy contours evolving over time 
(Maestre et al., 2006).  This analysis separates the aspects of the vocal contour determined by the 
musical composition from those added by the singer for expressive purposes and those inherent in 
the production of particular consonant patterns.   
 
Other researchers have analyzed the singing voice to use that analysis as a rich input to other 
synthesis algorithms.  Stowell analyzes various spectral features of the voice related to timbre, with 
the goal of mapping those features directly onto similar features in output sound synthesis.  In that 
research, the primary higher-level analysis parameter is stated to be an axis between “brightness” and 
“dullness” (Stowell, 2010).  Mestres’s analysis of qualities of vocal gestures includes intermediate 
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parameters such as brightness, articulation (from legato to staccato), dynamics, and pitch (Mestres, 
2008).  In the work of Ramakrishnan et al., vocal signals are analyzed and turned into a three-
dimensional high-level feature space for low-bandwidth communication over a network.  The actual 
dimensions in this feature space are not meaningfully labeled in any way, but calculated using 
Principal Component Analysis to capture the majority of the variation in the signal.  This data, 
along with low-level features of input vocal gestures, has been used to control parameters of a 
generative instrument (Ramakrishnan, Freeman, & Varnik, 2004).   

2.5. Similarities of Analysis Between Movement and Voice 
Movement and voice are both innately physical processes, necessarily continuous in nature, and 
confined by the mechanics and physics of the human body. Gestures in each modality occur over 
similar timescales and range from having well-defined semantic meanings (in the case of speech or 
iconic gesture) to being purely abstract.  The definition of gesture as an action that conveys 
information is equally applicable to both body and voice.  Additionally, movement and vocalization 
have often been used concurrently for communication.  I propose that similar frameworks and 
methods of thinking can be applicable for analyzing and extending expressive performance 
information from both modalities.  Certainly, there are many overlapping aspects of existing 
frameworks that have been used to describe movement and those frameworks used to describe the 
voice.  As with movement qualities, measurements of intensity and energy have been found to be 
particularly important in describing vocal qualities.  In addition, both modalities highly rely on the 
shaping of parameters over time (such as dynamics, rate, and rhythm) for communicating 
expression. 
 
While many different parametric frameworks have been imagined to describe movement or the 
voice, it is also important to note that no single analytical framework seems to completely capture all 
aspects of vocal or physical expression.  I argue that no particular set of expressive parameters will be 
universally valuable and sufficient for all performance and installation contexts.  Fortunately, with 
advances in machine learning algorithms, it is possible to surpass one-size-fits-all models in favor of 
parametric models that can be specific to a particular artist, to a particular piece, to a particular 
section of a work.  These models can be shaped and developed throughout the lifecycle of a 
performance or installation, during initial experimentation, during the rehearsal process, and even 
during the run of performances.  Additionally, it is now possible to design generalized frameworks 
that can assist in the development and training of these very specific models.  Existing parametric 
models of voice and movement (such as Laban’s theory of effort) can provide context for what types 
of parameters might be interesting to examine, but are not universally sufficient.  While my research 
includes a set of suggested parameters for description of both movement and voice, these axes serve 
primarily as a starting point for the analysis of expressive physical performance. 

2.6. Mapping Systems and Strategies: Connecting Inputs and Outputs 
The majority of the systems described in any interactive performance context come down to, at the 
core, a question of mapping.  How is the physical performance input (from sensors, microphones, 
video cameras, etc.) related (mapped) to the control parameters of output media?  Is this mapping 
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consciously created by a performance-maker, or learned or discovered by a system?  How much 
variation is there in the mapping during the course of a performance? 

2.6.1. Mapping Strategies 

As discussed earlier, the standard mathematical definition of mapping is an operation or function 
that associates each element of a given input set to one or more elements of another output 
set.  Mathematical concepts of mapping suggest a variety of different relationships between input 
and output.  In a one-to-one mapping, each different input value produces a distinct output: no two 
input values produce the same output value.  An example of this in the performance domain would 
be mapping the value of a resistive bend sensor to the volume of an output sound.  In a one-to-many 
mapping, each input value is connected to many output values.  For example, the amplitude of a 
performer’s voice could control several different parameters of a video.  In a many-to-one mapping, a 
variety of values of the input will lead to the same output value.  In a many-to-many mapping, each 
input value may be related to multiple output values, and multiple different input values may relate 
to the same output value.   
 
When thinking about creating a mapping for performance, it may be beneficial to introduce 
multiple levels of abstraction between individual input streams of data and individual parameters of 
multimedia control.  The importance of abstraction in mapping systems has been previously 
addressed in the context of electronic musical instrument design (e.g. Hunt, Wanderley, & Paradis, 
2002; Wanderley, Schnell, & Rovan, 1998).  Unlike traditional acoustic musical instruments, where 
the gestures and actions used to play the instrument are generally explicitly sound-generative, 
electronic musical instruments allow for the decoupling of performer-controlled inputs from sound 
generation control parameters.  Simple one-to-one mappings between individual inputs and 
individual sound generation parameters are found to be easy to uncover, but hard to use expressively 
or to become expert at playing.   
 
Hunt et al. have found that different mapping strategies can have a major effect on the interest and 
enjoyment of a performer.  One-to-one mappings, say from a particular slider to a particular 
parameter of sound, can be quickly figured out.  However, given a multiple-slider interface, users 
found it challenging to think about performance in terms of individual parameters controlled 
individually: “Comments abounded such as ‘I should be able to do this, technically, but I can't get 
my mind to split down the sound into these 4 finger controls.’  Some users actually got quite angry 
with the interface and with themselves.”  A different interface version that incorporated many-to-
many mappings was found to be more intuitive, though requiring longer to learn the basics: “At first 
it seemed counter-intuitive to most users, but they rapidly warmed to the fact that they could use 
complex gestural motions to control several simultaneous parameters without having to ‘de-code’ 
them into individual streams”(Hunt et al., 2002). 
 
A more complex mapping strategy proposed by Hunt et al. involves three stages of mapping: input 
parameters are mapped to more complex abstract parameters describing the input (such as energy or 
variation in movement), abstract input parameters are mapped to abstract parameters describing the 
output (such as pitch and brightness), and abstract output parameters are mapped to specific 
parameters of sound generation.  This frequently results in complex many-to-many mappings that 
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may be harder to master and understand immediately, but provide easier control and expressivity 
once grasped. 
 
A related mapping strategy has been proposed by Torpey in his work on multimodal scoring systems 
and mapping systems (Torpey, 2009; 2013).  In this model, all input data is mapped into a position 
in a multidimensional expressive parameter space defined in the system.  This position in the 
abstract space can then be mapped to control parameters for output media.  In (Torpey, 2009), this 
parameter space consists of the emotional parameters of arousal, valence, and stance.  In (Torpey, 
2013), this parameter space consists of the abstract parameters of weight, intensity, rate, density, 
complexity, texture, and regularity.  The goal in this framework is to create meaningful 
transformations of input to output by going through an abstract intermediate model.   
 
Another important aspect of mapping creation is the distinction made by Teresa Marrin Nakra 
between continuous and discrete inputs and output responses (Nakra, 2000).  In this model, Nakra 
identifies discrete gestures as “single impulses or static symbols that represent one quantity,” 
including simple actions such as pushing a button or a key on a keyboard, as well as more 
sophisticated actions such as the recognition of a hand pose.  Regardless of whether these symbols are 
as simple as a keypress or as complex as a recognized gesture, they generate only one bit of 
information: is this action occurring, or is it not occurring?  Thus, these discrete gestures fit a one-to-
one mapping relationship, with each gesture mapped to a discrete modification of sound.  I agree 
with Nakra that complex mappings, with inputs that cannot be compressed to a single symbol, are 
more likely to hold meaningful information in an expressive context.  This concept of discrete vs. 
continuous gesture will be discussed further in Chapter 4.  
 
Volpe, examining the process of creating mappings that relate to a performer’s emotional state,  
presents several layers of simultaneous mapping possible, including high-level mappings from an 
emotional state and low-level parameter-to-parameter mappings.  In Volpe’s terminology, an 
“expressive direct mapping” does not use any high-level information about a performer’s emotional 
state, but instead directly connects input to output parameters.  An example of this model is 
mapping a dancer’s position on stage to a synthesis parameter.  An “expressive high-level indirect 
mapping” incorporates higher-levels of analysis in the process of the system’s determining how to 
map inputs to outputs.  For example, a system could select a set of functions for mapping based on 
some rational process.  “Expressive mapping monitoring” is the act of the system looking over the 
other mapping processes and evaluating if they are producing the desired results (Volpe, 2003).  

2.6.2. Existing Mapping Systems 

Many software tools currently exist to facilitate mapping tasks in performance contexts, including 
Max/MSP (“Max « Cycling 74,” n.d.), EyesWeb (Ricci et al., 2000), Isadora (“TROIKATRONIX | 
live performance tools,” n.d.), and Field (Downie, 2005).  Efforts have been made by artists to 
incorporate machine learning and concepts of expression into some of these tools.  For example, 
EyesWeb recognizes some pre-programmed qualitative features and the SARC EyesWeb catalog 
incorporates gesture recognition (Gillian, Knapp, & O'Modhrain, 2011).  However, there is still 
ample room to develop mapping tools that simplify the process of working with higher-level 
expressive information.  As I believe that creating meaningful mappings becomes easier when the 
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inputs to that mapping become more intuitive to the composer or choreographer, it is vital to have 
mapping systems that thoughtfully define expressively meaningful qualities of movement and 
voice.  Additionally, pattern recognition techniques can play an important role in helping systems 
learn how to transform sensor data into expressively meaningful inputs to the mapping process.  
 
I will discuss the mapping system EyesWeb in more depth, as it has some goals that are similar to 
those of the work in this dissertation.  EyesWeb (Ricci et al., 2000; Volpe, 2003) is a modular, freely 
available software program intended for live movement capture and analysis, with a focus on 
encouraging high-level views of gesture.  It has a variety of tools for processing input video streams 
and other sensor information.  While EyesWeb can accept various sensor inputs, it is primarily 
designed for calculating movement parameters from camera input.  EyesWeb also has a set of 
machine learning add-ons for gesture recognition, the SARC EyesWeb Catalog developed by 
Nicholas Gillian (Gillian, 2011). 
 
Within EyesWeb, there are also modules that incorporate concepts of physical “expression” such as 
the amount of space taken up by the body, the dancer’s physical stability, and the movement’s 
rhythm in space.  EyesWeb calculates twelve such “quality of movement” parameters:  

“Quantity of Motion (Motor Activation) computed on overall body movement and on 
translational movement only, Impulsiveness, vertical and horizontal components of velocity 
of peripheral upper parts of the body, speed of the barycentre, variation of the Contraction 
Index, Space Occupation Area, Directness Index, Space Allure, Amount of Periodic 
Movement, Symmetry Index” (Camurri et al., 2008).  

Camurri et al. have also explored the concept of KANSEI (emotional) information in dance 
(Camurri, Hashimoto, Suzuki, & Trocca, 1999).  Some of EyesWeb’s movement analysis is inspired 
by Laban’s theories of movement, including Laban’s concept of effort.   
 
While EyesWeb does attempt to incorporate some concept of physical expression and “movement 
quality,” this system has some major limitations in the extent to which it is able to recognize 
expressive details about movement.  The majority of its expressive parameters (such as the “quantity 
of movement” and “contraction index”) have been pre-calculated according to its creators’ theories 
about movement, which does not allow for particularly flexible exploration of these parameters.  The 
definition of these parameters is fixed in the system, as is the specific set of parameters.  While users 
with a background in programming can create their own modules for EyesWeb, the system does not 
support easy definition of new expressive parameters, or include any machine learning techniques 
available to the user for defining and constructing expressive parameters.   
 
Additionally, the EyesWeb system primarily has been used for classifying movement fragments that 
are intended to convey a specific emotion, so its frameworks of expressive information have been 
designed based on what parameters were found useful in that context.  The primary study exploring 
affective and expressive movement information examined whether the system could acceptably 
recognize four basic emotions (fear, grief, joy, anger) expressed in short excerpts of dance 
performances (Volpe, 2003).  
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2.7. What Can We Learn?  What Is Still Missing? 
In this chapter, we have presented a wide variety of prior work in the areas of technologically 
extended performance and installation design.  We have examined how movement and the voice 
have been typically analyzed in theatrical and musical contexts, as well as in Human-Computer 
Interaction contexts.  Through these analyses, we have found some aspects where existing systems are 
insufficient.  We have also found that there is a need for more flexible performance extension 
through high-level definitions of physical and vocal expression.   
 
We have explored a variety of models for representing physical and vocal expression, both 
computationally and theoretically.  Some of the key lessons from our analysis are summarized here: 

• There is a distinction between simple categorical classification tasks (gesture recognition, 
speech recognition) and evaluating continuous expressive parameters (qualities of 
movement, qualities of voice). 

• Expression and emotion are frequently represented by the changing shape of parameters 
over time. 

• Physical and vocal expression is conveyed via features that take place over many different 
timescales. 

• Although movement and vocalization are both innately shaped by the physical properties 
and timescales of the body, these performance media have not been considered together in 
frameworks for an expressive performance context. 

• For both body and voice, metrics of energy, rate, and scale are relevant descriptors.   
 
Current systems for performance extension do not allow users to flexibly define their own 
meaningful parameter spaces for vocal and physical description.  Given the wide variety of parameter 
spaces that have been found to be interesting by different researchers and performance-makers, ideal 
performance extension tools should allow users to explore many of these kinds of parameter spaces.  
There is not likely to be one new set of parametric axes that will be the most appropriate for 
analyzing the movement and vocal qualities of every piece in a way that is meaningful to the 
performance-maker.  Even if a system uses one particular fixed set of abstract parameters, it ought to 
be flexible enough to allow the user to define those parameters in variable ways, with different 
sensing strategies and different ranges.   
 
This dissertation research includes the development of tools for defining and working with such 
flexible parametric spaces.  The systems discussed here, such as the Expressive Performance 
Extension System, are designed to allow performance-makers to incorporate into their existing 
practices higher-level abstraction of movement and the voice, as well as machine learning tools for 
analysis of expressive quality spaces.  The next chapter discusses some of my initial research projects 
in extended vocal and physical performance and explores the ways in which these projects inspired 
many principles and features of the proposed workflow for performance extension and of the 
Expressive Performance Extension System. 
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3. Early Studies and Development of Principles     
A variety of my previous research projects at the Media Lab have provided useful testbeds for the 
design of theoretical and computational frameworks for expressive movement and voice capture and 
analysis.  These projects include: the Vocal Augmentation and Manipulation Prosthesis, a gesture-
based wearable controller for live vocal extension in performance; the Gestural Media Framework, a 
system for abstraction of gesture recognition and Laban-inspired movement analysis in the context of 
a live dance performance; and the Disembodied Performance System for the opera Death and the 
Powers, a sensing and mapping system for extending the voice and physicality of an opera singer into 
the behavior of an entire theatrical environment.  This chapter outlines and analyzes these early 
projects, and explores how they have inspired some of my principles for expressive performance 
extension.  

3.1. VAMP: The Importance of Evocative Gestural Mappings  

3.1.1. An Overview of VAMP    

The Vocal Augmentation Prosthesis (VAMP) is a wearable controller in the form of a long glove that 
allows a singer to manipulate her voice in live performance, so she can simultaneously serve as 
performer and conductor.  Wearing VAMP, a performer can capture and harmonize with notes that 
she sings, extending her voice purely through free gesture (Jessop, 2009).  The distinctive interactive 
characteristic of VAMP is the singer’s use of a pinching motion to sample and capture a moment of 
her voice or other audio material.  As she sings, she can “grab” a note from her mouth and hold it 
beyond her own physical abilities.  The captured note is then extended for as long as she keeps her 
fingers pressed together, allowing her to sing other material and thus harmonize with herself.  Other 
gestures can affect the processing of the captured note.    
 

This controller was originally inspired by the 
character of Nicholas in Tod Machover’s opera 
Death and the Powers.  While VAMP was not used 
in the final production of Death and the Powers, its 
genesis within that context inspired many of the 
design choices used in its development.  In the 
opera, Nicholas, the research assistant, is scripted to 
have one prosthetic arm that gives him abilities 
beyond those of a normal arm.  We decided to 
explore the ways in which an augmented arm might 
be able to give the character additional musical 
abilities.  In particular, given the operatic context of 
the production, we sought to find a way to use a 
special arm to extend the performer’s voice, to give 
him abilities that he could not achieve without the 
technology.   

 

 
Figure 5. The Vocal Augmentation and Manipulation 
Prosthesis (VAMP) 
The author pinches her fingers by her mouth to “grab” the 
note she sings.  
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As the performer playing the character of Nicholas was an opera singer and not an instrumentalist, it 
was important that whatever procedure we developed to augment his voice through the use of his 
arm needed to be clear and simple.  The performer would be singing a fairly complex score, and 
would not have much spare mental processing power available to simultaneously play a complex 
instrument, or one whose use was not particularly intuitive.  Additionally, it was necessary for the 
movement vocabulary to be quite visible and direct for an audience that would likely be more 
familiar with opera than with interactive music performance, and that would only be observing the 
gestures from a distance.  How could it be obvious to such an audience that the performer’s gestures 
actually were affecting his vocal performance?  Small movements such as pushing a button or 
fiddling with a knob would not necessarily read clearly to the audience as intentional for vocal 
manipulation.  Instead, we needed a form of interaction that could have an obvious connection 
between the performer’s actions and the resulting sonic behavior.  
 
Given these guidelines, I designed a vocabulary of gestures based on choral conducting, as well as a 
core gestural metaphor of grabbing and extending a note by pinching two fingers together near the 
mouth.  I also designed the mappings to associate these gestures with particular sound 
manipulations: pinching together the thumb and forefinger to capture a note, extending the arm 
away from the body to crescendo, raising the hand to add a harmony note, shaking the hand to add 
vibrato and overtones, and beating time with the arm to “pulse” the captured note 
rhythmically.  Given gestural associations from standard conducting, certain relationships between a 
performer’s action and the sonic reaction may seem familiar to an audience and a performer.  We are 
used to seeing a conductor gesture more broadly and openly to encourage a louder sound, or more 
closely to her body to indicate a softer response.  Similarly, we are used to the gesture of a conductor 
raising her hand to bring in another section (another note), and of her keeping a beat through 
rhythmic gestures.  This desired movement vocabulary was developed before the technical 
implementation of the instrument, and strongly informed the choice of sensing and sonic 
manipulation techniques.   

3.1.2. Technology and Implementation 

The Vocal Augmentation and Manipulation Prosthesis takes the form of a long glove that stretches 
past the performer’s elbow.  The VAMP glove is custom-constructed from stretch velvet fabric, with 
an assortment of sensors sewn onto the glove to measure various aspects of the performer’s gestural 
behavior.  Wearable sensors were incorporated rather than off-the-body sensing (such as computer 
vision techniques) to be most flexible in a variety of performance situations and not require external 
hardware to be incorporated into the stage setup.  The specific sensors used were chosen in order to 
recognize major movement components of the predetermined gestural vocabulary.  
 
Two 4.5” flex sensors are sewn onto the glove, one located on the outside of the elbow and one on 
the outside of the wrist.  When the sensors are used as variable resistors, voltage measurements 
correlate to the amount of strain placed on the sensor.  The flex sensor at the elbow measures only 
the amount of unidirectional bend in the elbow, while the sensor at the wrist can detect the wrist 
bending either forward or backward (though these directions are not differentiated in the output, 
only the amount of distortion from center).  The sensors are affixed to the glove at several points 
along their length, to make sure that their flexion corresponds as closely as possible to that of the 
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glove itself and, thus, the wearer’s arm.  The glove is also outfitted with an accelerometer attached to 
the top of the forearm. This accelerometer is aligned to detect acceleration along the axis that a 
conductor moves his or her arm when s/he conducts a downbeat.  An accelerometer on the wrist 
picks up movements of the hand.  Finally, there is a small 1 lb. pressure sensor attached to the index 
finger of the glove.  This sensor is approximately the size of a fingertip, with a thin, non-sensitive 
flexible extension that is sewn down the middle of the palm.   
 

 
The data from all the sensors on the glove is collected using an Arduino-compatible Funnel I/O 
(attached to the upper arm of the glove), and sent wirelessly over a serial connection using XBee 
modules to a Java applet.  This Java program utilizes the Processing API and Processing's Arduino 
libraries to enable communication with the Funnel I/O board.  In the Java program, the sensor 
information is collected, smoothed, analyzed, and mapped, and the desired sound modifications are 
calculated.  Instructions for the desired modifications are then sent to a Max/MSP patch running on 
the same computer via Open Sound Control (“opensoundcontrol.org,” n.d.).  The performer sings 
into a microphone, sending audio data that is amplified and modified in the Max patch.  This allows 
all of the audio input, processing, and output to be done through Max, while the sensor input and 
analysis are carried out using Java and Processing. 
 

 
Figure 6. Sensing system for VAMP 
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The implementation of the “frozen” note processing uses the Max pfft~ subpatch 
solofreeze.pfft designed by Jean-François Charles (Charles, 2008).  This subpatch uses matrices 
to perform spectral processing on a Fast Fourier Transform of the audio signal, which allows the 
necessary computation to be done in real time, and provides a richer sound quality by blending 
frames together in a stochastic process to avoid an obvious “looping” sound. 

3.1.3. Analysis and Observations 

While VAMP was not incorporated into the final design of Death and the Powers, I have used it in a 
wide range of demonstrations and a variety of small performances, including a few solo pieces for 
myself with the glove; an improvisational duet for the glove and an augmented guitar; and a small 
chamber ensemble piece for soprano, VAMP, cello, tunable kalimba, daxophone, oboe, and piano 
(composed by Peter Torpey).  The connection between the gestural vocabulary and the sonic 
manipulations have been found to be quite direct and compelling.   
 
One key lesson from VAMP is the power of a strong connection between movement and sonic result 
in evoking a sense of liveness and magic in an interactive instrument.  In the design of VAMP, the 
interactive vocabulary of the glove was determined before the physical technology was built.  This 
separation of the desired gestural vocabulary and control mappings from the technology needed to 
implement them helped create a system that could have intuitive and expressive interactions between 
movement and music, rather than sensor-driven interactions.  When the gesture and the sonic result 
were closely coupled in metaphorically or emotionally resonant mappings, as when the wearer 
pinches her fingers together to capture a note or when she stretches out her arm to build a crescendo, 
the resulting interaction proved compelling and interesting.  
 
This early instrument was a major influence for my thought process about performance extension 
technologies.  While different effects were technically linked to values of different sensors, the design 
process did not create the interaction by envisioning that technological implementation.  One could 
imagine an alternate methodology in which a set of wearable sensors would be first selected and then 
the values of each of those sensors could be used to control a particular sonic transformation: the 
amount of bend in the elbow linked to the amount of reverb on the sound, for example, or the 
amount of bend in the wrist used to control the pitch of a held note.  While such a set of 
manipulations might be clear, it could also easily appear that the connections were chosen at 
random, without thought for the semiotics of a particular gesture or kind of movement.   
 
It is also important to note that the majority of the recognition process of particular gestures in 
VAMP has been simplified to detect key elements of a gesture and capture those through the selected 
sensor set.  For example, detection of the pinching gesture to capture a note is performed solely by 
the pressure sensor on the tip of the forefinger.  When this sensor’s smoothed values pass above a 
specified threshold value, a trigger is sent to capture a new note and the note extension is turned on 
in the Max patch.  When the sensor values drop below the threshold, the note extension is turned 
off.  From this example, it is clear that a note could actually be captured by a finger press subtly 
made with the hand at the side, or from pressing the finger against a surface, or any number of other 
motions that bring the fingertip pressure sensor over its threshold.  Thus, the action of pinching the 
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fingers near the mouth (or near wherever the microphone is held) to capture a note is only partly a 
technical requirement for the system, and, more importantly, a deliberate performance gesture.   
 
This balance between the aspects of a gesture that are technically necessary for recognition and those 
that are unnecessary but compelling in performance is a important lesson from the design process of 
VAMP.  One might ask, why wouldn’t we want to use more complex gesture recognition and make 
sure that a performer had to position his hand by his mouth when pinching his fingers in order to 
“capture” a note?  However, an argument against such a system would be the additional complexity 
required to identify all aspects of the desired behavior.  Given that the VAMP system has no absolute 
position sensing, additional sensing devices would likely need to be added.  The programming would 
also become more complex and risk missing desired gestures through over-specificity.  How close to 
the mouth does the hand have to be to identify the pose correctly?  Does the hand have to be at a 
specific angle?  Do the non-active fingers need to be in a specific position?  What if another 
performer with different physical proportions wears the glove?  Is there a desired temporal pattern of 
bringing the hand to the mouth?  Capturing a note is a simple trigger, not a continuously changing 
parameter, so it only requires a simple action to identify a desired trigger time.  The performer 
should not have to think about the system’s accuracy in the moment when his action triggers the 
effect.  If this glove were used in a different context, where pressure on the finger could occur in 
many different conditions but should only trigger capturing a note when the hand is held to the 
mouth, this would require a more complex sensor system; however, the VAMP implementation is a 
simpler case.  By combining a strong performative behavior (bringing the hand to the mouth to 
pinch the fingers together) with a simple sensor and analysis system (a thresholded pressure sensor on 
the forefinger triggering the note capture), we can create the desired effect with minimal error in 
performance.   
 
Additionally, new performance behavior grew out of the 
unintentional affordances of the system, such as the ability 
to “grab” a note from another performer or instrument.  In 
a series of performances, I have explored the effects of 
capturing other musical content: for example, in a 2009 
duet with Rob Morris and his Wii-augmented Gesture 
Guitar (Robert R. Morris: Gesture Guitar, n.d.), I used 
VAMP to grab notes and chords from Rob’s guitar and 
control them through the same sonic manipulations as 
originally designed for my voice.  We discovered that the 
pitch-warping algorithm used for bringing in a harmony 
note that produced a clean fifth when used on pure-tone 
vocal content created some fascinating timbral variations 
when used on a complex sonic source such as a guitar chord.   
 
One primary challenge with the VAMP system was the difficulty of creating new gestural behaviors 
or of varying the sonic manipulations after the full system had been developed.  It was designed as a 
specific instrument with a specific set of interactions, and was not constructed with the aim of being 
easy to manipulate or to create new mappings from movement to sound.  In designing later systems, 

	  
Figure 7. Performance with VAMP and the 
Gesture Guitar 
A duet between the author and Rob Morris.  Photo 
by Peter Torpey.  
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I have attempted to balance the needs of developing a strong gestural vocabulary and being able to 
flexibly create new vocabularies with the same sensor setup.   

3.2. The Gestural Media Framework: Abstraction of Gesture for Flexible, High-Level 
Mappings 

3.2.1. An Overview of the Gestural Media Framework  

Building on the importance of high-level movement analysis in mapping, in 2009 I began 
developing systems to abstract raw sensor data into more meaningful movement descriptions.  What 
if I gave you a glove that knew when you flicked your hand, and how hard you were flicking 
it?  That knew when you waved your hand, or when you squeezed your hand, and how tightly you 
were squeezing?  What if this system provided you with information about recognized gestures and 
descriptive parameters of those gestures, and I asked you to use that information to control the 
generation of a reactive visual or musical experience?  How might you think about designing those 
mappings?  Most interestingly, how might that imaginative design process differ from the more 
standard one, where I would give you a glove and tell you that it had a bend sensor on one finger 
and a three-axis accelerometer on the back of the hand, and ask you to use that information to 
control the visual or musical experience?  The way that you might envision mappings given the 
former set of information would likely result in very different interaction models than those you 
would envision given the latter set.   

 
Initial explorations of this concept took the form of a glove augmented with a few sensors and hand-
coded recognition algorithms to detect a small set of desired gestures.  Data from this glove was 
encapsulated in Gesture Objects that hid the raw sensor data and produced output only about 
whether the represented gesture was occurring and of any descriptive parameters related to that 
gesture.  Sensor processing and gesture recognition was performed in Java and sent to Max/MSP 
objects for mapping to sound manipulation parameters and parameters of visualizations.  These 

	  
Figure 8. Initial Gestural Media Framework implementation in Max/MSP 
Max/MSP objects received identification and modification parameters for detected gestures and allowed a user to scale parameters as 
desired. 
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mappings could be easily modified and scaled without the 
user having to be aware of the original sensor information 
or how the gestures were recognized.  I developed several 
small interactive visual experiences based on one gestural 
vocabulary: a “splatter painting” program where paint was 
rolled around through tilting the hand and splattered with a 
flick of the hand; a fluid dynamics simulation where forces 
in the fluid, the color of the fluid, and splashes of particles 
were controlled by gesture; and a gesture-operated 
slideshow program.   
 

The core concepts of this work were extended into the Gestural Media Framework, a system built as 
part of my master’s thesis work at the MIT Media Lab to recognize a vocabulary of trained gestures 
from continuous streams of movement data using Hidden Markov Models.  This system also 
incorporated hand-coded concepts from a modified Laban Effort Space to characterize qualities of a 
performer’s movement (Jessop, 2010).  
 
In the Gestural Media Framework system, a user can specify his or her own important gestural 
vocabulary, labeled by whatever names are intuitive and clear to that user, rather than being 
constrained to any sort of pre-determined gestural vocabulary that attempted to be generic or 
iconic.  If I were to train a system on a basic vocabulary of gestures, that vocabulary would 
immediately be constricting to anyone who tried to use the system, including myself.  As this system 
had the goal of flexibly developing and exploring mappings between gestures and output control, it 
seemed appropriate that it also should have flexibility in the input gesture set.  Therefore, the system 
needed to allow a user to include an individual gesture vocabulary and be able to add to and remove 
from that gestural vocabulary as desired.  It was important in this system to integrate temporal 
pattern recognition techniques rather than simply static pose recognition.  A given pose might be 
part of a wide variety of gestures and movements; it seemed overly limiting to force a choreographer 
to only pass through a particular pose as part of the gesture intended for recognition.   
 
In order to incorporate temporal pattern recognition techniques, this system uses the Georgia 
Institute of Technology’s Gesture and Activity Recognition Toolkit (Westeyn, Brashear, Atrash, & 
Starner, 2003), a set of libraries to support the use of Hidden Markov Models in Java.  Using 
GART, one can record libraries of gesture data and then use those libraries to train Hidden Markov 
Models to recognize new examples.  Each library entry, a sample, consists of a label identifying what 
gesture it represents; a series of vectors, each of which holds all sensor values and other current data 
at one time step; and the length of that sample (i.e. the number of vectors in the sample).  Each 
library can then be used to train Hidden Markov Models, with one model trained for each type of 
gesture in the library. Once a model is trained, it can be passed a new sample (an observed sequence) 
and returns the probability that this model generated that observed sequence.  If this probability is 
calculated for each model in the system, the model with the highest probability can then be 
determined.  Thus, if a model has the highest probability of producing a particular sample, the 
gesture associated with that model is returned as the “recognized” gesture, with an accuracy level 
related to how probable it is that this guess is accurate.  In the GMF system, if a gesture is identified 

 
Figure 9. Gestural Media Framework glove  
(Rendering by Peter Torpey) 
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with a probability of accuracy greater than an empirically determined threshold, the gesture is 
labeled as currently occurring.   
 
In addition to identifying particular gestures, this system sought to also have some sense of quality of 
movement: how gestures (both those recognized by the system and other gestures) were being 
performed.  While specific gestures are recognized via machine learning techniques in this system, 
the qualities of movement are calculated and programmed manually.  Aspects of particular sensor 
data streams are correlated to the Laban-inspired axes of time, weight, and flow.  Each parametric axis 
is manually scaled to the range -1.0 to 1.0.  
 
The time axis describes the speed at which a particular movement is being performed, from very fast 
and sudden to very slow and sustained.  For implementation of this axis, the “speed” of a motion 
was a measurement related to how quickly the body is changing its position and orientation.  As the 
sensors used for this project measured acceleration and the bending of joints, speed was correlated 
with the overall rate of change of the sensor data.  The amount of change in each sensor’s value over 
a short time window is summed, with the contribution from each type of sensor weighted 
empirically to balance the contribution of rapid changes in joint position and in acceleration.  This 
parameter of the amount of change over all sensors is mapped from -1.0 (very rapid movement) to 
1.0 (no movement or exceedingly slow movement).   
 
In Laban's system, the weight axis describes movement on a scale from firm to gentle.  Firm 
movements are forceful, strong, resisting, and heavy; gentle movements are relaxed, unresisting, 
light, and weightless (Laban, 1980, p. 73).  While the performance of this quality seems intuitive, it 
was not immediately clear how to derive it from data from the given sensor set.  However, given an 
alternate definition of weight used by Laban, where weight is a measurement of the amount of 
energy put into the movement, it seemed possible to link weight to the amount of current 
acceleration.  The total acceleration on the performer’s body is measured empirically between gentle, 
still movements and strong, forceful movements.  This range is mapped from -1.0 (intense, 
energetic, heavy movement) to 1.0 (light, low-energy, gentle movement). 
 
The final quality of motion discussed in Laban's Theory of Effort is flow, which describes the 
amount of freedom of energy in a particular movement.  Flow is a measurement of how smoothly 
and continuously the movement is changing, described using an axis from “fluid” movement to 
“bound” movement.  If the movement is changing smoothly and evenly, continuously, and 
uninterrupted, it is considered to be more fluid; if the movement starts and stops, changing jerkily 
and unevenly, it is considered to be more bound (Laban, 1980).  This parameter was determined to 
correspond to the amount of change over all sensor values, as examined over longer timescales.  A 
running value for flow was calculated that would be increased or decreased at each interval 
depending on whether the performer’s movement was currently changing rapidly or slowly.  At any 
point in time, the value of flow (from -1.0, bound, to 1.0, fluid) reflected the overall trend in the 
change of the motion.   
 
It is important to note that these mappings between Laban’s qualities of movement and a particular 
sensor data set were created and tuned empirically, inspired by potential information given by 
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specific sensors and their variance over time.  Other qualities of movement, such as Laban’s concept 
of space, were not implemented due to the difficulty of associating them to data gathered by the 
existing sensor set.  

3.2.2. Four Asynchronicities on the Theme of Contact 

As part of the evaluation of the Gestural Media Framework, I choreographed a suite of performance 
pieces, Four Asynchronicities on the Theme of Contact, that used this system in the performance and 
rehearsal process to map dancers’ movements to the manipulation of projected visualizations, sound, 
and theatrical lighting.  This work consisted of four connected movements that explored different 
ways that people try or fail to connect with one another, fragmenting interactions in time and 
space.  All performers wore sensor-enhanced shirts and gloves, with accelerometers on their hands 
and arms and flex sensors to detect the position of their wrists, elbows, and forefingers.  Sensor data 
was collected via Funnel I/O microcontrollers and sent wirelessly to the computer running the 
analysis software.   
 
Each movement incorporated a different kind of technological extension of the performance.  In the 
first movement, a duet, the qualities of the performers’ movements affected the intensity of the 
theatrical lighting and transformations of projected washes of color, while particular key gestures 
(such as reaching out to one another) shifted the color palettes.  In the second movement, a solo 
performer controlled a soundscape through the qualities of her movement.  Different kinds of 
sounds were played when the performer’s analyzed movement qualities fit into different regions of 
the Laban-inspired three-dimensional quality space (time, weight, and flow).  Other sounds were 
triggered by specific gestures.  The third movement was a duet where each performer’s movement 
affected the generation of a different instrumental part, each playing a semi-random walk between 
notes in a selected scale, with the key and scale switched by recognized gestures.  In the final 
movement, a quintet, the quality of each performer’s movement affected a different region of a fluid 
dynamics simulation projected behind the performers, highlighting rapidly shifting groupings and 
moment-to-moment dynamic variations among the performers.   
	  

	  	  	  	  	  	   	  	  	  	  	   	  
 
Figure 10. Images from Four Asynchronicities, Movements 1-3 
L-R: Kevin Burchby and Lisa Smith; Danbee Kim; Noah Jessop and Xiao Xiao.  Photos by Peter Torpey.  
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3.2.3. Analysis and Observations 

One of the key principles discovered in the process of developing and working with the Gestural 
Media Framework was the different role of movement information that was represented in a discrete 
manner (“Is a particular gesture occurring?  Yes or no?”) than that of information that was 
represented continuously (“How fast is the current gesture being performed right now?”).  I found 
that the recognition of particular gestures to discretely trigger events was often not particularly 
interesting; much more important in conveying expression was the subtlety of how a movement was 
performed.  The recognition of a gesture actually compresses a tremendous amount of detail about a 
movement into a yes or no question: did the system just recognize that gesture?  If a gesture 
recognition system is working well, many variations on the same movement will be grouped together 
and the expressive variation in different performances of that movement will be lost.  While some 
interactive situations strongly need these sort of simplified triggers, it is important not to lose too 
much information about the details of a live performance.  The use of continuous vs. discrete 
analysis of movement and the voice will be discussed further in Chapter 4.  
 
Another relevant lesson from this project was that different qualities needed different scales of time 
to be properly represented.  In this implementation, weight and time were qualities that could change 
rapidly within the window of a few sensor readings, reflecting the immediate state of the performer’s 
body, while flow needed to change more slowly over the course of a gesture or a sequence of gestures.  
Thus, systems working with qualities of movement may need the ability to adjust the window of 
time over which the system analyzes input data to feed into the qualitative analysis.  
 

Another important lesson was the challenge of segmenting 
meaningful gestural data from an unlabeled stream of 
movement information.  When a trained system is 
performing recognition on live input, there is no 
immediate way for a system to know what segments of 
movement it ought to analyze to detect a gesture.  There is 
not necessarily a rest state between key movements, and a 
significant proportion of the movement input may not be 
related to the gestures that need to be detected.  In Four 
Asynchronicities, I chose to combine two different modes of 
movement segmentation.  In the first mode, the Hidden 
Markov Models continually processed several different 
window lengths of historical data.  In the second mode, a 
manual trigger marked the start of a gesture: a performer 
wore a sensor on his fingertip that he would touch to 
indicate to the system that he was about to perform one of 
the key gestures.  While the manual trigger segmentation 
was more accurate, it added choreographic restrictions and 
another aspect of which the performers needed to be 
aware.   
 

	  
Figure 11. Four Asynchronicities performers 
Lisa Smith and Kevin Burchby in wearable sensor 
arrays, with accelerometers and bend sensors on 
their arms. 
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In this system, the gesture recognition was performed using Hidden Markov Models.  The training 
process used separate programs for training the system and for recognizing data given a trained 
model.  The gesture recognition was therefore trained offline, in separate portions of rehearsal 
dedicated to capturing training data, and run online in the performance context and while rehearsing 
choreography.  This separation of programs between the training system and the live system, while 
more modular for development, led to the gesture recognition process being less smoothly integrated 
into the rehearsal process.  In general, capturing new training data examples may need to be a 
separate rehearsal event from running a particular choreographic fragment, depending on what 
aspects need to be captured from that training data.  However, if two entirely separate 
computational systems are required to perform each of those tasks, this does not support a process of 
easily iterating on gesture recognition for the production, either experimenting with learning new 
gestures or modifying training data for existing gestures.      
 
Given the hand-coded relationships between qualities of movement and a selected sensor set, the 
system was also not easily adaptable for a variety of movement qualities.  Different sensing setups or 
the decision to use different parameters for quality of movement would require significant 
experimentation and careful thought to develop and code the relationships between sensors and 
movement qualities.  While this piece used a specific set of qualities of movement, the system was 
less generalizable than desired.  I realized that it was necessary to have systems that could more 
flexibly work with qualities of movement.   
 
These aspects of the gesture recognition and movement quality analysis system made it more 
challenging to use the system fluidly in a rehearsal process.  Many rehearsals experimented with pure 
choreography, rather than trying to integrate the technology from the very beginning.  I believe that 
Four Asynchronicities would have had a stronger relationship overall between choreographic content, 
story, and digital performance extensions if the process of adjusting qualities of movement and 
gestures had been simpler and quicker to perform in the software, allowing for more 
experimentation in rehearsal rather than outside of rehearsal.  The smooth integration of 
technological systems into a rehearsal process is a key element of performance systems, as will be 
discussed further in following chapters.  The rehearsal process is a crucial test for any system: if it is 
useful in the piece and sufficiently easy to work with, it will be used in the final production.  If not, 
the demands of a performance and rehearsal setting will generally lead to its removal from the piece.   

3.3. The Disembodied Performance System: Extension of Virtuosic Physical and 
Vocal Expression  
Some of these lessons from the Gestural Media Framework were quite influential on my work 
developing performance capture technologies for the Disembodied Performance System (DPS), 
created for Tod Machover's opera Death and the Powers (Death and the Powers DVD (in progress), 
2014; Machover, 2010; Torpey, 2009; Torpey & Jessop, 2009).  This system, designed in 
collaboration with Peter Torpey, addressed how to map an expressive performance from the human 
body to other modalities including non-anthropomorphic visuals, sonic transformations, and robotic 
movement.  The process of working on Death and the Powers significantly informed my thoughts on 
capturing and extending expression, as well as broader principles for integrating technology into live 
performance.   
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3.3.1. Death and the Powers 

Death and the Powers tells the story of a rich and powerful businessman and inventor, Simon Powers, 
who finds that he is nearing the end of his life.  He seeks to extend his ability to experience the 
world, interact with his family, and carry out his business dealings by uploading his consciousness 
(his memories, emotions, behaviors, personality, everything that makes him Simon Powers) into a 
computer system integrated throughout his house.  In the first scene of the opera, Powers uploads 
himself into the System, says, “See you later!” and disappears.  The remainder of the piece focuses on 
Powers’ family (his daughter Miranda, third wife Evvy, and part-cyborg research assistant Nicholas) 
and the world at large as they seek to figure out how to interact with Simon in his new form.  They 
must figure out whether they believe that their husband, father, and mentor is indeed still present as 
the bookshelves or chandelier or walls.  If he really is still in this new form, is he the same man or has 
he changed?  How can they connect to him now?  As the show progresses, Simon seeks to persuade 
his family that his new form of existence is substantially better than being a body “of flesh and 
blood,” and attempts to convince them all to upload themselves into the System to join him.  Each 
of the family members in turn has to make their choice between going into the System or remaining 
in their human bodies (Machover, 2010).  
 

	  
Figure 12. The set of Tod Machover’s opera Death and the Powers 
In Death and the Powers, the main character uploads himself into his house and communicates with his family through the scenic 
environment.  Photo by Jill Steinberg. 
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This storyline of the inventor Simon Powers is presented as 
a pageant play put on ritualistically by robots (“Operabots”) 
in some future time when humans no longer exist.  In a 
prologue and epilogue, we discover that the robots are 
scheduled to periodically retell the story of the man who 
uploaded himself into the system.  However, they do not 
fully understand the purpose or the importance of the story, 
as they do not have a conception of death.  They keep 
putting on the show and hoping that they will find some 
more clarity through their retelling.  Four selected robots 
“transform” into the human characters to begin the show-
within-a-show; others appear as characters and as scenic and 
lighting elements throughout.  Overall, the robots serve somewhat of the role of a Greek chorus, 
commenting on the action while also being incorporated into it.   
 
Death and the Powers was composed by Tod Machover, with a libretto by the poet Robert 
Pinsky.  The initial production of Powers was directed by Diane Paulus of Harvard’s American 
Repertory Theater, who also has significant Broadway experience.  It was choreographed by the 
contemporary ballet dancer and choreographer Karole Armitage and designed by Hollywood 
production designer Alex McDowell.  The first performances of Death and the Powers took place in 
Monte Carlo, Monaco in September 2010, with additional performances in Boston in March 2011, 
Chicago in April 2011, and Dallas in February 2014.   
 
Theatrically, this plot presents a major technical and 
creative challenge, as the main character is first seen 
portrayed by a live opera singer (originally baritone James 
Maddalena), and then, for the majority of the show, 
embodied by the entire theatrical set and the performance 
space (Torpey, 2012; Torpey & Jessop, 2009).   
The stage must breathe, react, be emotionally expressive, 
and be as compelling as a human performer.  It must be 
able to convey the character of Simon Powers in a non-
anthropomorphic form.  Designed by production designer 
Alex McDowell, the main scenic elements that represent 
the character of Simon Powers are a set made of three 
periaktoi, each with low-resolution LED displays on one or 
two faces.  While in the System, Powers primarily expresses 
himself through a non-anthropomorphic language of light and color on these walls.  Occasionally 
representational video content appears to represent Powers’ memories or when he conjures a set of 
images of himself to confuse Delegates from the Outside World.  At other points in the show, 
Powers embodies himself in the Chandelier (a scenic piece and lighting element that reveals itself to 
be a musical instrument), in the Operabots, and in the movement of his processed voice around the 
theatrical space.   
 

	  
Figure 13. The Death and the Powers Operabots 
The Operabots serve as both characters and 
scenery, commenting on the action of the opera.  
Photo by Jonathan Williams. 

	  
Figure 14. Simon Powers speaks through The 
System 
Powers communicates with the Delegates from the 
Outside World through a language of color, light, 
and movement on the LED periaktoi.  Photo by 
Jill Steinberg. 
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While it was a challenge to represent an expressive, emotional character primarily as a language of 
light and color on bookshelves, even more important was the need for this representation to not be 
static from performance to performance.  One can imagine Maddalena performing the first scene 
and disappearing offstage, having technicians hit a few buttons to start a pre-programmed video 
routine, and requiring the remainder of the opera to be performed in fixed time to a click track 
synchronized with the video.  However, that method loses the beauty and variability of a live 
performance.  Therefore, we decided that everything that happened onstage to portray the character 
of Simon Powers, from the behavior of the lighting patterns on the walls, to the lighting and 
movement of the robots, to the movement of the surround sound audio in the theater, ought to be 
able to be shaped in real time by Maddalena’s live performance.  The media in the production 
should be different every night, able to vary fluidly and expressively.  In order to achieve this goal, 
Peter Torpey and I developed the Disembodied Performance System, which incorporated wearable 
sensors, movement and vocal analysis strategies, a node-based mapping system, and systems for 
visual and sonic manipulation.   

3.3.2. The Disembodied Performance System 

In our production of Death and the Powers, the performer 
leaves the stage after he is “uploaded” in the first scene, but 
continues giving a live performance offstage.  He enters a 
sonically isolated booth in the orchestra pit, and continues 
to sing the role of Simon Powers, actively performing, 
moving, and behaving as if he was still onstage.  Parameters 
of his movements and voice are measured via wearable 
sensors and microphones and used to control the theatrical 
environment.  I was responsible for designing and creating 
the sensors and sensor data processing that we used in the 
production, which included physiological and gestural 
sensing and analysis as well as vocal analysis.  I also 
collaborated in designing the mappings from expressive 
performance information to output media.  
 
We sought to find a minimal and reasonably unobtrusive 
set of sensors, in order to allow the performer to behave as 
naturally as possible and with as few physical limitations as 
possible.  Importantly, we did not want to create a new 
gestural instrument that our performer would have to learn 
to use; instead, we sought to capture the performer’s 
existing physical and vocal expressivity.  As a professional opera singer, the performer playing Simon 
Powers uses a wide range of behaviors of his voice and body to communicate the experience and 
emotions of the character.  We wanted to study and capture his pre-existing vocabulary so as to 
transform what he did naturally in performance into expressive gestures in the scenic environment. 
 
In deciding on an ideal sensor set for this production, we found that one of the major aspects of the 
performer’s physical presence is his breath.  The rhythm and shape of a performer’s breath reveals 

	  
Figure 15. James Maddalena in prototype 
Disembodied Performance sensors 
Maddalena wears accelerometers on his wrists and 
the backs of his hands, and a band to measure his 
chest expansion with breath. 
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phrasing and emotion, as well as providing a sense of life.  Thus, a wearable breath sensor was 
incorporated into the Disembodied Performance System to capture this expressive 
information.  This sensor consists of a fabric band tied around a performer’s chest, located at the 
point of maximal chest expansion during inhalation (this location varies from performer to 
performer).  Incorporated in the fabric band is a flexible portion with a sensor that varies its 
resistance based on how much it is stretched.  This sensor thus detects the performer’s inhalations 
and exhalations.  This information is captured by a Funnel I/O microcontroller board and 
transmitted wirelessly via XBee radio modules.  This simple sensor was found to detect information 
about the breath of the performer and about his vocal phrasing that was more detailed than the 
information obtainable from audio or the score alone. 
 
Additionally, three-axis accelerometers on the arms and the backs of the hands are used to obtain 
information about Maddalena's movement as he sings.  Two separate accelerometers are used on 
each arm in order to capture the distinction between small movements made with the hands alone 
and larger movements that incorporate the entire arm.  The accelerometers are sewn onto gloves and 
wristbands that can be easily worn in a known orientation.  Data from the accelerometers is captured 
by a Funnel I/O microcontroller board worn in a pouch attached to the upper arm.  That data is 
then transmitted wirelessly.    
 

Our choice of accelerometers as the primary sensors for 
movement capture was influenced by our goals of an 
unobtrusive system that could capture the performer’s 
natural expressive movement.  We determined that it was 
not necessary to capture specific gestures from Maddalena, 
as one might do in a more directly instrumental model; 
more important was the overall character and expressive 
quality of his natural motion while singing with 
emotion.  We generally did not work with the raw 
accelerometer data, but instead computed features of the 
accelerometer data that reflected overall energy, temporal 
variation, and rate of change.  In the Disembodied 
Performance System, I manually created algorithms to map 
this movement input to qualities in a modified Laban Effort 

Space of weight, time, and flow, abstracting the movement away from specific sensor values into a 
higher-level quality framework.  
 
In our early work with Maddalena, we noticed that he was very expressive in the way that he shifted 
his weight from side to side and back to front.  I developed pressure sensors that could attach to the 
front and back of his shoes to capture some of that variation in weight shifting.  Each sensor consists 
of a pair of pieces of conductive foam with a circuit on either side.  The foam reduces in resistance as 
more pressure is put on it.  Thus, the sensor can respond to changes of weight (though with a slow 
recovery rate).  In the production of Death and the Powers, we did not use these particular sensors, as 
the sound isolation booth in the pit was structured such that Maddalena preferred to sit during the 
majority of the production.   

	  
Figure 16. The author fits Disembodied 
Performance sensors on James Maddalena 
Accelerometers on the hands and forearms measure 
qualities of Maddalena’s movement.  Photo by Tod 
Machover. 
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I also developed a system to examine expressive qualities of Maddalena’s voice, including intensity, 
frequency, and timbre parameters (such as vocal harmonicity and dissonance).  His voice is captured 
via a microphone in the booth and analyzed live via a Max/MSP patch.  These analysis parameters 
can then be used as inputs for mapping.   The analysis is performed over a short sliding window, so 
that the results of the analysis feel instantaneous and any visual response controlled by this analysis 
feels immediately synchronized to the live voice.  
 
Using the Disembodied Performance Mapping System (described further in Chapter 5), we then 
mapped the resulting qualities of movement and voice to control a variety of output media.  This 
mapping system communicates via the Open Sound Control protocol (“opensoundcontrol.org,” 
n.d.) with a variety of other show control systems, particularly the RenderDesigner system created 
by Peter Torpey to create generative visualizations on the walls.  It is important to note that the 
mapping between input performance information and output control parameters is not constant 
throughout Death and the Powers.  All of our systems incorporate the concept of cues (or modes), 
different collections of settings for a particular point in the show.  In the case of the Disembodied 
Performance System, the system has a collection of different mappings from input parameters to 
output control values.  These mappings may change from mapping cue to mapping cue because 
different media needs to be controlled or the media has different control parameters (in the case of 
the visualizations on the LED walls, different visual cues might take a different set or different ranges 
of control parameters), or because the desired relationship changes between the performance data 
and the control parameters.  When the system is given a particular mapping cue number, it switches 
to the desired mapping.      
 
Importantly, this process did not rely on a specific pre-composed movement or vocal vocabulary, but 
rather on intuitive aspects of the performer’s virtuosic expressive performance.  We had several 
research sessions with James Maddalena before the start of Powers rehearsals to explore his natural 
movement vocabulary for performance and try to figure out how to capture his innate expressiveness 
as a performer.  We did not want to create a system that was an instrument that Maddalena would 
have to play while he sang, or a model where he explicitly tried to control the multimedia 
elements.  In fact, we actually did not give Maddalena a view of the stage, so he would not get into a 
feedback loop by trying to effect a specific change on the set.  Instead, we asked him to perform as he 

	  
Figure 17. Prototype Disembodied Performance sensors 
L-R: Armbands and glove for movement sensing, breath sensor band, and shoe pressure sensors for detecting shifting of weight 
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naturally would if he were onstage (moving, gesturing, being vocally and physically expressive) and 
extended that behavior through the Disembodied Performance System.   
 

 
During the rehearsal process for Death and the Powers, we constructed, shaped, and refined the 
mappings between Maddalena’s performance and the multimedia results.  We thus designed all of 
the Powers systems to be as flexible as possible during the rehearsal process, not requiring 
recompilation of code or stopping any system in order to adjust a mapping, change a visualization on 
the walls, tweak robot choreography, adjust sound manipulation, etc.  In this fast-paced professional 
rehearsal process, there was no time to take a break and rewrite a code file for a mapping.  
Everything had to be able to be changed on the fly, so that we could see the immediate results while 
we were still running the same scene, and without the walls going dark in the meantime.   

3.3.3. Additional Observations on Death and the Powers and the Disembodied Performance 
System 

An interesting consideration for interactive performance systems that is demonstrated in Powers is 
the distinction between modes and triggers.  A mode is a state of a system: a collection of continuous 
parameters or system settings.  A mode defines the current rules and structures of the performance 
system, and persists until a change in modes.  Sequences of modes create the larger structure of a 
performance piece.  Each mapping in the Disembodied Performance System is actually a mode, as it 
defines the current interactive behavior until the mode is changed.  A trigger is a discrete, momentary 
event that initiates a particular action.  A trigger may change modes, or cause a certain event to play 
out in its entirety.  Playing a specific video once on the walls, or a sample from the keyboard, is 
initiated by a trigger.  
 
In Powers, the changes between different mapping modes are controlled by the second keyboard 
player, who plays a notated part that incorporates not only triggers for sound samples and sonic 
textures, but also triggers that change cues for the visuals on the walls and the connected 
performance interaction mappings.  The Disembodied Performance System is passed its cues via the 
RenderDesigner system for the visuals on the walls, such that the changes of mappings for different 
visual looks is kept in sync with the changes of visual cues.  Particularly as the RenderDesigner 

	  
Figure 18. Trial data from Disembodied Performance sensors 
In May 2009, we captured sensor data from Maddalena performing vocal exercises with a variety of emotions.   Different emotions 
clearly showed different types of movement information.  Graph by Peter Torpey. 
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system incorporates fading behavior between visual cues, it 
was important to switch the DPS mapping cue only when a 
RenderDesigner fade was complete.  Once the system has 
been put into a visual cue and associated performance 
mapping cue, it remains in that mode until the next trigger.  
This use of modes and triggers in the mapping system 
allows the performance extension to remain connected to 
the performance in multiple ways: triggers (commands for 
changes of state) are defined in the score and carried out in 
synchronization with the music, while each mode (a state) 
determines the input-to-output mapping and how the 
interaction is carried out moment-to-moment within that 
mode.     
 
One key aspect of the performance extension system for 
Death and the Powers that differs from many other 
performance extension systems is that the live performer is 
not visible to the audience.  The extended performance is 
visible and audible, but the human being creating that 
performance disappears after the first scene of the 
show.  We were faced with the challenge of making the 
experience feel live and responsive even without directly 
showing the connection between the live performance and 
the expressive multimedia extensions of that 
performance.  In early discussions of the system, we wondered whether we would have to put the 
actor playing Simon Powers somewhere visible or partially visible to the audience, perhaps in a semi-
transparent box to one side of the proscenium.  However, the libretto for the opera makes very clear 
that Simon Powers has “nothing like a body.”  He “cannot hear with ears, he cannot speak with 
breath” (Machover, 2010).  We decided that we would be undermining the story and our intention 
in the design of the show if we revealed Powers and showed exactly how the behavior of his real, 
physical body affected the media elements.  Instead, we decided that we had to truly transform his 
presence into something completely non-anthropomorphic.   
 
Our goal was a sense of human liveness, even when one could not see the human that was generating 
the live behavior.  In a way, it did not matter whether the audience was aware that the visuals they 
saw and the sounds that they heard were shaped and controlled by a live performer, as long as they 
bought into the premise that the set was the main character.  If the scenic environment felt 
sufficiently live, reactive, responsive, and connected to everything else that was going on in the 
action onstage and to the music, we decided that it didn’t matter whether the audience understood 
exactly how that behavior was technologically constructed.  Indeed, if the audience was too 
concerned with the technologies behind the interaction, or with attempting to figure out “how it 
worked,” we would have considered our work to have been unsuccessful.  The point was the story, 
not the implementation.  
 

	  
Figure 19. Simon Powers in the orchestra pit 
James Maddalena performs as Simon Powers from 
the orchestra pit while the expressive qualities of his 
performance are translated to light on the LED 
walls on the stage above him.  Photo by Jill 
Steinberg. 
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Another key aspect of this virtuosic performance extension system was our decision not to create a 
new instrument for our Simon Powers to learn.  We sought to abstract James Maddalena’s physical 
and vocal performance away from his body in a way that allowed him to still perform as he would if 
he were onstage.  The musical score for Death and the Powers was sufficiently challenging that it 
would have been cognitive overload to ask the performer to simultaneously perform a sequence of 
specific instrumental gestures.  Instead, we chose to capture what Maddalena did naturally.  As a 
professional performer, he is exceedingly adept at using his voice and body to represent the 
emotional state of a character.  We chose to leverage his existing virtuosic skillset rather than to 
create a brand new expressive interface at which he would be a novice.  This choice informed our 
sensing strategies, as well as our analysis techniques.    
 
While the levels of abstraction in this system proved useful for creating meaningful mappings, the 
system was still tied to a particular sensor set, performance scenario, and set of expressive parameters. 
I realized that a more generalized system would be needed to quickly learn the relationships between 
different sensor inputs and desired qualitative spaces.  This need for a more flexible system was a 
major impetus for the work described in this dissertation.   

3.4. Conclusions and Performance Extension Principles from Prior Work  
Through discussion of this set of prior projects, this chapter has presented the foundations of my 
work on voice and movement extension.  Additionally, these prior projects have served as a 
framework for discussion of several principles for integrating technology into performance contexts 
in compelling ways, as well as of some of the needs of technologies designed for performance.   
 
The Vocal Augmentation and Manipulation Prosthesis demonstrated the power of strong 
connections between physical actions and sonic reactions.  By imagining gestural mappings at a high 
level (such as the pinching finger gesture capturing a sung note), the interaction design of this system 
was completely abstracted from any implementation details, allowing the development of compelling 
mappings between movement and digital vocal extension.  The specific gestural vocabulary of 
interaction guided the choice of sensing systems, movement analysis techniques, and specific 
mappings.  This instrument used a mix of discrete gestures for triggering specific actions (e.g. 
capturing a note) and continuous control over expressive parameters (e.g. shaping the amplitude of 
the held note). 
 
The Gestural Media Framework and Four Asynchronicities demonstrated the expressive utility of 
high-level definitions of movement qualities and gestures, and the use of these abstracted parameters 
and gestures for creating mappings.  Continuous movement qualities were also found to be more 
expressive than discrete gestures for augmenting a performance.  By looking at the rehearsal process 
for Four Asynchronicities, we also see the need for more flexibility in fluidly experimenting with 
qualities of movement and gesture recognition while in rehearsal.  Other principles that can be seen 
in analysis of the Gestural Media Framework include: discrete versus continuous actions; the 
challenge of gesture segmentation from a stream of movement; the necessity for different timescales 
of qualitative analysis; and the desire to have a unified system to handle both movement analysis and 
training as well as the expressive mappings of inputs to outputs.   
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The Disembodied Performance System and Death and the Powers also showed parametric definitions 
of movement and vocal qualities to be useful in an extended performance context.  In this virtuosic 
performance, focusing on qualities of movement and voice rather than a particular pre-determined 
vocabulary of gesture allowed the performer to be naturally expressive in the ways he would in a 
standard theatrical context, while having that expression extended into a variety of media.  The 
performer’s feedback was carefully modulated so that he did not overly focus on his control of other 
media elements.  Other relevant principles for developing technology in performance seen in Powers 
include: flexibility of mappings to allow development and exploration during rehearsals; the 
distinction between triggers and modes; and technology designed with a focus on a sense of liveness 
and storytelling rather than on “how the system works.”  
 
In analysis of the extended performance work in Powers, we also see the need for flexible systems that 
can easily adapt to a variety of input sensors and output media, as the Disembodied Performance 
System had only hand-coded input sensing and sensor analysis.  For a more flexible or easily 
modifiable system, a user would want to be able to switch sensor setups, or adjust qualities of 
movement rapidly in the middle of a rehearsal or performance process.      
	  
More discussion on VAMP, the Gestural Media Framework, and the initial stages of the 
Disembodied Performance System can be found in my master’s thesis (Jessop, 2010).  Some of the 
principles inspired by these systems will be discussed further and expanded in the following chapter, 
as we explore the expressive elements of performance and interactivity, the development process of a 
performance or installation, and the incorporation of machine learning techniques into an 
interactive performance process. 
	    



	   75	  

4. Fundamentals of Designing Extended Live Performances 
This chapter presents a set of principles for designing systems to support and extend live expression 
in performance and interactive installations.  It also includes a set of the key principles, guidelines, 
and necessary questions that should be considered by practitioners seeking to design extended vocal 
and physical performances, particularly those that incorporate machine learning and analysis of 
expressive qualities.  Through examination of the concepts of expression and liveness, as well as 
discussion of additional projects I have done at the Media Lab, I propose a set of questions and 
guidelines both for practitioners seeking to create extended live performances and for those seeking 
to design systems for extending live performance.  I outline the Expressive Performance Extension 
Framework for incorporating interactive technologies, particularly machine learning of high-level 
expressive qualities, into performance and rehearsal contexts.  Key aspects of this discussion include 
the expressive role of time, the use of regression rather than classification algorithms for analysis of 
expressive qualities, analysis of the relative skills of humans and machines in performance systems, 
and the definition of a framework that can support analysis and extension of both movement and 
the voice.   
 
This chapter is divided into several sections: 

• Elements of live performance and interactive installations that are sources of expression, 
particularly the role of different timescales in expression 

• Mapping live performance into digital media while keeping a sense of “liveness” 
• The development stages of a performance or installation work, with a focus on how 

technologies can support existing creative workflows 
• Integration of machine learning techniques into the creative process: a suggested framework 

and workflow 
• Goals of a system to support performance extension 

4.1. Expressive Elements of Performance 
Expression is one of the most challenging aspects to define of any kind of performance (dance, 
theatrical, musical, etc.), and yet it is one of the most significant.  Juslin states in his psychological 
exploration of musical expression:  
“…expression is largely what makes music performance worthwhile.  It is expression that makes 
people go through all sorts of trouble to hear human performances rather than the ‘dead-pan’ 
renditions of computers; it is expression that makes possible new and insightful interpretations of 
familiar works; and it is on the basis of expressive features that we prefer one performer rather than 
another”(Juslin, 2003). 
 
Before we further discuss practices and methodologies for extending live expressive performances 
through technology, it will be useful for us to examine in more depth some of the aspects of 
performance that inform a sense of “expression.”  It is important to note again, inspired by Juslin 
(2003), that “expression” is a multi-dimensional phenomenon, rather than a single entity of which a 
performance can have “more” or “less” or that it can be “lacking” or “full of.”  
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4.1.1. Script and Score, Production Vocabulary, Interpretation, Improvisation 

Expressive elements of performance can be seen at three different levels.  The first of these I will call 
score-level expression, the expressive content inherent in the script or score, the fixed text or musical 
notation.  This is emotional and expressive information conveyed through a score’s content and 
structure.  This layer of expression is generally consistent across different productions of a particular 
score or script.  The second level of expression is directorial-level expression, and comes from the 
choices made for a specific production, such as the directorial decisions, choreography, and design 
elements.  These elements of a production are the same for each performance of a specific 
production.  They may support, complement, or counter the expressive content of a script or score.  
The final layer of expression is interpretation-level expression, and comes from performers’ individual 
variation around the directorial content and the content of the score.  This layer differs with every 
individual performance instance and is seen as different kinds of variation around the “set” elements 
of the piece (such as temporal or timing variation, dynamic variation, accentuation, articulation, 
variation in force or energy, etc.).   
 
Different expressive performance and installation contexts have different balances of what content is 
static or “set” and what content changes with every performance.  For example, one production 
might have the direction for a performer to “enter from stage right and cross to center, humming.”  
Another production might have the direction, “enter from stage right looking back over the left 
shoulder, take ten beats to cross to center, stepping rhythmically in an even tempo, and cheerily 
humming the first bars of Beethoven’s Symphony #5.”  In the first instance, the expression in the 
performance of the events may be said to come more from the individual performer’s interpretation 
of those directions and the way that he chooses to carry them out on a specific evening.  In the 
second instance, more of the content of the piece is set by the director.  The performer’s variation 
will come in more subtle differences in timing, emotional content, and articulation of the actions.  
 
Alternately, a piece might be completely improvised, with potentially all content and structure being 
developed on the spot by the performers.  Other improvisational pieces could have a predetermined 
structure and improvisation within that structure, or a specific vocabulary (such as a sonic, melodic, 
or physical vocabulary) that performers use for their improvisation.  All of these will create different 
relationships between what types of expression arise from score-level, directorial-level, and 
interpretation-level content.   
 
With regard to an individual performer’s expression, much of the expressive content is 
communicated by how the performance varies moment-to moment in the context of the constraints 
of the script-level and directorial-level content.  Juslin identifies factors that relate to expression in 
musical performance, which can be extended to expression in broader performance contexts.  He 
proposes a psychological model of describing musical expression through five separate aspects of 
performance.  Generative rules are the transformations of performance (through changes in dynamics, 
tempo, and articulation) that help the listener understand the musical structure.  Emotional 
Expression relates to the variations in performance that are used in order to convey a particular 
emotional experience to a listener.  A performer can remain true to the score-level information in a 
piece while still having the freedom to shape the overall mood of the piece.  Random Variability 
describes the variation in acoustic parameters that comes purely from the limitations of our 
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biological motor systems.  This kind of variation, particularly in timing, contributes to the sense of 
“humanness” of a performance.  Motion Principles refers to the shaping of dynamic and tempo 
patterns either to correspond to human movement patterns (a ritardando generally having the same 
shape as de-acceleration from running, for example), or due to human movement patterns.  Finally, 
Stylistic Unexpectedness addresses the ways in which expression can be created by a performance 
violating expectations of a particular style of music or performance conventions for a particular 
section or moment.  While all five of these factors are intended to reflect different psychological 
principles and different neurological pathways, it is important to note that they all refer to variation 
in timing, dynamics, articulation, etc.  More generally, it is the small variations from the “score” or 
the “expected” performance of a piece and the actual details of a specific performance that help give 
rise to expressive content.  It is also important to note that this model of expression presents 
expression as a concept that relates both to the performers (in their intention and the details of their 
performance) and to the audience (in their interpretation and their experience of the performance).  

4.1.2. The Role of Different Timescales 

As was explored in Chapter 2, the different features of a physical performance that convey expressive 
content are likely to have layers of expression at many different timescales.  A note or a particular 
body shape can be experienced at a precise instant and described with certain parameters.  However, 
the majority of expression is not reflected in a static image, but instead comes from how all the 
parameters vary, grow, develop, or stay fixed over a variety of timescales from a brief moment, to a 
phrase, to an entire piece.  Similarly, the expression in a piece comes not only from the fixed 
parameters of a piece as a whole (such as its pace, or smoothness, or dynamics), but also from the 
momentary variations and deviations from those defined standards, and in the ways that those 
standards change throughout a piece.   

For example, a particular dance performance might have a quick, intense rhythm throughout; 
however, the moment-to-moment expressivity in the dance comes from how the movement deviates 
from that standard through slower or faster subdivisions of tempo, the amount of fluidity versus 
rigidity in a motion, or the amount of energy in a particular movement.  If a performer is moving 
glacially slowly and then rapidly flicks his hand, that flick conveys a different kind of expressive 
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content than the same flick after he has been flicking his hand repeatedly and swiftly.  In addition, 
the expressive norms established in a piece may change from section to section, or from one moment 
to another.  
 
It is important that a system can handle definitions of and recognition of expression over multiple 
different timescales.  To extend the possibilities of expression recognition systems even further, 
systems should analyze temporal behavior not only to determine the performer’s current point in an 
expressive space, but also to analyze particular shapes or features of trajectories through expressive 
spaces.  A system to appropriately process expressive information should therefore recognize not only 
the general expressive parameters of a piece, but also when and how the work varies from that 
baseline.  These various temporal aspects of expression should be included in their definitions of a 
multi-dimensional, continuous expressive space.   
 
In addition to the different scales of time that may need to be considered within a particular piece, it 
may also be important to take expressive measurements across different points of the life cycle of a 
performance or installation.  How is the perceived expression of one visitor to an interactive 
installation affected by what other participants have done earlier?  If many participants have been 
observed making very small movements, the impact of one participant who makes a very large 
movement should perhaps be highlighted.  As another example, one of the ways in which 
“expression” is visible in a performance is the ways in which that performance differs from night to 
night.  If one sees a single instance of a performance, it may not be clear how much of the 
performer’s behavior is scripted and completely set, and how much variability is possible and 
“special” for that particular presentation of the show.  Particularly in a performance that incorporates 
some layer of improvisation, the expressive variation in a given single presentation may not be clear.  
What if some notion of how a performance differed from night to night could be preserved and 
those differences could be seen in a specific performance? 

4.1.3. Interaction Between Performers 

Another key aspect of how expression is established and communicated in a performance piece is the 
interaction between performers, if there are multiple performers.  This is an aspect that is frequently 
explored by choreographers and performance-makers, but less often by researchers studying 
interactive or controllable systems.  When multiple people are onstage, we will interpret movement 
differently depending on the performers’ physical relationships to one another.  For example, 
imagine a performer who starts with her right hand by her side and raises it slowly, palm up, while 
looking out past her hand.  If this performer is alone onstage, there is a certain layer of expression 
that is conveyed by this gesture.  However, place this performer onstage with another dancer to her 
right side, and her raised arm will appear to be reaching out for the second dancer.  Additional levels 
of metaphorical and symbolic context are established by the presence of the second performer.   
 
Brown, in her discussion of various aspects of Labanotation, presents a set of movement relationships 
between performers: “Partners may approach, meet, move together, part, dance near, by the side of, 
behind or in front of each other; lead, follow, move together, in canon or in opposition; address, 
touch, support, surround, grasp, carry each other or an object” (Brown & Parker, 1984, p. 
26).  There is a tremendous amount of content that is contained in these relationships between 
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performers, which may be relevant to consider when designing extended performances that include 
multiple performers.   
 
In developing an interactive extended performance or installation that features multiple performers 
or participants, one question to explore is to what extent the interaction is shaped by aspects of each 
participant’s individual behavior, by aspects of the overall stage picture, and by aspects specifically 
related to the interaction between participants.  For example, let us imagine an interactive 
installation where the participants’ movement is used to affect a soundscape.  In one version, each 
person moving in the space controls a different instrument or sound type in the soundscape: this 
person affects the low bowed drone, that person affects the high marimba-like melodies.  As each 
participant moves more rapidly and with larger movements, their associated instrument is brought 
out and given a denser texture.  In another version, the overall activity of the soundscape is 
controlled by the shared energy of both participants together.  In a third version, melodic fragments 
arise from the drone as the two participants move closely together and start to come into rhythmic 
synchronization, moving at a similar speed and scale of movement.  In all of these versions, the 
overall impression of interactivity will be shaped by the combined behavior of all participants, but 
the experience of each mapping may be quite different.  In an interactive installation, these 
mappings will draw out different kinds of interaction between participants.  In a performance, these 
mappings will draw attention to different aspects of the behavior of the performers. 
 
This dissertation primarily explores single-person experiences, including both performances and 
installations.  Even in situations such as Death and the Powers, which included a several-person cast, 
the performance extension technologies were primarily designed to extend the performance of a 
single actor in the cast.  While the majority of the actors have standard roles, the actor portraying 
Simon Powers has his expressive movement and vocal behavior captured and used to control and 
shape aspects of the visualizations on the walls, the movement of the robotics, and the movement of 
the sound in the space.  An interesting point to note in the case of Powers, however, is the behavior 
of the Operabots, which are actually controlled by multiple 
performers and technicians, as well as have autonomous 
behavior that has been scripted by the director and 
choreographer.  Aspects of the singer’s voices control 
lighting and small movement patterns on the Operabots; 
simultaneously, major movement patterns of the robots are 
puppeteered by technicians, and the current cue state (and 
thus autonomous behaviors) of the robots is determined by 
an overall system operator.  In a way, an individual robot 
thus serves as an extension of several people’s performances.  
To refer to the terminology of types of performance defined 
in Chapter 2, these robots are a combination of 
instrumental, stage managed, and static performance systems.  
 
Four Asynchronicities on the Theme of Contact is one set of performance works described in this 
dissertation that explored extending multiple performers simultaneously.  These dance pieces 
included computer recognition of some gestures that were specifically designed because of their 

	  
Figure 21. An evocative gesture between 
performers in Four Asynchronicities 
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metaphorical content in the interaction of two performers (such as a hand grasp and spin).  This 
piece also included other performance extensions that reacted to multiple performers.  For example, 
the fluid dynamics visualization in Movement 4 had different colored points responding to each 
performer so the patterns of the visualization were affected by each performer’s individual movement 
but the overall impression was determined by the combination of all the performers.    

4.1.4. Interaction Among Performers, Space, and Objects 

Another important category to address in discussion of expressive aspects of a piece is the interaction 
between performers and space, as well as between performers and objects.  As with multiple 
performers on the stage, other scenic elements and objects that share a space with a performer will 
change the way in which the performance content is interpreted and seen as expressive by an 
audience.  Semantic and metaphorical content may vary significantly with changes in the performer’s 
spatial relationships to elements of the performance space and to the space as a whole.   
 
The nature of an object can influence our interpretation of a performer’s movement and the goal of 
that movement.  A gesture that may appear abstract when performed in free space may be quite 
clearly instrumental when performed in relationship to the object that it manipulates.  For example, 
in a production of Our Town performed at the Huntington Theatre in 2013, the actors performed 
on a bare stage with a stylized pantomime vocabulary for the majority of the production.  The actual 
gestures were not all clearly connected to specific actions, but created an overall impression of work 
and activity.  However, in the climax, a curtain was raised to reveal a highly detailed, period-accurate 
set, on which the final scene took place.  The very same gestures that had seemed abstract 
throughout the show suddenly took on very specific meanings when combined with physical objects: 
pumping the water for the sink, flipping the bacon, opening the cabinet (Cromer, 2013).  As 
expression is partially related to the audience’s experience and interpretation, the presence or absence 
of objects as part of a movement can strongly affect expression. 
 
Similarly, the nature of an interaction with an object, whether that interaction is through a 
performer’s focus on the object or through actual handling of the object, changes the way that we 
interpret particular physical or vocal gestures in performance.  The hand raising gesture described in 
the prior section would similarly take on additional layers of metaphorical and communicative 
meaning if the performer raised her hand slowly to an object in the space.     
 
For the purposes of this dissertation, I have primarily limited the movement space examined to the 
space of free movement, where a performer’s movement through space does not include the 
manipulation of physical objects.  However, a performer’s interaction with objects is important to 
consider in a general model of expressive elements of performance.   
 
Spatial relationships between a performer and the performance space also shape the expressive 
content of a piece.  As discussed in Chapter 2, one of the primary components of early dance 
notation systems is the notation of movement patterns in space, or “floor plans.”  In these notation 
systems, a dance is defined not only by its steps, but also by information about where dancers should 
stand and face and travel.  The scale of a performer’s movement in relationship to the scale of a 
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space, a performer’s orientation toward a particular direction in the space, the amount of the space 
used by a whole performance, all are relevant and potentially expressive.  
 
The proximity or distance of a performer to scenic elements can also convey emotional or expressive 
content and can influence the details of a performance.  For example, imagine a series of movements 
of the upper body, while a dancer remains standing with her feet in a fixed position.  Imagine a 
performer carrying out this sequence in the middle of a large, bare stage.  Now imagine the same 
sequence of movements while the performer is balanced on top of a high, small platform.  Now 
imagine the same sequence performed within the confines of walls close to the performer on three 
sides, or in the corner of a room.  The sequence of actions is identical.  Indeed, the specifics of the 
performer’s actions could be identical.  Yet, these three performances will still convey different kinds 
of emotional content through the spatial relationships that are established.   
 
Another potentially expressive aspect of performance is the performer’s spatial relationship to the 
audience.  Is the audience far from the performer, sitting in a theater watching a performer on a 
standard proscenium stage?  Is the audience seated just a few rows from a performer?  Are performers 
moving through the audience, or is the audience free to move through and around the performers?  
The impact of a dancer, singer, or other performer’s expressive behavior may differ depending on 
this spatial relationship to the audience.  For example, in a large proscenium hall, a tiny movement 
or a whisper may not be perceived by the audience and thus will not convey expressive information.  
In a tiny room where the audience can stand right next to the performer, every subtle detail of her 
movement or voice can be perceived.   
 
To extend this line of questioning about audience/performer spatial relationships even further, what 
about when the audience is not physically in the same space as the performer, as is now possible 
through technology?  What aspects of expression can be conveyed when the audience is even more 
physically distant?  The Death and the Powers global interactive simulcast, discussed in Chapter 6, 
explores this question.   

4.1.5. Interaction in Installation Spaces  

In the context of an installation (particularly an interactive installation), these questions become 
more complex.  Generally, the audience members in an interactive installation serve as the 
“performers,” shaping the behavior of a system or environment through their actions.  However, 
typically these performers do not have prior experience with or knowledge about controlling the 
interactive system.  Frequently, they are given limited instruction and allowed to find their own 
patterns of interaction with the system.  Certain levels of expressivity are set up by the construction 
of the system and the space of the installation while others are shaped by how the participants behave 
(which is, in turn, influenced by the design of the system and the space).   
 
An interesting aspect of interactive installations is the degree to which visitors may be influenced in 
their beliefs about the nature of the interactivity by the behavior of others interacting with the 
system.  A kind of meaning is often created by how you see someone else interacting with a system.  
Another’s interpretation or misinterpretation of how a system works can inform your own beliefs 
and experiences of that system.  
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As an example of an interactive installation where different 
meanings were constructed through solo or group 
interactions, I present Bibliodoptera, an interactive 
installation created with Peter Torpey for MIT’s 150th 
Anniversary Festival of Art, Science, and Technology 
(FAST).  This installation’s reaction to visitors was quite 
subtle and open to different interpretations about the 
primary cause. 
 
This installation, originally located in a corridor between 
MIT’s Hayden Library for the sciences and humanities and 

the Lewis Music Library, consisted of a cloud of vellum butterflies hanging from the ceiling.  These 
butterflies were printed with musical scores and text from books in the libraries, forming an 
unobtrusive and beautiful symbol of the knowledge of the arts and humanities that have been 
developed and pursued at MIT.  A subset of the butterflies also contained individually addressable 
LED lights.  Trajectories through the cloud illuminated to guide passersby along the length of the 
corridor, triggered by proximity sensors at each doorway.  When a person entered either side of the 
hallway, one of several paths of illuminated butterflies came on one by one down the hallway to the 
opposite side, and then slowly decayed.  This subtle interaction was designed to create a sense of life 
and activity in the installation that was connected to visitors to the hallway.  Bibliodoptera was 
installed in February 2011 and remained in place until June 2011.  During the months that the 
installation was in place, it transformed the hallway from a 
simple passageway to a space for a experience.  
 
This installation’s simple and subtle interaction pattern was 
designed for the relatively sparse traffic present at a normal 
moment in the hallway, allowing a single participant to 
create a hallway-wide effect.  However, a very different 
experience was created in the last weekend of FAST, when 
installations around campus were open and the general 
public was invited to come see the installations.  As 
thousands of people passed through the installation space 
over the course of a few hours, the hallway was continually 
packed with people.  The resulting behavior of the 
installation was that the LED trajectories continually 
flickered, as an individual trajectory would not have time to 
complete and fade out before being retriggered repeatedly.  
Given this rapidly changing LED behavior, visitors 
attempted to determine what was activating the butterflies.  
Many would wave at an individual lit butterfly, to see if 
their movement affected the butterflies individually.  
Perhaps the most interesting group interactivity effect, 
however, was the moment that any visitor thought that the 

Figure 22. Bibliodoptera installed at MIT 
The vellum butterflies are printed with musical 
scores and text from books. Photo by Andy Ryan. 

	  
Figure 23. Visitors observe Bibliodoptera 
Photo by Andy Ryan. 
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butterflies were lighting up in reaction to sound.  Once one visitor began to clap, or sing, or call to a 
butterfly, that interaction pattern would rapidly propagate down the hall as other visitors assumed 
that sound was being sensed by the installation.  This is an example of how visitors’ perception of 
interactivity of an installation can be shaped by what they perceive others doing around them.     

4.2. Extension of Performance: A Discussion of “Liveness” and Mappings 
In exploring the needs of technologies that extend live performances, it is necessary to explore what 
is essential to a “live” performance, and how to extend that sense of liveness.  This section explores 
the concept of “liveness” as well as how different mapping and control strategies can affect the sense 
of liveness of performance extension systems.  This section also includes case studies of two of my 
prior projects, the Sleep No More Extension and the Chandelier, a Hyperinstrument designed for 
Death and the Powers.  These projects bring up some relevant issues for designing interactive 
technological systems for performance extension, particularly the question of how to strike a balance 
between human and computational control of these systems.   

4.2.1. How Do You Know It’s Real? 

One of the key issues in the practice of technologically-extended performance is the concept of 
liveness.  As Mark Coniglio says in The Importance of Being Interactive (Mark Coniglio, 2004), 
“What we love about digital media was precisely what made it inappropriate for use in a live 
performance—it is indeed always the same.”  A live performance changes along myriad dimensions 
night to night and moment to moment, subject to the state of the performer, the relationships 
between performers, even the relationships between performer and audience.  Timing varies along 
both large and miniscule scales, moments of emphasis and focus vary, details of position and shape 
vary, qualities of movement and voice vary.  In contrast to this, standard digital technologies (such as 
recorded or pre-composed digital music, digital video and projections, preprogrammed sequences for 
lighting or scenic movement or robotics) are generally stable, ideally identical on every 
repetition.   What characteristics do digital technologies need to have in order to integrate smoothly 
with live performance, enhancing rather than diminishing the ephemerality and variability that 
makes live performance compelling?  
 
The question of liveness is always present in an interactive work.  Particularly in pieces where digital 
media responds to or is shaped by live movement, we must ask the question: how do we know it’s 
real?  How is the piece different because of the interactivity?  For example, in the field of dance there 
is a long tradition of choreographing works to accompany a piece of music.  The musical piece is 
now generally played back as a recording, and the performers synchronize their movements to the 
music.  The piece can be constructed and choreographed such that the movement corresponds in 
intuitive ways with the sound that is heard; the performer raises his hand sharply on a particular beat 
of the music, or circles his torso to a certain swoop of sound.  Audiences are used to this music-
movement relationship: if the movement corresponds to the music at a given moment, typically this 
is because specific movement was choreographed as to correspond to that music, and rehearsed and 
precisely performed to line up temporally with that music.  When we switch to interactive dance-
music systems, we flip that situation on its head.  A particular beat in the music may only occur 
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because the dancer raises her hand sharply.  In what cases should we make this transformed 
relationship between performer and digital media visible to audiences (and how should we do so)?    
 
The sense of liveness can also be closely related to a performer’s experience of control over the system 
(or a visitor’s experience, in the case of an interactive installation).  How direct is the relationship 
between what the performer does and some manipulation of the result?  Does anything the 
performer does have some result?  Is it possible for the performer to have control over when 
something should change?  A strong and direct sense of control is exceedingly helpful in giving an 
installation a sense of liveness, and is beneficial in a performance context as well.  For example, in the 
second movement of Four Asynchronicities on the Theme of Contact (discussed in Chapter 3), while in 
actuality the content of the soundscape was determined at every moment by the qualities of the 
dancer’s movement, the transitions between different “regions” of the soundscape did not always feel 
under the performer’s control.  It was not clear when, in the course of a movement, the dancer 
would trigger new sounds to come in and out of the soundscape.  Due to this, the music and the 
movement felt less closely coupled, and thus less clearly interactive.   
 
One of the strongest signifiers of liveness through immediate control is a system’s reaction when the 
performer does nothing, and its reaction when the performer begins and ends units of activity (either 
physical or vocal).  Does the system resolve into one mode when the performer stops moving or 
singing, and immediately react again as soon as the performer begins a new gesture or phrase?   
 
As discussed in Chapter 2, technological systems can have many different relationships to a live 
performer.  In some systems, the output behavior is not influenced by a live performer’s input.  In 
others, the systems follow Rowe’s “player” paradigm, incorporating information from the live 
performer but behaving according to their own goals and intentions (Rowe, 2004).  In other 
instrumental models, the system follows the player in a repeatable, learnable, and controllable 
way.  The sensation of “liveness” of a particular technological system will vary depending on where it 
falls in this space of reactivity and interactivity.   
 
In systems that primarily have their own independent behavior, where the input of the performer is 
not clearly influencing the behavior of the system, it may be challenging to see that the system is 
changing its behavior live.  For example, take the case of a system that is randomly generating sonic 
material, without any external input or control from a performer.  Despite the fact that the sound is 
indeed being created “live,” differing from performance to performance, it is not intuitively clear 
how the experience of hearing one particular iteration of this material generated live would differ 
from hearing a pre-recorded version of this accompaniment.  An exception to this situation might be 
if there are human performers completely improvising their own material based on what they hear; 
in this case, the difference in sonic accompaniment from performance to performance might evoke a 
greater variety of reaction and focus from the human performers.  However, even in this case it may 
not be obvious that the computational system is changing live as well as the human performers.   

4.2.2. Complexity in Mapping and Liveness 

A performance or installation’s sense of liveness is closely related to the mapping strategies that are 
used to connect input data gathered about the performance to the resulting output media.  In 
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particular, there is a tension between the simplicity or complexity of a mapping and how clear it is 
that the output behavior is controlled live by a performer or visitor.  In a very simple one-to-one 
mapping, the connection may be clear, but may not be expressive.  In a very complex many-to-many 
mapping, there may be room for significant expression, but the relationship between action and 
interactive response may not be clear.   
 
In addition, even simple mappings require many questions to be considered to create interesting 
connections between a live performance and the digital extensions of that performance.  For 
example, take the basic premise for Death and the Powers, that the performance of a live opera singer 
needs to influence the visuals on the stage, the movement of the robots, and the sound in the 
space.  We might first start thinking about very basic mappings, tying the input from one sensor to 
the control for an output parameter.  Perhaps we connect the instantaneous height of the singer’s 
right hand to the height of a glowing element on the LED walls.  This is a straightforward one-to-
one mapping that, while perhaps not particularly interesting or expressively meaningful, is 
immediately responsive and is directly tied to the live performance.  It is important to note that even 
though there is a simple mapping in place, there are still a wide range of mapping decisions being 
made.  First, we are choosing to connect this particular input parameter (hand height) to one 
particular output parameter (the height of a visual element).  Second, we are explicitly or implicitly 
defining how we think the ranges of those two parameters should be related.  What are the lowest 
and highest inputs we think we’re going to have?  How high and low do we want the patch of light 
to move?  Do we want an increase in hand position tied to an increase in height, or to a decrease in 
height?  (That is, what direction is the mapping?)  Are the two numbers to be mapped linearly or 
exponentially or with some other function?  Do we always want the input to be used, or if the hand 
height is below a certain level do we want to treat that as a “hand down” baseline?  What amount of 
variation in the input comes from noise in the sensors that perhaps we might not want to directly 
translate onto the walls? 

4.2.3. If a Stage Manager Can Do It, She Should 

A major factor to keep in mind when selecting methods of technologically extending a performance 
is which kinds of interactive performance extension technologies are required to achieve the desired 
performance effect.  In particular, we should take care to select the simplest technological systems 
possible.  In this process, we should remember that artistically skilled humans are extraordinarily 
capable at performing certain kinds of sensing, recognition, and control tasks, and use technological 
systems for sensing and control only when that will enlarge the capabilities of the performance 
extension system in a positive and necessary way.   
 
Suppose we have a performance piece in which we have decided that every time a dancer raises her 
hand, the sound of a bell should be heard.  We could approach this as a straightforward gesture 
recognition problem, outfit the performer with wearable sensors or incorporate a computer vision 
system, train a system with many examples of hand-raising gestures, and set up the system to play 
back a prerecorded bell sound upon recognition of the trigger gesture.  An alternate method to 
achieve the same performance goal is technologically easier, quicker to implement, and more reliable: 
have a stage manager or other technical operator push a button to trigger the prerecorded bell sound 
when he sees that the dancer is raising her arm in the desired gesture.  People are extraordinarily 
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good sensors; they can anticipate movement, correctly evaluate the precise temporal relationship 
necessary between a gesture and the resulting sonic action, and quickly pick up on many variations 
of a gesture.  Particularly if the choreography is pre-composed, a human operator can know when 
the desired gesture is about to occur and react with great precision in timing.  Even in an 
improvisational situation, if the human operator only has a few elements to track, this situation is 
easily achievable.     
 
However, suppose we wanted to know more about the movement than simply that the dancer had 
raised her hand.  What if we wanted to track where she was in the process of raising her hand, and 
how quickly she was raising her hand, and how fluidly or jerkily she was raising her hand?  What if 
we wanted to use this kind of information to change what kind of bells were played, or how long a 
note would be struck, or how much a sound would be distorted?  Suddenly, we need to keep track of 
different kinds of continuous information, not only know a simple yes or no about whether the 
gesture has been performed.  We could give the stage manager a set of sliders that he could move to 
reflect his perception of these parameters.  However, as the number of variables increases, the stage 
manager is not going to be easily able to visually track and physically model all of those 
variables.  Layers of the nuance of the movement may be lost.  Here is a situation where it makes 
sense to introduce a computer system to track the movement, since it has the capability for analytical 
precision and temporal specificity. 
 
Similarly, even if we were only using specific gestures to trigger specific sounds in a constant 
relationship, what if we wanted to use a fairly large vocabulary of movement triggers and to have 
several performers improvising with that movement vocabulary?  This wealth of information would 
also quickly overload the cognitive processing capabilities of a human sensor (system operator), and 
might be another situation where a technological recognition system would be useful.   
 
Let us return here to the distinction between “gesture” and “quality,” as defined in Chapter 2.  A 
gesture is what is done physically or vocally, while qualities are how things are done.  In exploring 
mapping strategies for extension of physical performance, specific gestures are more likely to be 
mapped to discrete actions, while qualities have the ability to be mapped to continuous 
behaviors.  Especially in the continuous capture of high-level physical parameters such as movement 
qualities, a computational system can give us more flexibility and precision than a human could 
accomplish. 

4.2.4. Sleep No More and the Operator Model of Human-Machine Task Sharing 

I argue that a basic idea behind the balance of human and machine interaction in the extension of a 
performance piece is that we should let humans do what humans do well, and let machines do what 
machines do well.  In combination, this strategy has the potential to create the most robust and 
sophisticated systems.  I came upon a more complex example of this principle in my work on a 
digital extension of Sleep No More (SNM), the hit NYC show developed by the British theater group 
Punchdrunk.  This online extension of Sleep No More required a complex combination of computer 
systems (good at working with large amounts of data and complex rulesets) and human operators 
(good at improvisation and storytelling) to produce interesting performance results.   
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In Sleep No More, the audience dons masks and enters a 100-room warehouse space in Chelsea, 
meticulously decorated with a filmic level of detail and filled with a pervasive soundscape of music 
and audio.  As individual audience members make their own way through the space, they encounter 
performers telling a story primarily through dance and stylized movement that combines 
Shakespeare’s Macbeth with a variety of elements from Hitchcock movies.  A key aspect of this 
performance is the audience’s autonomy.  Each masked audience member is free to wander around 
the space as he chooses, to follow actors, to open drawers or read books, and to encounter his own 
subset of the show.  Since many different scenes take place in the building simultaneously, no one 
audience member can experience the whole show, only his own path.   
 
Punchdrunk came to us at the Media Lab in the fall of 2011 and proposed a collaboration.  They 
wanted to experiment with new ways for people to experience their production.  Since the setup 
required for the show is so elaborate, it is very challenging to tour the production.  Punchdrunk had 
tried filming their work in the past, but a static video was never able to capture the experience of 
what it feels like to be at a Punchdrunk show.  They wanted to try a new model, where we would 
pair remote audience members with audience members at the actual show, giving both people access 
to new story elements and a different way of experiencing the piece.  Working closely with 
Punchdrunk, we developed this new experience and ran a pilot version of it for five shows in May 
2012, connecting several pairs of audience members per show. 
 
We decided to create an online analog to Sleep No More to give remote audience members a way to 
have their own SNM experience.  We decided that this should not take the form of a head-mounted 
video from the onsite partner, as this would not give the online partner the feeling of autonomy that 
is such a crucial part of going to a Punchdrunk show.  Instead, we decided to create an online world 
with a variety of rooms, some of which had equivalents in the real space and some of which were 
spaces only hinted at by the live show.  We also chose not to represent these spaces by computer 
animation or detailed pictures.  When you are physically at Sleep No More, the space feels dark and 
infinite.  You could go anywhere and do anything.  There are no obvious limits and boundaries.  In 
attempting to figure out how to translate that impression of space onto a computer screen, we 
decided to take our inspiration from old text-based computer adventures.  With a black screen, a 
blinking cursor, and the sound of a river in your ears, you don’t know the boundaries of the space. 
You have to learn how to interact with the world you are experiencing.  We created this online world 
using sparse but evocative text, a continual soundscape experienced through headphones, occasional 
imagery, and moments of live and pre-composed video content.  The spaces and what could happen 
in them were influenced by the actions of the online participant, the behavior of the onsite 
participant, the two participants’ interactions, and the timeline of the real show.   
 
We also explored a variety of ways to connect the two partners, without disrupting the normal show; 
the other 395 audience members present every evening needed to have no idea that something else 
was happening to only a handful of participants.  The rules of the show therefore could not be 
changed: no speaking out loud, no pulling out a cell phone.  We decided to incorporate the onsite 
participant’s mask as one mode of communication, by enhancing the mask with bone conduction 
transducers to send messages and vibration into the participant’s head while leaving his ears 
free.  The mask was also augmented with various sensors (such as audio sensors, galvanic skin 
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response sensors, and heart rate sensors) to detect aspects of the onsite participant’s experience that 
could be communicated to his online partner.  The position of the onsite participant in the real 
world was also tracked.  Additionally, at times each pair of participants would be connected through 
special objects in the physical space (“portals”), such as a typewriter in a private room that could type 
what the online participant was writing, a robotic Ouija board that would spell out messages from 
the online participant while the online participant observed via a webcam, and a mirror that would 
write messages from the online participant in a ghostly hand. 
 

 
My own work for this project primarily focused on the content of the online world and developing 
an interactive fiction engine to set up rules for how the online world would be shaped by the online 
participant’s actions, the show’s timeline, and the onsite partner’s actions.   As part of this, we turned 
our narrative and descriptive content and rule systems into a 5000+ line script file in a custom 
markup language (JEML, created with Jason Haas) that held the descriptions of the spaces in the 
world, the items in the world, the characters that could be found there, and most of the logic about 
how online participants could interact with different parts of the world and what would happen 
when they did.  The script file also contained the rules of what imagery and videos would be shown 
when, in what style the text would appear, the material used for the sonic experience, and how one 
could move from location to location.  This script file additionally held information about when to 
connect participants to a particular portal and what actions would take place in the online world 
given the behavior of the real-world participant.  More broadly, this script laid out the rules of the 
story: the results of specific actions, with the preconditions and current states that would shape those 
results.  All of these things were considered to be part of the script rather than of our more 
generalized story system, since they were specific to the SNM storylines and to the material created 

	  
Figure 24. Web interface for the Sleep No More Extension 
Through sparse imagery and evocative text, participants were drawn into a virtual, text-based version of the world of Sleep No More.  
Graphics by Peter Torpey. 
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to convey those stories.  Our story system knew how to parse the rules and the descriptive content, 
but that parsing and rule-following was generalized away from any of the specific story behavior.  
 
One of the major challenges in this process was that we did not want the system to reveal itself to be 
a limited computer system.  We set the goal that we never wanted the system to say, “I don’t 
understand you,” or, “Please type another command using one of these keywords,” or “You’re not 
allowed to do that.”  However, there do not yet exist any systems that can perfectly parse 
unconstrained natural language and intelligently respond to anything that the user entered.  We thus 
decided to make a system that used a combination of computer and human intelligence in its 
responses.  This enhanced interactive fiction system incorporated a language parsing system and was 
programmed to know how to interpret a variety of commands and statements according to the file 
defining the specific world of the show.  Then, if the system did not know how to handle a specific 
statement made by the online user, it would send that statement onto a human “operator,” who 
could determine how to parse and respond to the statement, by giving the system commands that it 
knew how to interpret, and/or by writing responses live to the online participant.  Thus, the text 
world experienced by the online participant was a mix of pre-composed text stored with the rules of 
the system and additional bits of content improvised by an operator to keep the experience flowing 
smoothly.  The amount of interaction that an operator had with any particular online participant 
varied from participant to participant and throughout the course of the experience.   
 

I served as one of the two primary operators for this system 
during our pilot run.  The operator served as an 
improvisational actor, needing familiarity with the story 
content of the real and online experiences, the online world, 
and the actions available in the system.  Being an operator 
was a fascinating experience, as I was both moderator and 
storyteller, both helping to guide people in learning how to 
uncover existing narrative in the world and 
improvisationally creating additional narrative in the world 
as necessary (for instance, scripting a conversation when a 
user chose to talk to the lawyer in the bar, a character who 
briefly appeared in a video clip).  
 
The overall feedback on this project was highly informative, 
though also mixed.  While some online users found 
themselves deeply engaged by the experience (often more 
than they had anticipated), others did not feel sufficiently 

connected to their onsite partner or did not realize they had one.  The latency for the user in 
receiving certain human-generated answers was found frustrating by some.  Some onsite users were 
excited by the moments of special interaction and additional storylines, others were not sure they 
knew what was going on.  While the connection between the partners was not found to be as strong 
and clear as we had hoped, the relationship of the online partner’s experience and the human 
operator’s improvisational storytelling through the system was an unexpected and exciting discovery. 
 

	  
Figure 25. The Sleep No More Extension's 
operator interface 
During the run of the experience, the operators 
could see what video was sent to each pair of 
participants.  Through a web-based interface, they 
could interact with each individual pair through 
entering story commands, writing text to the online 
participant, and sending audio and visual content.  
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This project is especially interesting as a model of allowing both digital and human systems to play 
to their strengths in telling a story.  The digital systems could handle the overall story arc and world, 
as pre-programmed in JEML.  They could instantly recall long text descriptions, keep track of a 
complex model of the online world’s state, and display the state of the world to the online 
participant through a variety of media.  These systems did most of the “heavy lifting” of creating and 
modifying the online space.  This freed up the human operators to step in as necessary to parse 
complex natural language, to observe the engagement levels of the participants, and to help shape the 
story for an individual participant.  A human operator could not have created such an experience in 
real time without any pre-existing content, and the digital systems could not have run the experience 
by themselves without having to set obvious boundaries on what the online participants could 
do.  Through the combination of the two, a new kind of compelling story experience was created.  

4.2.5. The Chandelier: Continuous Control and Triggers 

The Chandelier from the opera Death and the Powers is another example where a combination of 
machine and human sensing proved to be both accurate and expressive.  This Hyperinstrument also 
serves as an example of combining continuous control of parameters with discrete triggering of 
events.  Death and the Powers features a scene where Simon Powers, having uploaded his 
consciousness into his environment, inhabits his large chandelier and in that form has a romantic 
and erotic encounter with his third wife, Evvy.  For the first half of the show, this chandelier hangs 
above the stage serving only as a light fixture.  In the duet between Simon and Evvy, it descends to 
the stage and closes around her.  When she touches its strings, she finds that it is a musical 
instrument.  As she caresses the strings, plucking and strumming and damping them, she controls 
layers of the sound in the scene.  
 
The scenic design of the Chandelier was created by Alex 
McDowell and Steve Pliam (Pliam, 2007).  Several prior 
Opera of the Future students had explored ways the strings 
of the Chandelier could mechanically generate sound, from 
bowing to robotically plucking to resonating with 
electromagnets at different frequencies.  However, the 
mechanical actuation was deemed impractical for a moving 
object.  We determined that the most important element of 
the Chandelier scene was how the character of Evvy could 
physically interact with it; we needed her movement to be 
clear and sensual, not constrained by the needs of playing a 
complex instrument.  We thus turned the Chandelier into a 
giant controller, with the emphasis on how it was played 
rather than how it could physically create sound.  My role 
was in designing the sensing and interaction for the instrument. 
 
In the original version of the Chandelier used in the premiere performances in Monaco, stretch 
sensors around groups of strings were used to detect Evvy’s interaction with the instrument.  As she 
strummed the highly elastic Teflon strings, they vibrated and stretched the sensors.  Evvy’s activity 
interacting with the strings shaped the levels of a pre-composed musical track, the sound of the 

	  
Figure 26. Evvy plays the Chandelier 
Patricia Risley as Simon Powers’ wife Evvy has a 
physical duet with Simon as the Chandelier, 
manipulating his voice and layers of sound by how 
she touches the strings.  Photo by Jill Steinberg. 
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Chandelier.  In addition, we determined that we wanted Evvy’s deliberate plucking of strings to 
trigger special samples.  Initially, I attempted to detect these special plucking gestures from the pure 
stretch sensor data.  However, I found that the sensor data was not sufficiently differentiated 
between plucks and other kinds of interactions as to reliably pick out the desired gesture infallibly 
and never have a false positive result.  Additionally, recognition of a plucking gesture, and thus 
triggering the associated sound, only could occur after the gesture had been completed.  The gesture 
was too short to predict given only the data about the string movement.  For such a swift action, this 
was not a sufficient reaction time; it introduced a momentary latency.  We needed a system that 
could not only reliably recognize a plucking gesture and distinguish it from other kinds of actions, 
but also one that could anticipate the plucking gesture so as to trigger the sound as the string was 
being plucked, rather than when it had been plucked.  The solution we ended up using was to add a 
human into the sensing loop.  The continuous dynamic movement was still detected by the 
computer system and used to shape the audio at each moment.  However, the key “plucking” 
gestures were identified by an outside technician who could then push a key to trigger the 
appropriate samples in sync with the performer’s gesture.  Given a technician with sufficient 
experience anticipating and following improvisatory movement, the resulting interaction is much 
more accurate and more immediately linked with the performer’s movement.  This instrument thus 
illustrates another combination of human and machine sensing to take advantage of the skills of 
each.  The nuanced detail of the playing was best captured by a technological system, but the 
recognition of a specific key gesture was best achieved by a human. 

4.3. The Creation Process of a Piece 
Another point of focus in designing technology for performance extension and for creating a 
performance that incorporates performance extension technologies is how those tools can integrate 
into existing processes for creating performances.  Ideal systems and methodologies should fit into 
the initial ideation process for a piece, be useful throughout the rehearsal process, and integrate into 
the final performance or installation.  The development process of a particular piece may proceed 
linearly through these stages, though frequently the sequence is more complex.  Ideas about a piece 
are refined and changed through the rehearsal process.  Initial performances of a piece may then lead 
back to modification of the ideas and more rehearsals.   

4.3.1. Ideation 

Often, the first stage of creating a performance or installation work is the ideation stage.  How does a 
production first start?  With an idea, with a concept that may be exceedingly specific or quite broad. 
Often, this idea or set of ideas is explored, extended, and refined even before there are any formal 
rehearsals.   
 
Early processes of exploring performance ideas may take the form of gathering evocative inspirational 
material, from sounds to stories to images.  In the ideation process of “image banking,” performance 
creators gather a variety of images, guided not by any specific content of the images but by which 
images they find interesting in relationship to the piece in development.  These collections of images 
can then be analyzed to see what they reveal about elements of the piece (color palettes, structures, 
moods, spatial relationships, similarities and variations, etc.).   
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Initial explorations for various kinds of performances or installations may include developing 
fragments of movement or gestural vocabularies, writing musical phrases, selecting or writing 
sections of text, designing sounds, testing interactions, sketching designs, storyboarding potential 
sequences of actions, shaping expressive arcs for sections of the piece, brainstorming structural 
frameworks, and envisioning particular moments of a piece. 
 
All of these ideation processes create different varieties of “sketches” of ideas, partial realizations that 
can be analyzed and explored.  Technologies for performance extension should lend themselves to 
such quick sketches in a similar manner.  They should support rapid experimentation with ideas to 
see what ideas remain interesting and what ideas do not feel connected to the goals of the 
performance or installation.  Can one create a quick mapping to test a particular idea about a 
performance, without having to take much time or put in much effort for an idea that is merely an 
initial exploration? 
 

4.3.2. Rehearsal 

At the beginning of the rehearsal stage, a work can be in many different stages of development.  For 
a major opera or theatrical production, the script or score likely exists at the beginning of rehearsal, 
as well as initial or well-developed scenic, lighting, and costume designs.  The director will often 
have made many decisions about blocking and character development, and developed her overall 
vision of the production.  For a musical production, a musician or conductor will generally begin 
rehearsal with a musical score.  The details of expression and interpretation of that script or score 
come both from ideas that are brought into the rehearsal process and from ideas that are discovered 
in the course of the rehearsal process.  For a dance production, some choreographers will come into a 
rehearsal process with particular movement sequences or vocabularies already created, while others 
will prefer to develop movement content directly on their dancers.  Others come in with fewer 
preconceived ideas about the content, movement vocabulary, or story of a piece, aiming to discover 
those elements through a process of improvisation with the performers.  Rehearsal processes for some 
experimental musical compositions may proceed similarly: the composer may bring in some ideas for 

	  	  	   	  
Figure 27. Example inspirational image banks 
The image bank on the left was designed by the author in the development process of Crenulations and Excursions, discussed in 
Chapter 6.  The image bank on the right was created by the author in collaboration with Peter Torpey and Alex McDowell for Death 
and the Powers. 
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musical content, particular musical phrases, or particular sonic exercises, and develop more material 
through a process of improvisation and exploration with the musicians and the ideas.   
 
In all cases, the material of the performance will be developed, shaped, and continually refined 
throughout the rehearsal process.  The performance-maker (director, composer, choreographer, 
installation designer, etc.) must remain open to observing what is actually going on in the space with 
the performers, and to flexibly adapting his ideas and direction as inspired by the performers.  In The 
Empty Space, director Peter Brook relates the story of his first major directing role, as director of 
Love’s Labour’s Lost (Brook, 1996).  Prior to the first rehearsal, he meticulously and painstakingly 
plotted out paths for the forty actors in a scene where the Court first enters.  At the rehearsal, he 
gave each actor the directions for his or her first stage of the entrance, and instructed everyone to 
enter as directed.  However, Brook immediately saw that the movements of this mass of people were 
very different from what he’d envisioned:   
 
“As the actors began to move I knew it was no good.  These were not remotely like my cardboard 
figures … we had only done the first stage of the movement, letter A on my chart, but already no 
one was rightly placed and movement B could not follow … Was I to start again drilling these actors 
so that they conformed to my notes?  One inner voice prompted me to do so, but another pointed 
out that my pattern was much less interesting than this new pattern that was unfolding in front of 
me -- rich in energy, full of personal variations, shaped by individual enthusiasms and lazinesses, 
promising such different rhythms, opening so many unexpected possibilities … I stopped, and 
walked away from my book, in amongst the actors, and I have never looked at a written plan since” 
(Brook, 1996). 
 
The rehearsal process for performance works presents particular challenges for incorporating 
technology seamlessly.  There are a number of features of a rehearsal process that are relevant to 
analyze in this context: 

• Creative ideas are tested, developed, and refined during rehearsal. 
• Modifications to the show are made rapidly. 
• Rehearsal time is precious. 

 
As described above, the rehearsal period is generally the time when the majority of a piece is 
developed and created.  The director or choreographer or conductor may come in with various levels 
of prior research and development and different amounts of direction already determined.  However, 
during the live process of having the performers together in a space, the performance-creators must 
be flexible and open to the ideas that emerge during rehearsal, whether that requires slight 
modifications or complete transformations of previously determined ideas.  
 
In rehearsal, a director or choreographer is used to being able to change many things 
instantaneously, to give directions about things to try and immediately see the results of those 
directions.  A director should be able to say something like, “Let’s start again from Ed’s entrance, 
and this time let’s see what happens if you enter from upstage left and come in much more 
quickly.  Sarah, you need to take a little longer before you respond to him, and on your line cross 
downstage left.”  In a manner of seconds, the performers reset and begin the scene again with these 
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modifications.  For any performance extension technology to be easily integrated into a rehearsal 
process, it needs to be able to make desired modifications on a similar timescale with similar ease.  It 
would be unacceptable for the director to make a similar request of the interactive technological 
systems and the technologists to respond, “Of course, as soon as we can stop all of the running 
systems and change that code, we can have that working for you.  Perhaps by tomorrow’s rehearsal?” 
 
Of course, even standard technological elements in the theater, such as stage lighting, scenic 
elements, or audio systems may have several different timescales of response.  Making two lights 
brighter may be a change that can be quickly accomplished before re-running a scene; adding a light 
in a new location and changing its color may require some time to accomplish (unless the 
production is equipped with a sufficient number of moving lights).  Similarly, different kinds of 
alterations to an interactive system may require different amounts of complexity and time to 
accomplish.  However, the swifter the modification process can be, the more thoroughly the 
interaction can be designed in the course of the rehearsal process and integrated into the production.  
 
Additionally, there may or may not be additional rehearsal 
time specifically set aside for incorporating, tuning, and 
fine-tuning technological elements.  It is highly beneficial 
for these activities to be done synchronously with other 
aspects of the rehearsal process.  For example, changing the 
ranges of how much a particular performer’s behavior affects 
a visualization should not require stopping and restarting 
that visualization, but should be adjustable mid-scene with a 
minimum of disruption to the rehearsal.   
 
The design of the systems for Death and the Powers was 
highly influenced by the demands of a traditional opera 
rehearsal process.  We designed all systems, including the 
Disembodied Performance System, to be able to rapidly test 
and iterate on new ideas.  We knew that the majority of our development would be done mid-
rehearsal, and thus that our systems needed to have no distinction between a “composition mode” 
and a “performance mode.”  All of the opera control systems, from the robot choreography design 
toolkit to the Disembodied Performance mapping system to the visual rendering system, allowed 
changes to be made to mappings, visualizations, or robot choreography and have the results be 
immediately seen without the need for a compilation process.    

4.3.3. Performance or Installation 

Once a piece has been rehearsed and developed, it will eventually be performed (or, in the case of an 
interactive installation, opened to the public).  There are various properties of a live performance or 
installation scenario that place particular challenges and demands on any performance extension 
system. 
 
First, it is necessary that performance augmentation and extension systems run in real time or as 
close to real time as possible. The time period in which audiences will perceive two events happening 

	  
Figure 28. Rendering system for Death and the 
Powers 
The visuals and performance mappings were 
shaped during the rehearsal process, using systems 
that could be modified and run simultaneously.  
Photo by Matt Chekowski.   
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“simultaneously” is very brief.  For example, Levitin et al. found that the visual appearance of a 
person striking a drum and the audible sound of the drum needed to be within around 40ms of one 
another for observers not to detect the asynchronicity between the events (Levitin, MacLean, 
Mathews, & Chu, 2000).  The majority of analysis algorithms must be performed “on line”; there 
are few performance scenarios where it would be feasible or desirable to capture some performance 
information, send it to an algorithm that takes a few seconds or a few minutes to do some 
processing, and then return the results.   
 
Second, systems for a live performance or installation scenario must be consistently reliable.  The 
nature of live performance is that the show begins on a particular day at a particular time.  At that 
moment, all systems must be operational.  They must stay fully and reliably operational throughout 
the entire show.  Similarly, in an interactive installation, the experience must be working correctly 
whenever a new visitor enters the installation.  This differs from movement or voice analysis systems 
that are generally intended for a live demonstration, where there is some flexibility in presentation if 
portions of the system are not working as intended.  In a performance or installation, one does not 
have the opportunity of going back and trying something again if it did not work properly the first 
time.  
 
Third, systems must be able to adapt to variation in performance.  Humans are not robots; every 
night’s performance will be unique and individual.  Performance extension systems generally seek to 
take advantage of this moment-to-moment variation.  However, it is also important to note that 
systems need to be flexible enough to account not only for intentional, expressive variation but also 
for mistakes in a human performance.  What happens when a performer accidentally skips a portion 
of the choreography, or enters late, or sings the wrong phrase at the wrong time?  What about when 
a performer momentarily forgets what is supposed to be happening?  Are the systems for 
performance extension flexible enough to still work with this level of variation from the expected 
performance?  For an example, let us imagine a standard score-following system that is playing an 
accompaniment along with a live singer.  What is the behavior of the system if the singer misses a 
note, or jumps to the next phrase inaccurately?  How much can the system compensate with 
behavior that falls in a range that is desired and expected?  “The show must go on,” and the 
technology within the show must go on as well.   
 
Similarly, performance systems and the design of extended performances should be able to 
compensate for technical problems.  How can a system fail gracefully when unanticipated problems 
arise?  For example, what if the wireless wearable sensors on a performer run out of batteries and stop 
transmitting data?  What is the default behavior of the system when it is no longer receiving the live 
performance data?  This is both a system design question (are there default mappings that can be 
activated, or features allowing human operators to step in as necessary to adapt for an unexpected 
technical situation?) and a performance design question.  What should be the default behavior of a 
system and the digital media extensions if they are not receiving live performance input, or if there is 
some other technical error?  Should some reactivity be “faked” via a human, or is there some non-
reactive mode the system should be placed in that will still look or sound interesting?  Is there a way 
to possibly “play back” recorded data from another performance as the output?  Does all of this 
information need to be controlled via the same system that does the interactive mappings, or is there 
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an easy way to “turn off” that system and take over with another system designed for live technician 
input?  For example, in Death and the Powers, when the performer is not providing performance 
input into the visual system, the majority of the visualizations are completely or almost completely 
static images.  We had some external control over parameters of the visualizations via a TouchOSC 
application on an iPad, so if something went wrong with the data capture in a performance we could 
switch from live data from the mapping system to manually-manipulated visual control 
parameters.     
 
A last principle to note about live performance or installations is that the lifespan of the experience 
may be quite varied.  Some works may be presented only once, while others may run for months or 
years.  Concepts of reliability and failing gracefully will also be relevant on these longer timescales.  
Other important aspects may be how easy a system is to debug or replace components, if something 
starts to fail, as well as how experienced of an operator is necessary to run the system. 

4.4. The Expressive Performance Extension Framework for Machine Learning in 
Performance Extension Systems 
The principles discussed so far for movement and vocal extension in performance and installation 
contexts serve as helpful guidelines when attempting to integrate machine learning techniques into 
these contexts.  This section lays out a process for creating a work that uses machine learning 
techniques to perform expressive performance extension, and presents many of the key questions 
that are relevant both for the creation of a technologically-extended piece and for the creation of 
systems to support performance extension.  The Expressive Performance Extension Framework 
presented in this section prioritizes the representation of movement and vocal expression as 
continuous trajectories through continuous expressive spaces defined by semantically-meaningful 
parameters, rather than as discrete categorization into semantic descriptions of expression.  It seeks to 
locate the majority of the creative process in the mappings between high-level descriptions and 
output control.  It gives the user control over these input-to-output mappings, while providing high-
level descriptions of input as more intuitive handles for creating mappings.  Additionally, it has an 
intrapersonal generalization goal rather than an interpersonal generalization goal: the aim is for the 
framework and systems to be useful for each individual artist in an individual way, rather than 
creating one fixed set of movement and voice qualities and attempting to apply that set to all creative 
scenarios.   
 
Two key features of the Expressive Performance Extension Framework are its focus on expressive 
qualities of movement and the voice, and its use of abstract, high-level parameters for describing 
those qualities. I agree with Antonio Camurri (Ricci et al., 2000) that the majority of expressivity 
communicated through movement is conveyed by spatio-temporal characteristics of the movement, 
rather than by syntactic meanings of particular gestures.  In particular contexts, it may be useful to 
perform classification or recognition of certain movements or vocal gestures either before, after, or 
alongside the analysis of continuous expressive parameters.  This framework will allow for the 
integration of such classification steps; however, it particularly focuses on the analysis of movement 
along continuous parametric axes.  Regardless of the particular parametric space defined for a 
particular artwork, the outputs of the system into any particular expressive space are continuous 
values, not classification; the primary goal is not to label a movement “staccato” or “angry,” but to 
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find a position on a set of continuous expressive axes that are meaningful (in the particular context 
they are used) for controlling output media.  I describe specific sets of expressive axes developed 
through my research as a useful starting point for movement or vocal analysis, but also incorporate 
methodologies for selecting a particular set of axes for a given piece. 
 

This framework incorporates machine learning techniques 
for identifying a performer’s location in these kinds of 
expressive spaces.  While an association from sensor data to 
a position on or trajectory through a set of expressive axes 
could be created by hand, there are numerous advantages of 
machine learning techniques over hand-coding associations.  
The first of these is speed and flexibility in developing new 
connections between inputs and an expressive space, 
changing expressive spaces, or changing sensing systems.  
Rather than writing a new (and likely not reusable) piece of 
code for every set of input sensing systems and abstract 
parameter spaces, machine learning allows the same code 
structures, given new example data, to work for a variety of 
contexts.  This allows users with less coding background to 
create these mappings from input data to intermediate 
expressive spaces.  Perhaps even more importantly, using 
machine learning techniques means that a user does not 
have to know the exact relationship between the data and 
the desired expressive space, and does not have to manually 
determine that relationship through a laborious empirical 
process.  In many expression analysis tasks, it may not be 
entirely clear which features of the input data relate to the 
desired expressive space.   

 
In the Expressive Performance Extension Framework, the process of working with machine learning 
of abstract parameters can be conceptualized as four layers of information: input data, expressive 
features, high-level parametric spaces, and output control parameters.  Input data is transformed into 
expressive features via feature computation, expressive features are transformed into points in high-
level parametric spaces via machine learning, and information about high-level parametric spaces is 
transformed to output control parameters via manual mapping processes.   
 
The actual process is actually much more complex than this, because this sequence of actions can 
happen at any point in the lifecycle of a piece.  The interactions and associations between each of 
these four layers are developed throughout the design and rehearsal process of a performance or 
installation, and can potentially be shaped by later performance input as well. 
 
The remainder of this section outlines a multistep process for creating a performance piece that 
integrates machine learning techniques for recognition of abstract expressive parameters.  The steps 
of this process include: developing the expressive goals of the performance or installation; choosing a 

	  
Figure 29. Four-step process for expressive 
control 
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set of expressive qualities that seem relevant to a particular performance work; selecting methods of 
sensing for data capture; computing potentially meaningful features from sensor data; collecting 
training data examples; selecting, tuning, training, and testing an algorithm for machine learning; 
and mapping the analyzed movement parameters to output control.  These steps are not necessarily 
performed linearly, but are generally explored and refined somewhat simultaneously.  Developments 
in one stage may reveal modifications to be made at another stage: for example, if the qualities 
learned by pattern recognition algorithms are not sufficiently subtle, a sensor that collects more 
nuanced information may need to be added to the process. 
   

Step 1: Determine Goals of the Performance or Installation 

The first stage in any integration of technology into a performance or installation should not have 
anything to do with the technology.  Before deciding what the technology is or how it should work, 
it is most important to find some creative goals and core ideas for the work.  These ideas will help 
shape everything that comes afterwards.  What is the heart of the project?   
 
In our work in the Opera of the Future group, the heart of a project is almost never a specific 
technology or use of technology, but an imagined experience that we then try to find the technology 
to create.  For example, the early development of Death and the Powers began with the idea of a 
“choreography of objects,” the question of how the movement of objects onstage could help tell a 
musical story in a new way.  The show was to be an opera, defined as a music-driven story.  As initial 
ideation and development of the piece progressed, the creative team developed the story of Simon 

	  
Figure 30. More complex model of expressive control 
The four-layer model presented in Figure 29 is relevant at many different stages of the development of a piece.   
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Powers and his design of the System as a way to live on in the world after his physical body dies.  So, 
we had this story about a man who becomes his house, which we interpreted to mean the theatrical 
environment.  The technical decisions that came after that tried to be in service of this story.  What 
does it mean for a set or an entire theater to be expressive like a human?  Could we extend a live 
singer’s performance to somehow shape the behavior of the whole environment?  The Disembodied 
Performance System was developed in response to these questions and story goals.   
 
Another example comes from the development of the Vocal Augmentation and Manipulation 
Prosthesis, discussed in Chapter 3.  This interactive controller for a singer arose from two core ideas: 
an opera character who was supposed to have a prosthetic arm that made him specially enabled, and 
the image of “grabbing” a sung note with the pinch of two fingers.  These core ideas guided the 
technological choices and interactive implementation of the glove.  How could the instrument create 
a sense of wonder about the performer’s extended capabilities?  What kind of a movement 
vocabulary would be clear in the context of an opera production?  What kinds of sensing and gesture 
recognition technologies would be appropriate for detecting relevant aspects of that movement 
vocabulary?  How should the sensor information be mapped to sonic control?   
 
A story discussing the opposite kind of creative process comes from a dance and technology user 
group mailing list in 2001.  An announcement was posted about a new performance in which 
dancers would be located in two different cities, each wearing motion capture suits.  The data from 
their performance would be used to control virtual avatars located in a virtual shared performance 
space.  A response to the post summarized a major potential issue of technology-augmented 
performances: “I’d rather hear about the artistic content and motivation for using the technology, 
not just the technology itself.  What is the content, exactly?” (Dixon, 2007, p. 6).  It is not enough 
for a performance work to be “about” the use of a particular technology; the technology should be a 
tool to create a new kind of experience.  
 
Different types of questions may be applicable while developing the core creative ideas and structure 
of a performance or installation: 

• What is the story to be told by this work? 
• What is the goal of creating this work? 
• What ideas are explored and conveyed with this piece? 
• What is the desired experience of the audience or of a participant? 
• Are there particular images or moments that are envisioned to occur in the piece? 
• What is the narrative or expressive arc of the piece?  
• Is there a larger thematic or experiential context for the performance or installation? (What is 

the space or spaces where it is located?  Is it part of a series or presented with other 
experiences?) 

• Who is the expected audience?  What is their skill level, in the case of an installation? 
• How long is the experience?  How might that length of experience vary? 

 
While not all of these questions will be relevant for any individual piece, they are examples of 
broader conceptual and structural elements that have nothing to do with specific technologies and 
yet will be key guides for the choice and use of specific technologies.  
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Step 2: Select Desired Expressive Qualities 

Regardless of how movement or voice will be sensed or what pattern recognition process will be 
implemented, it is necessary to define the expressive space that a system is to learn. A major goal of 
this research is the transformation of sensor data into meaningful high-level parametric structures 
incorporating multiple expressive axes, each with a normalized range.  The sensor input, ranges of 
parameters, and desired expressive spaces will vary between different pieces and different 
performance-makers.  Thus, an ideal system should let a user demonstrate examples of movement or 
voice that form particular points in an expressive space, and automatically model the relationships 
between input data parameters and that continuous expressive space.  A user may also want to define 
their own high-level axes, in addition to suggested parametric structures. 
 
For different performance-makers, the kinds of aspects of movement that are expressive may be very 
different, as may the definition of “expression.”  Modern dance choreographers Martha Graham and 
Merce Cunningham are examples of choreographers who saw physical expression in very different 
ways.  Graham’s technique is about expressing emotion, with definitive gestures corresponding to 
particular emotional states.  Her guiding choreographic principle of contraction and release is 
designed to show a direct correspondence between body movement and human emotion.  For 
Cunningham, expression comes from the fact that the human body is in motion, but his motion is 
not designed to express something specific.  Cunningham’s choreography incorporates aleatoric 
techniques, attempting to keep a focus on pure movement.  Graham’s gestures have specific narrative 
and semantic meanings, while Cunningham’s gestures focus on the expression intrinsic to rhythm 
and movement.  Different sets of axes for defining movement qualities might be more or less useful 
in each of these cases.  For a Cunningham piece, it is not so relevant to look at affective parameters 
describing movement, while for a work by Graham, it would likely be very important to do so. 
 
In determining the quality axes to use for analysis of specific performance input, it is important to 
consider the relevance of temporal, spatial, dynamic, and emotional parameters in describing that 
input.  As an example, let us say that the input is sensor data from a solo ballet dancer, performing 
choreography that is inspired by the physical properties of fluids in motion. As this is a non-narrative 
piece without gestures intending to represent specific emotions, a set of expressive axes to describe 
this movement might include parameters like pace (slow to quick), fluidity (legato to staccato), scale 
(small to large), continuity (continuous to disjointed), intensity (gentle to intense), and complexity 
(simple to complex).  These orthogonal axes can be combined to form a high-level expressive space. 
Positions in and trajectories through that space can then be mapped to control parameters for 
multimedia.  In all cases, the outputs of the pattern recognition algorithms should be continuous 
values, not classification.  To extend the possibilities of expression recognition systems even further, 
systems can analyze temporal behavior not only to determine the performer’s current point in an 
expressive space, but also to recognize particular trajectories or features of trajectories through 
expressive spaces. 
 
What kinds of parameters may be most useful in describing the movement or vocal qualities to be 
used in a piece?  I have suggested a set of qualitative parameters that are relevant for describing both 
movement and vocal quality (intensity, scale, energy, complexity, fluidity, and rate), but there are many 
other kinds of parameters and models that may be relevant for a particular piece or a particular 
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performance-maker.  Given our analysis of different frameworks of movement and voice in Chapter 
2, it seems likely that most sets of expressive parameters will at least need some measurements of 
energy and some measurements of how the input relates to time.   
 
In this framework, I suggest that sets of expressive parameters should be selected to be reasonably 
orthogonal.  This means that the parameters do not depend on one another, that changing the value 
of one parameter does not necessarily affect the value of another parameter.  For example, take rate 
and fluidity.  It is possible to perform fluid or jerky motions at many different rates.  These 
parameters are likely conceptually orthogonal.  If one examines concepts of rate and tempo, however, 
it is likely that these parameters represent slightly different features of the metric of “speed”; 
increasing the tempo of movement will likely affect the rate and vice versa.   
 
While parameters are semantically and conceptually orthogonal, they are likely in practice not 
completely independent. Values of Parameter A do not depend on values of Parameter B at a given 
moment; however, the current value of Parameter B may influence future values of Parameter A.  
Changing one parameter may not directly impact the value of another parameter, but may affect the 
ease with which that other parameter can be changed in the future.  For example, if one is moving 
with a high amount of energy, it may become more difficult to move slowly while maintaining the 
amount of energy in the movement.  It is still possible to move slowly and energetically, but it is 
more challenging than moving quickly and energetically.  This parameter space can perhaps be 
visualized as a set of springs pulling on a moving point, where each spring is an expressive parameter 
and the point is the user’s current expressive state.  As the location of the expressive state changes in 
relationship to the spring endpoints, moving in one direction will make it easier or harder to move 
in other directions based on the relative strengths of the springs.  

Step 3: Select Sensors 

As one develops a list of expressive parameters about movement and voice, one can begin to select 
sets of sensors to collect data from the live performance.  Different types of sensors and sensing 
strategies will be more or less useful depending on the desired information to be gathered from the 
input and the limitations of the particular sensing setup.   
 
Benford’s framework of “expected,” “sensed,” and “desired” actions is an interesting model for 
exploring sensor-based interactions, especially for applications with more creative or exploratory 
purposes, rather than applications designed for the user to perform a specific, known set of tasks 
(Benford et al., 2005).  In this framework, expected actions are those which the user is likely to do or 
might be expected to do.  Sensed actions are those that the given sensor setup can properly 
detect.  Desired actions are those that the interface designers want users to perform to control the 
interface.  Branford points out that the combinations of these actions (for example, actions that are 
desired but cannot be sensed) provide either limitations to be overcome or opportunities for 
designers to add additional creative functionality.  These distinctions can be useful in examination of 
the capabilities of different sensing systems. 
 
Several different popular performance sensing strategies are presented here with some of their 
strengths and weaknesses.  Additionally, features of two of these sensor strategies, wearable 
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movement sensors and computer vision systems, are discussed in more depth to demonstrate 
examples of some of the aspects of a performance or installation to be considered when selecting 
sensors.   
 
Using frames from a video camera as sensor input is a popular technique in gesture recognition 
systems (e.g. Avilés-Arriaga & Sucar, 2002) and has often been used for using movement to control 
music (e.g. Modler et al., 2003) or in interactive dance performances (e.g. Ricci et al., 2000).  These 
systems require no technology to be worn by the performers, are unobtrusive, and can be relatively 
inexpensive (depending on the cameras used). 
 
Cameras that cover the entire stage space can also be useful for obtaining movement information 
about all of the performers onstage, though it is more difficult to locate specific individual 
dancers.  It is also challenging to follow movement when dancers are temporarily occluded from the 
camera’s view.  Similarly, a vision-based system will have difficulty tracking individual dancers 
through a space if the paths of two dancers cross, unless there are constraints on the costume design 
(such as distinct colors) that make individual dancers be quite visually distinguishable. 
 
One major issue with video input is that these recognition systems are generally not robust under 
varying stage lighting or with different backgrounds.  As (Wilson & Bobick, 2000) state, “Lighting 
conditions, camera placement, assumptions about skin color, even the clothing worn by the user can 
disrupt gesture recognition processes when they are changed in ways not seen during 
training.”  While the stage setup can be controlled to attempt to provide optimal separation between 
dancer and background, this may result in limitations on the stage, costume, and lighting design for 
the performance, or complexities incorporating the machine learning algorithms into the rehearsal 
process.  If the conditions under which this piece will be rehearsed and under which the expression 
recognition systems will be trained are not identical to performance conditions (different outfits 
worn by dancers, a different space, different lighting conditions), this poses a significant challenge to 
vision-based recognition systems.  The only meaningful input features that can be learned may be 
changes of parameters, rather than particular parameter values.  
 
A different strategy for movement sensing is to detect features of the dancers’ movement through 
wearable sensors, such as Inertial Measurement Units (IMUs) such as accelerometers and gyroscopes, 
located on several points of the body.  Data from those sensors can then be transmitted wirelessly to 
an expression recognition system for processing.  Benbasat describes many of the advantages of 
working with IMUs over vision-based systems (Benbasat, 2000), including that IMUs need less 
processing power than camera systems and do not suffer from issues such as occlusions.  These 
wearable sensors also allow for spatial invariance in movement capture, which is an important aspect 
in movement and movement quality recognition (Nam & Wohn, 1996).  A sudden, heavy 
movement, or a particular gesture, ought to be detected the same no matter where the performer is 
located on the stage or what direction a performer is facing. 
 
One difficulty with wearable sensors is that they send continuous data whether or not a performer is 
onstage.  For the sections of the piece that consist of a limited number of performers, we may need 
additional control data to the expression recognition algorithms to say which sensor inputs ought to 
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be used and which ignored at any given time.  Additionally, sensors such as accelerometers and 
gyroscopes do not easily allow us to have a sense of an individual dancer’s location on the stage.  If 
that sort of data is needed to be able to position any part of the interactive visual design, there will 
need to be additional or different systems in place to obtain that kind of information. 
 
In an extended performance context, an interesting distinction can be made between sensors that 
capture aspects of a performance that are under the conscious control of a performer and those that 
capture aspects of the performance that are unconscious or outside the control of a performer.  The 
latter category includes the majority of psychophysiological sensors, such as galvanic skin response 
sensors, heart rate sensors, and brain wave sensors.  Measurements such as galvanic skin response 
rarely reflect the emotional experience that a performer is trying to convey, but are more likely to be 
affected by the performer's internal experience (stress about a challenging musical passage is coming 
up or a mistake, for example) (Nakra, 2000).  In Death and the Powers, this was a primary reason 
why we avoided psychophysiological sensing.  We wanted to capture and transform the experience of 
the character, the expressive behaviors that our actor was deliberately using to convey the character's 
personality, emotions, and experience.  We did not want to reproduce the emotions of the actor as 
distinct from the emotions of the character.  Our use of breath sensing falls somewhat between these 
two: in opera, the arc of the singer's breath while he is singing is a controlled and deliberate aspect of 
his expressive performance.  However, when the singer is at rest, his breath may relate to the 
character's emotional expression, but more likely is shaped by his own physical needs. 
 
In certain performance contexts, shaping multimedia through aspects that are not under a 
performer's control may be desirable.  There is certainly a long history of performance augmented 
through measuring physiological or psychophysiological metrics of the performers.  However, in the 
majority of extended performance work, performance-makers want a performer to be able to  
deliberately control the digital media through his conscious behavior, or at least to have the digital 
media reacting to aspects of the performer's behavior that are under his conscious control (even if 
that conscious control is directed toward the goal of producing a musical phrase or a movement 
phrase in a particular way, rather than toward a particular shaping of the digital media).  In an 
interactive installation, having the behavior of the installation remain at least semi-controllable by a 
participant's deliberate actions will add to a sensation of “liveness.”  If an environment is measuring 
my brain waves and responding accordingly, am I aware of my own brain waves?  Can I affect my 
own brain waves enough to experience the interactive nature of the experience?  
 
A few common sensing strategies for movement and the voice are summarized in Table 1 and Table 
2 with some of their advantages and disadvantages.  
 

Type of Sensing Advantages Disadvantages 
Handheld/Stand-
mounted microphone 

-If highly directional microphone is 
used, less susceptible to noise from 
distant sources 
-Visually signals that the vocal 
signal is being captured 
-With multiple microphones, allows 
separation in sensing from different 

-If handheld, limits use of participant’s 
arms 
-If stand-mounted, requires participant 
to stay in one location 
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Table 1. Selected techniques for sensing the voice 
 

sources 
Wearable wireless 
microphone 

-Allows flexibility of movement 
throughout a space  
-Comfortable and keeps hands free 
-Less susceptible to noise, as 
positioned to capture the desired 
vocal signal 
-With multiple microphones, allows 
separation in sensing from different 
sources 

-Requires participants to be fitted with a 
microphone 
-If participants will be moving 
vigorously, can be constraining and will 
pick up sounds of movement 
-May pick up interference from other 
wireless devices nearby such as radios 

Microphones in the 
space 

-Can be located discreetly, 
participants need not know 
microphones are in place 
-Does not require participants to 
wear any devices 
-Can cover a wide space with 
sensing 
-Keeps a participant’s hands free 
-Can capture information from 
many participants at once 

-Susceptible to noise, will pick up all 
sound in the space in addition to the 
desired vocal signal 
-Signal quality may vary depending on 
participant’s proximity to a microphone 
-Difficult to distinguish between 
different sources, if there are multiple 
participants 

Type of Sensing Advantages Disadvantages 
Cameras/Computer Vision -Off-the-body sensing, so does 

not require outfitting 
participants with sensors 
-Potentially low-cost 
-Unobtrusive 
-Can cover a wide area for 
sensing 

-Susceptible to changes in lighting 
-Susceptible to occlusion 
-Challenging to distinguish different 
participants 
-Data varies with a participant’s 
position in relationship to the camera 
(distance from camera, angle in 
relation to camera, etc.) 
-Can require high processing power to 
do tasks such as figure-tracking 

Kinect -Off-the-body sensing, nothing 
to wear 
-Built-in skeleton and hand 
capture  
-Separation of body from 
environment 
-Separation of multiple 
participants 
-Knowledge of participant’s 
distance from camera allows 
calibration for data variation 
with position 

-Limited field of accurate sensing for 
an individual Kinect 
-Sensing distorted beyond ideal range 
-Primarily gross movement captured 
(hand not fingers) 
-Susceptible to occlusion, changes in 
lighting, and alternate angles 

Commercial movement 
capture systems 

-Many points on the body 
precisely tracked 
 

-Require markers to be worn on the 
participant 
-Large amounts of data may be 
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Table 2. Selected techniques for sensing movement 
 
In deciding on what sensing strategies to use, it may also be useful to consider some properties of the 
input information that the sensors are desired to capture, as well as the general context of the 
interactivity.  Table 3 outlines some of these properties. 
 

challenging to process 
Wearable sensors 
(accelerometers, flex sensors, 
gyroscopes, etc.) 
 

-Ability to track fine details of 
movement and small movements 
(depending on location of 
sensors) 
-Resistant to changes in lighting 
and background, occlusion of 
performers, and changes in 
directionality 
-Can easily associate data with an 
individual even with many 
performers 
-Can require less processing 
power than vision-based systems 

-Require participants to wear 
specialized garments or accessories 
(cannot simply walk into a space and 
be recognized) 
-Cannot generally track position 
-Send data continuously 
-Potentially an obtrusive or limiting 
design element in costumes 

Electric Field/Capacitive 
Sensing 

-No need for wearable items 
-Cheap hardware  
-Fast and requires low processing 
power 
 

-Significant variation in data for each 
person  
-Highly variable with user’s position in 
relation to sensor 
-Ambiguous data: can’t be sure what is 
generating capacitance  
-Exponential decrease of resolution 
with distance   
-Data highly susceptible to influence 
from other people and conductive 
items in the space  
 

Interaction with Sensor-
Filled Objects 

-Allows the use of many sensors 
without requiring preparation 
steps for participant (as with 
wearables) 

-Requires the use of an object, which 
may or may not be appropriate for a 
given performance or installation 
context 

Relevant property of 
input or interactive 
context  

General questions Specific examples 

Scale of input to be 
captured 

What are the maximum and minimum 
values of the input?  What is the 
softest/smallest input that should be 
picked up?  What is the largest/loudest 
input that should be captured?  

Can the microphone pick up the 
softest sound that will be sung? Does 
the movement sensing system cover 
the entire space in which sensed 
movement should occur?  
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Table 3. Relevant properties of input for selecting sensing strategies 
 
Another important aspect in sensor selection (as well as sensor data processing) is the role of silence, 
stillness, or “not captured” movement or voice.  Is it desired that every action that the user takes 
within a room is captured and processed, or should there be some region of interest within which the 
system is active, and other regions where a user can rest?   
 
Multiple sensing strategies can also be combined for greater sensing accuracy or variable sensing 
modalities in different areas of a space.  For example, technologies such as RFID sensing can be used 
for sensing the presence or absence of a person wearing an RFID tag, but not fine-grained 
information about the person's movement.  In an extended performance, RFID technology may not 
be particularly informative on its own.  However, this technology may be used meaningfully in 
combination with other sensing.  For example, what if a Kinect is detecting elements of a 
performer’s movement, but we want the digital extension of that movement to vary depending on 
which performer is standing in front of the sensor?  An RFID tagging system could identify different 
performers so that the Kinect data could be more meaningfully interpreted.   
 
Ideally, systems for working with expressive performance extension will be sufficiently flexible as to 
allow many of these different types of sensing strategies to be used when relevant for an individual 
performance or installation.  At the beginning of developing a work the creators may have some 
knowledge of which sensing strategies will be useful or unhelpful; however, the needs of the sensing 
may change throughout the development of a piece.  For example, a particular interactive 
installation might start with the design of having interaction occur in a small region of the space, 
suggesting a Kinect as a possible sensing strategy.  But what if the performance-makers then decide 
that, while fine-grained movement sensing is desired in that particular region, some sense of 
movement throughout the remainder of the room should also be incorporated into the 
experience?  The Kinect may not be sufficient to capture this information and additional sensors 
(perhaps cameras) will have to be included.  Ideal performance extension systems should be flexible 
enough to easily work with many different types of sensing, to combine sensing strategies, to allow 
the user to experiment with different kinds of sensing, and to switch sensing strategies at any point 
in the development of the piece.   

Precision/sensitivity 
desired from input 

How precise does the system need to 
be?  What kinds of input need to be 
distinguished from one another?   

Do we want to capture tiny hand 
movements, and/or the broad 
movement of a person within a large 
space?  

Invisibility of sensing 
mechanism 

How aware should the 
audience/participants be of the 
sensing?  Can there be any preparatory 
steps to make someone able to be 
sensed, or not?  

Is there a place to hide a camera or 
microphone?  Are wearable items 
(sensors, identification markers or 
special colors) appropriate for the 
performance or installation context, 
or problematic?   
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Step 4: Select Features for Computation  

The next step is to transform raw sensor data into features of interest.  The process of feature 
computation is intended to turn raw data into something that is more likely to convey salient 
information or that is normalized for purposes of easier comparison.  For example, if one is using 
computer vision to recognize a hand position, it might be useful to preprocess the image given to the 
algorithm to make the hand always the same size.  It also might be helpful to give the algorithm a 
slightly blurred image so that individual pixel differences are less important.  The feature 
computation and analysis stage also allows systems the use of not only immediate sensor values but 
perhaps information about smoothed average values over time, recent ranges of values, or rates of 
change of values.  In this framework, the specific features of interest to be calculated can be defined 
for a particular sensor set and performance context, or predetermined general sets of features created 
by system designers can be used.  
 
The selection of particular features is especially important in movement and vocal quality 
recognition, as some kinds of features may be more likely to contain expressive information.  
Meaningful features for both vocal and physical performance likely include the amount of energy in 
the input, tempo and changes in tempo, and the amount of variation in different input parameters. 
Temporal features of the movement and voice are also vital. 
 
Sometimes a user may not know what features are likely to capture the majority of the expressive 
information in a given dataset.  Fortunately, algorithms are available for automatic discovery of 
important features from a dataset, using the process of feature extraction.  For example, in Principal 
Component Analysis, a system is trained with a variety of labeled data, where the data is some vector 
of input features and the label is a discrete categorization or continuous parameter value.  PCA seeks 
to find an function that will map a high-dimensional input space (the vector of features provided as 
input to the function) to a lower-dimensional space that describes as much of the variation in that 
input as possible.   

Step 5: Collect Training Data 

When deciding what kinds of movement or vocal training data to collect for a machine learning 
algorithm, there are various components that must be considered, particularly in the case of systems 
designed for performance and installation contexts.   
 
Important questions to consider include: 

• What are examples of the extremes of each parametric axis?   
• How can measurements of one axis be performed with a variety of values of the other axes? 
• What are some intermediate points on each parametric axis? 
• What complexities are introduced by a particular sensing setup? 
• How much variability is expected in the input? 
• How many different people will the system need to analyze? 
• How can the data collection process avoid gathering incorrect data caused by the act of data 

collection? 
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It may be useful to plan in advance a space of movement or vocal qualities to capture initially, in 
order to make sure the parametric space is well covered and that the data captured is more likely to 
well represent the desired information.  
 
A performance-maker should consider the boundaries of each parametric axis and some variations on 
that boundary.  For example, when capturing data to explore the parameter of scale, one should 
record examples of the largest movement expected and the smallest movement expected.  In addition 
to that, one should record examples of “large” and “small” movements that vary in other parameters 
and body parts.  Perhaps the movements in the piece that feel the “largest” include: a broad circular 
sweep of the arms, a fast run across the stage, and a quick fall.  At what different speeds can these 
movements be performed and still feel similarly “large”?  All of these variations will provide different 
kinds of sensor data (depending on what kinds of sensors are used to capture the data), so may all be 
useful to capture as examples of “large” movements.  The broader the variety of examples of a given 
quality provided to the system, the more likely that the system will not accidentally learn an overly 
constrained concept.  For example, if all the training examples for “large” movements consist of 
sweeping arm movements, a “large” movement using only the legs may not be properly identified as 
such.  
 
As another example, let us assume we are attempting to train a system to identify the complexity of 
vocal phrases for a certain performance piece.  We may want to think about the effects on our 
perceived complexity parameter of different patterns of amplitude (crescendos/decrescendos, soft, 
loud, moderate, steady, widely variable), different vowels/timbres (as well as the amount of variation 
in timbre), different melodic patterns, and different pitch ranges.  For the particular piece we are 
creating, we decide that we want complexity to primarily express something about timbral complexity 
and rapid shifting of timbres.  We should be careful to capture training examples in this space on 
several different pitches, so that our system does not accidentally learn patterns that expect a 
particular pitch and only that pitch.  Alternately, let us say we are most interested in the complexity 
created by a range of variations in pitch, the melodic “shape” of the sample.  We may want to 
incorporate a few different vocal timbres and amplitudes in our training data, so that maximum 
complexity is not learned as “these kinds of rapid pitch variations, as sung quietly on an ‘oo’ vowel.” 
 
Training data often should also be captured of intermediate qualities, examples of movement or 
voice with qualities that are not at the extremes of each parametric axis.  If only examples of the 
extremes of a parameter are given, a system may be able to do some interpolation between those 
extremes, but may primarily be performing recognition of the quality’s extremes.  As with the 
movements or vocal examples selected for the extreme points, it will be beneficial to capture 
variations that seem to be near the same place on the parametric axis.  What are some different kinds 
of movements that seem midway between the smallest and the largest movements in the piece?   
 
It is also important to take one’s sensing setup into consideration in creating a varied pool of training 
data.  Is it possible for similar movements to be sensed in different ways, depending on their spatial 
relationship to the sensing system?  For example, let us say that part of the system is a webcam 
tracking activity in a space.  A large sweeping hand movement performed very close to the webcam 
will provide different data than the same movement performed far away from the 
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webcam.  However, it is most likely that those two performances of the movement should both be 
identified as movements near the large end of the parametric axis.  If all the training data is captured 
from performances close to the webcam, the system’s analysis accuracy will decrease when the 
performer moves far away.  Better training data would include examples at a variety of distances and 
physical orientations to the webcam.   
 
Another important question in deciding what training data to capture is how much variability is 
expected in the input that the trained system will receive.  To reframe this in an expressive context, 
how different is the performance likely to be every night?  Is this system being used to recognize 
expressive qualities in a piece that has fixed choreography, in a piece that will contain 
improvisational elements, or in a public installation where certain kinds of movement or vocal 
gestures may be suggested but the input is not constrained?  The amount of variation necessary to 
design into the training data will differ across these scenarios.   
 
As another factor of input variability, how many different people will the system need to analyze?  If 
this system is designed for a solo dancer, it will be desirable for the system to learn qualitative 
parameters as they are expressed by that dancer in particular; however, for an installation where the 
system will interact with many different people, care must be taken to make sure that the qualities 
captured are sufficiently generalizable.  For example, in the case of a public installation that analyzes 
the visitor’s voice, capturing training data only from a single voice might have limitations: any 
individual voice will have a particular range and a particular set of innate qualitative features.  Either 
training data should be captured from multiple individuals or, at least, the system should be tested to 
make sure that it has not over-fit the data to a particular subject.   
 
Another key factor in training data collection is the length of the data examples collected and the 
manner in which the examples are segmented.  In the Expressive Performance Extension System, 
discussed in the following chapter, data samples can be collected at any length, and are then 
normalized into a window size selected by the user.  Individual samples are gathered by starting and 
stopping the system.   
 
It is important not to introduce unintended information into the system through the action of 
signaling the beginning and end of a data collection window.  For example, say you are collecting 
samples of a performer singing with varying levels of complexity into a microphone, clicking a 
mouse to mark the boundaries of each sample.  That data collection process will likely not affect the 
training data.  However, say you are attempting to collect training samples of yourself moving at 
different rates.  If you have to click a mouse at the beginning and end of each sample, you will be 
introducing an unintended movement (clicking the mouse) into either end of the sample.   

Step 6: Train Model 

There are a variety of existing pattern recognition algorithms that may be useful both for learning 
relationships between particular sensor data streams and desired expressive features and for learning 
the relationships between these selected features of interest and the desired expressive spaces.  It is 
important to consider several properties when selecting an algorithm to recognize expressive input in 
live performance contexts.  First, how well does the algorithm generalize from its training data?  Can 
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it handle the complexities of human movement and voice, given representative examples?  Second, 
how quick is the algorithm to train, and how many examples does it need for training?  Third, can it 
run its recognition process in real time?  While training the algorithm can be done with a number of 
movement examples “offline,” the system has to be able to recognize and handle new input “online” 
in the middle of a live show.  Fourth, can it handle temporal variability in its input, either by using 
algorithms that include a history of samples or by pre-processing input samples to obtain a time-
normalized input?  Finally, does it work with labeled data (necessary for developing desired 
expressive spaces), or can it handle unlabeled data (potentially useful for automatic feature 
extraction)?  Can it be trained on a set of labeled data but improve given additional unlabeled or 
weakly labeled data? 
 
A Hidden Markov Model (HMM) is a probabilistic algorithm popularly used for recognition of 
particular sequential patterns in time-varying domains such as speech (e.g. Rabiner, 1989) and 
gesture (e.g. Gillian et al., 2011; Ko et al., 2003; Nam & Wohn, 1996; Westeyn et al., 2003).  An 
HMM is a state machine that models the statistical probability of given sequences of outcomes.  It is 
described by a set of states, a set of transition probabilities between states, and a set of probabilities of 
outputting a particular observation while in each state.  While a standard Markov Model represents a 
situation where the underlying probabilities are known, such as the probability of observing a 
particular sequence of heads and tails when flipping a coin, in a Hidden Markov Model the 
relationship between the underlying states and the observed outcomes is not known. 
  
There are three major questions that can be asked about HMMs (Rabiner, 1989), as well as about 
most other pattern recognition algorithms: 
1) Given a sequence of observations, how likely is it that a given model would produce that 
sequence?  (This is the testing phase of a model.) 
2) Given a sequence of observations, what is the sequence of states that best “explains” that sequence 
of observations?  
3) How do we adjust the parameters of a model to best represent the probability of a given 
observation being produced by that model?  (This is the training phase for a model.) 
 
A particular advantage of HMMs in performance contexts is that they can easily handle temporal 
inputs and inputs of varying lengths, due to their built-in notion of sequences and memory 
(Rabiner, 1989).  However, Hidden Markov Models are generally only used for classification. In 
order to have HMMs learn the relationships between movement and a continuous parameter space, 
it would be necessary to adapt these models to produce continuous output.  Additionally, the inputs 
to an HMM have to be discrete integer values, and thus continuous (or essentially continuous) 
sensor input parameters have to be mapped into a space of discrete input classes.  A large number of 
training examples is also required and it can a long time to train a model (Gillian, 2011).  These 
issues, particularly the large number of training examples needed, may be significant drawbacks in a 
fast-paced rehearsal process. 
 
Another pattern recognition algorithm frequently used in gesture recognition is the Support Vector 
Machine (SVM) (Abe, 2005).  Some benefits of using SVMs for expression recognition include their 
strength at generalization and ability to handle small training sets.  However, the algorithm generally 
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performs classification rather than regression, and is more complex if more than two output classes 
are necessary.  Additionally, the input to an SVM must be a fixed-length feature vector, so 
movement data streams of various lengths must be normalized to a fixed period of time.  Standard 
SVM algorithms are generally only used with labeled data, though variations on the algorithm can be 
used to combine labeled input examples with additional unlabeled input examples. 
 
A third algorithm that may be particularly beneficial for recognizing expressive parameters is the 
Neural Network (NN).  NNs, inspired by models of brain activity, consist of interlinked layers of 
nodes (or neurons), each of which activates if the sum of its inputs passes a given threshold.  Each 
link between nodes has a weight, and each node has its own activation threshold.  When values are 
given to the input notes, activation thus propagates along the network.  In the process of training a 
neural network, the weights and activation thresholds are adjusted until the network produces 
appropriate outputs for its example input vectors.  While neural networks may take a long time to 
train, they quickly process new input data for testing and need few training examples (Bishop, 
2006).  Neural networks can be trained with either unlabeled or labeled data, thus proving flexible 
for a variety of situations.   
 
Neural networks have been used frequently for the recognition of musical parameters (e.g. Fiebrink, 
2011; M. Lee, Freed, & Wessel, 1992), where their ability to perform regression is a major 
benefit.  Frequently, one neural network is trained for each desired output parameter (Fiebrink, 
2011).  Additionally, the same or separate neural networks can be used for classification tasks, should 
the choreographer choose to recognize particular movements as well as overall movement qualities.  
Lee et al. use multiple simultaneous neural networks for identifying discrete gestures along with 
continuous parameters for sound control (M. Lee et al., 1992).  Similarly, Modler and Myatt use the 
outputs of a Time Delay Neural Network for both recognizing gestures and directly controlling 
continuous volume levels based on output values (Modler et al., 2003).  Another particularly strong 
point of NNs is their ability to produce outputs for inputs not included in the training set (Fiebrink, 
2011).  In gesture recognition, this means that NNs can produce outputs for gestures that are not in 
the training set.  For continuous expression, this means that they are good at giving output values for 
inputs between trained ranges.  
 
However, NNs present the interesting difficulty that the structure of a trained network does not 
reveal how it has learned to classify inputs or whether it has learned the right thing.  The structure of 
the network does not reveal what it has learned about classification rules.  Additionally, neural 
networks potentially require a long time to train a model, even though they do not necessarily 
require many training examples.  Since the entire network has to be re-trained whenever new 
examples are added, input feature sets are changed, or new output parameters are added, this length 
of time for training may need to be considered in particular situations where the learning might need 
to be continuously performed in real time. 
 
Creating machine learning systems for recognizing continuous expressive qualities also presents 
particular challenges that differ from the standard gesture recognition process.  In gesture 
recognition systems, a system can wait until a gesture has been completed and then output a single 
“answer,” which is then generally used to trigger a particular process.  Systems for the recognition of 
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continuous qualities need to produce meaningful “answers” at every point in a movement, not only 
once at the end of a particular movement.  That richer bandwidth of dynamically-changing 
information between analysis and output is not only beneficial in an artistic context but also 
necessary, as some outputs may be triggered on or off but many others need richer, more 
sophisticated control. 

Step 7: Test and Post-Process 

Once a system has been trained, it can be tested to see how well it has learned the desired concepts.  
The process of testing generally involves presenting the system with new input examples and seeing 
how well the output results line up with the desired predictions.  In testing, the system is being 
analyzed for how well it has generalized from the training examples.  Given complex inputs such as 
movement and vocal data, it is impossible that a system can have been given input data examples 
from every possible case.  The key question is how well does the system perform on new inputs that 
it hasn’t seen before?  If these inputs are similar to those that it has been trained on, does it recognize 
that similarity?  Another question that is important in performance contexts is the question of what 
the trained model outputs when it is given input data that is nothing like anything it has seen before, 
such as new kinds of movements, new voices, etc.  Given the behavior of the system after testing, it 
may be necessary to add additional training examples to help refine its accuracy.     
 
Additionally, it may be beneficial to do some post-processing stages on the output data from the 
machine learning algorithms.  Such post-processing techniques might include such tasks as checking 
or thresholding an algorithm’s confidence values (how sure of this answer is the algorithm?), or 
combining the results of multiple models (which model is most likely?). 

Step 8: Map to Output Control Parameters 

Given all of this expressive input at various levels of abstraction (direct sensor data, computed 
features, high-level parametric representations), the next question is how that input should be 
mapped to control parameters of output systems.  What kinds of performance extension make sense, 
in the context of a specific piece?  The process of creating mappings is at the core of any interactive 
performance.  For the experience of the audience, it does not matter how the input about the 
performance is gathered (through what set of sensors) or how it is processed (through what feature 
computation algorithms or machine learning algorithms).  The core question that defines the 
experience of an interactive piece is the result of a particular action or type of action.  The same 
sensing, analysis, and output systems can be given drastically different characters through the 
definition of the mappings between input and output.   
 
Systems for developing mappings need to be flexible enough to allow for both exploring mappings 
empirically and implementing mappings previously imagined.  In the development of an extended 
performance or installation, it is possible that the creative team may go in with certain ideas about 
how the expressive control should work, what connections between movement or voice and output 
media will be interesting or relevant to the piece.  However, those original ideas need to be tested 
quickly to see how they actually feel, especially as the remainder of the content of the piece develops.  
In other rehearsal processes, there may be little initial sense of how the mappings should work: 
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perhaps there is a vocabulary of sound that is desired as output, and some knowledge of the 
movement content of the piece, but the actual relationships between movement and sound will be 
found through empirical exploration.   
 
The Expressive Performance Extension Framework prioritizes the hand-crafted mapping of abstract 
parameters to output control, with the machine learning techniques being used to associate sensor 
data to abstract parameter spaces. This differs from work such as (Stowell, 2010) and (Fiebrink, 
2011), where machine learning is used to directly associate movement or vocal inputs with desired 
output control parameters.  Focusing on the intermediate layers and keeping those layers accessible 
allows for a variety of benefits to the creative process.  First, I believe that the development of 
mappings to output control parameters is a vital part of an artist’s creative process in working with 
an interactive system.  Directly using machine learning of mappings may not allow the artist 
sufficient control and room to experiment in this process.  Second, input and output modalities can 
be more easily changed without requiring the entire system to be rebuilt, because the relationship 
between sensors and intermediate expressive models is separate from the relationship between 
intermediate expressive models and output control parameters.  Third, meaningful intermediate 
layers make it easier to define the control of multimodal outputs by one or multiple inputs.  Finally, 
different aspects of the input-output relationship can be created and experimented with at separate 
times in the rehearsal process.  For instance, one could work with a vocalist in a studio to develop an 
interesting set of abstract parameters to describe her voice and then later explore how those 
parameters could affect the control of a sound generation system. 

Step 9: Refine and Develop over Time  

As mentioned earlier, these steps are not necessarily linear, and aspects of many of these steps will 
grow and develop simultaneously during the course of development of a performance or installation.   
Systems to support this framework for performance extension need to allow for synchronous shaping 
and refinement of different layers.  For example, one should be able to experiment with ideas about 
how movement might control a soundscape without having fully committed to a sensing system.  As 
those relationships are explored, important details about what kind of sensing system is necessary 
may be revealed in the process.   
 
Nor are these steps only completed once in the development of a performance or installation.  Just as 
the content of a performance piece is developed, modified, experimented with, refined, changed, and 
re-imagined during the rehearsal process, the content of an expressive performance extension will 
also be continually shaped and invented during the rehearsal process.  Development of the story of a 
piece may demand new interactive mappings, which may in turn require new representations of 
performance and new sensing modalities.  For example, imagine a particular duet dance performance 
in which the movement of two performers controls generative visuals on the floor all around them.  
Initially, both dancers’ movements are measured via a set of cameras mounted above the stage.  In 
rehearsal, as the story and the choreography continue to develop, it is discovered that the 
counterpoint movement between performers is a key element, particularly the moments when the 
two may be performing similar choreography but are approaching the material with very different 
tempos and amounts of energy.  To highlight these differences between performers, it may be 
helpful to perform analysis on each performer separately (perhaps through separate computer vision 
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systems, if the two are sufficiently far apart, or by adding 
some wearable sensors that can remain associated with the 
same performer throughout) and use expressive parameters 
from each dancer’s individual performance to affect the 
visualization separately.  Perhaps an even higher-level 
control parameter will need to be created that represents the 
synchronization of expressive parameters between the two 
performers.  
  
All of the steps in this framework may be relevant to 
consider at different life cycle stages in a performance or 
installation, as well.  What if an interactive installation is 
supposed to run for several months?  Should it change its 
behavior at all based on what prior participants have 
done?  Can a system learn over longer timescales, adapt to 
new inputs, grow beyond its original mappings?  
 

4.5. Conclusions: Goals and Principles for 
Performance Extension 
This chapter and the prior chapter have presented a variety of goals for an interactive system to be 
smoothly and meaningfully incorporated into live performance and installation contexts.  A system 
should:  

• Help extend a sense of liveness through tight mappings from performance to performance 
extension. 

• Incorporate meaningful representations of expressive content.   
• Handle both discrete and continuous inputs and outputs. 
• Be useful throughout the entire development arc of a piece: ideation, rehearsal, and 

performance or exhibition. 
• Allow for quick sketches of ideas, and rapid iteration during the ideation process. 
• Integrate smoothly into existing rehearsal processes.  
• Analyze the expression not only of the immediate performance, but of features at longer 

timescales. 
• Support performance analysis and mappings across multiple timescales. 
• Handle both modes (states of the system, collections of settings) and triggers (discrete, 

momentary events: state changes, activation of processes, etc.).  
 
This chapter has outlined a set of questions and principles to be kept in mind while creating 
technologically-extended live performances.  It also has presented the Expressive Performance 
Extension Framework and a suggested workflow for designing and building interactive 
performances, particularly those that integrate machine learning.  A system that supports this 
workflow, the Expressive Performance Extension System, will be described in the following chapter. 

	  
Figure 31. Tuning sensors on the Chandelier 
The sensing and analysis for the Death and the 
Powers Chandelier was refined throughout the 
rehearsal process.  Photo by Peter Torpey. 
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5. The Expressive Performance Extension System 
This chapter presents the Expressive Performance Extension System (EPES), a flexible software 
system for sensing, analyzing, and mapping expressive performance parameters in live performances 
and installations.  This system implements and tests key design principles of the theoretical 
Expressive Performance Extension Framework and system architecture described in the previous 
chapter, particularly the flexible use of machine learning techniques and mappings using user-
definable abstract parametric qualities.  

5.1. Structure of the Expressive Performance Extension System 
The Expressive Performance Extension System extends the Disembodied Performance Mapping 
System, developed with and originally implemented by Peter Torpey for Death and the Powers 
(Torpey, 2009).  This system allows flexible mapping of input data streams to output control 
parameters through a node-based visual language and is implemented in Java 6.  I have extended this 
system to implement the four-layer framework of abstraction described in the prior chapter: 
capturing raw input data, specifying and calculating expressive features, using machine learning to 
abstract higher-level vocal and physical qualities, and facilitating the mapping of high-level expressive 
parameter spaces to output control parameters.  I have also expanded this system to allow the user to 
work with time as an expressive parameter.   

5.1.1. Basic System Flow 

This performance analysis and mapping system was designed with the goal of avoiding recompilation 
of code when adjusting a mapping, allowing quick experimentation in a rehearsal process.  The core 
of this system is the mapping view, which allows a GUI interaction with a node-based programming 
system designed in reaction to the limitations of popular node-based systems such as Max/MSP and 
Quartz Composer.  Each node represents an operation on its inputs, which can be a simple or quite 
complex computation.  Individual nodes can maintain their own state.  Standard nodes have both 
input ports and output ports, representing the data flow between nodes.  The output port of one node 
can be connected to an input port on another node by clicking and dragging the mouse to draw a 
link.  A particular input port can only be associated with one incoming data stream; however, an 
output port can be connected to multiple inputs.  Within the mapping, a selected set of input devices 
handles receiving input data from a variety of sensing systems such as serial microcontroller devices, 
cameras, microphones, MIDI controllers, and other applications via OSC.  An output device sends 
OSC values to control external applications. 
 
A particular set of nodes and links in a mapping is associated with a cue in the system.  This allows a 
single configuration of the system to incorporate multiple different input to output mappings.  
Information about the configuration of the system for a particular production is defined in a show 
file.  This XML configuration file includes: global information such as the update rate of the system; 
information about the input devices used by the production and their configuration settings; 
properties of the cues in the production and the specific mapping for each cue; and output 
information (Torpey, 2009, p. 106).  Most elements of this XML file (such as the specific mappings) 
are constructed automatically by the system upon saving a show from the graphical interface.  
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However, certain elements such as the update rate and details of specific input devices are specified 
through editing the show file.   
 
Mappings are directed acyclic graphs, with each node in a mapping implementing an abstract Node 
class.  Nodes can have any number of input ports and output ports.  Data is passed from node to 
node as floating point values, in a range that is often normalized from 0.0f to 1.0f.  Certain types of 
nodes can handle a variable number of inputs, depending on how many things connect to them, 
while other types of nodes have a fixed number of inputs.  For example, the invert node is fixed at 
one input (its output is 1.0f-input), while the sum node can take a variable number of inputs (its 
output is the sum of values at all inputs).  
  

 
The original Disembodied Performance mapping system contained 22 types of nodes, including 
primarily arithmetic and statistical functions (e.g. sum, product, negate, min, max, mean), a few 
generation and control flow nodes (e.g. random, noise, threshold), and nodes relating to data (e.g. 
input, output, parameter).  This original system was intentionally designed to be stateless within a 
mapping for ease of computation.  The current implementation of the Expressive Performance 
Extension System has integrated a variety of nodes for feature calculation, processing inputs over 
timescales, machine learning of parameters, viewing data, and flexibly creating new types of  
operations for nodes.   
 

	  
Figure 32. EPES Mapping Designer view 
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The entire mapping is evaluated at a frame rate specified in the show file.  At each update interval, 
the values are updated in a recursive depth-first process, starting at the output node and working 
backwards.  This means that nodes that are not connected by some path to the output node will not 
be updated, avoiding the evaluation of nodes not necessary for producing output.  
 
Input devices provide input data directly to the mapping system.  Each device has a number of axes 
that each has a value at any point in time.  When devices are connected to the system, their axes are 
displayed in the interface as output ports on a DeviceNode and are available to be connected to 
other nodes in the mapping.  An input device implements the InputDevice interface, which 
provides methods for defining axes, updating the axis values, and retrieving current axis 
values.  Devices are updated asynchronously to prevent against blocking evaluation of the remainder 
of the mapping while waiting for a new input value, as different types of input devices may have 
more or less computation or I/O blocking introduced in the device class.  For example, a serial input 
device that gets data from an Arduino may simply store the current values of different Arduino input 
ports in a number of device axes.  A vocal analysis input node may do some processing on a raw 
microphone signal to compute parameters such as pitch and amplitude, and use those processed 
values as the axis values for the input device.   
 
Each input device also contains one DataStream for each axis, which calculates several parameters 
for that axis over a window specified in the show file and shared by all axes: normalized value, mean, 
maximum, minimum, instantaneous derivative, integration, and rugosity.  The live data for each axis 
can be viewed in the Input Streams tab on the interface.  In the original implementation of the 
Disembodied Performance mapping system, a DataStream node was the only node in a mapping 
that incorporated any sense of state rather than only an instantaneous value.  However, use of this 
system in practice during Death and the Powers rehearsals made clear that representations of time and 
analysis of parameters over time needed to be much more flexible and variable, as will be discussed 
later in this section. 
 

   
Additionally, this system incorporates the concept of parameters, values that can be adjusted by the 
user (the mapping designer).  When a Parameter node is inserted into a mapping, the value of that 
node can be changed in the Parameter Tab on the interface, and the new value is immediately 

	  
Figure 33. Input Streams view in EPES 
In the Input Streams view, current values of all input device axes can be viewed, along with analysis metrics.  
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updated.  This assists a user in creating a basic mapping and then fine-tuning it easily while the 
system is still running.    

5.1.2. System Extensions for Machine Learning  

This existing system provided a useful platform for input device handling and a node-based mapping 
interface, allowing me to focus on the redesign of this system to handle temporal input and 
incorporate higher level parameters.  This redesigned architecture implements the four-layered 
model of data abstraction described in Chapter 4.  The first level is the raw sensor data from inputs 
such as wearable sensors, video cameras, and microphones.  The second level consists of computed 
features of the sensor data (particularly temporal features) that are related to expressive content. 
These features can be computed through machine learning techniques or hand-coded algorithms. 
The data at this level can then be associated with the third layer of abstraction: high-level parametric 
spaces of expression and temporal descriptions of trajectories through those parametric spaces.  
These associations between features and parametric spaces are created primarily through pattern 
recognition techniques.  Finally, those high-level spaces can be manually mapped to the fourth level 
of data, parameters for the control of output media.  The interactions and associations between each 
of these four layers are developed throughout the design and rehearsal process of a performance or 
installation, and can potentially be shaped by later performance input as well. 
 
This architecture differs from existing work in the analysis of physical expression in several important 
aspects.  First, it prioritizes the final representation of gestural expression as continuous trajectories 
through continuous expressive spaces defined by semantically-meaningful parameters, rather than as 
discrete categorization into semantic descriptions of expression (as in Camurri, De Poli, Leman, & 
Volpe, 2001), or as specific recognized gestures.  Additionally, this architecture locates the creative 
practice of developing mappings at a higher level of abstraction than at either the raw sensor data or 
the expressive feature spaces.  The performance-maker’s mapping process between gestural inputs 
and output controls is designed to take place at the level of the continuous expressive space, while 
built-in machine learning algorithms and feature analysis tools can handle the association between 
sensor data and a particular expressive parameter space.  Finally, the goal of generalization in this 
architecture is intrapersonal rather than interpersonal.  The system should learn different 
relationships between layers for individual artists and individual pieces, not force one general 
relationship between sensor data, features, expressive spaces, and output control parameters.  EPES 
allows users to create their own sets of input sensors, of computed features, of expressive spaces, and 
of output parameters. 
 
A major emphasis for the machine learning components of the Expressive Performance Extension 
System has been to allow the user to interact with pattern recognition algorithms at a very high level; 
a user of the system need not know what algorithm is being used, nor the details about how that 
algorithm has been set up.  A user can select or define the desired expressive parameter space and 
which input features are to be used in training, easily capture and modify sets of labeled sample data, 
and have a few simple handles to allow some tuning of the recognition system.  A user who desires 
more complex interaction with the recognition system can access that through additional settings, 
but these settings need not distract the user who is unfamiliar with machine learning techniques.  
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I have added machine learning nodes that incorporate the Encog Machine Learning Library 
(Heaton, 2008), a library implementing a variety of popular machine learning algorithms including 
Hidden Markov Models, Support Vector Machines, and Neural Networks.  Encog provides libraries 
for a variety of programming languages, including Java, and is designed to allow programmers to 
integrate and interact with many machine learning algorithms without having to implement them 
from scratch.  As the focus of this dissertation is on the use of machine learning algorithms in 
expressive contexts, particularly for learning high-level expressive parameters, rather than on the 
details of any particular algorithm, this library was seen as a suitable base on which to build machine 
learning nodes for the Expressive Performance Extension System.  As discussed later in this chapter, 
training nodes and evaluation nodes allow users to flexibly explore different algorithms.   

5.2. Representations of Time 
One of the major dimensions in which the Expressive Performance Extension System has been 
extended from the original version of the Disembodied Performance System is in the representations 
of temporal features available within a mapping, as well as notions of state and time.  The original 
system was designed to be stateless for efficiency.  The only temporal data was used for the 
DataStreams associated with each input device’s axes, which calculated the average value, 
derivative, rugosity, maximum value, and minimum value of each axis over a fixed window of time 
specified in the show file.  As soon as we started developing content for Death and the Powers, it was 
clear that stateless mapping nodes and a fixed window length for DataStreams were not nearly 
sufficient for live performance data.  For example, when smoothing an input signal by keeping a 
running average of the signal, the number of values that are incorporated in the average has a large 
impact on the resulting balance of reactivity and smoothness in the output.  One system-wide 
window size for averaging will not be sufficiently flexible for many mapping scenarios.  This led me 
to design and implement a number of new nodes used in the Powers mappings that kept track of 
state and incorporated knowledge of data over time (such as a QualityAnalysisNode converting 
movement data from the Powers wearable sensors to values in a modified Laban space of time, weight, 
and flow) and nodes that were designed to work over user-defined lengths of time (such as an 
AverageOverTimeNode, which calculates the average value of its first input stream over a window 
length specified as a second input to the node).  Typically, nodes that take window lengths as an 
input port are hooked up to a Parameter node whose value is adjusted while developing a mapping 
and then left at an ideal value.  However, these input ports also allow for the use of a continuously 
variable window.   
 
The Expressive Performance Extension System recognizes and addresses time as an important 
parameter of performance and of performance design.  As multiple different temporal scales are 
especially important in the analysis of expressive performance qualities (as described in Chapter 4), 
this system incorporates knowledge of multiple temporal windows into mappings.  First, the system 
can define a performer’s instantaneous position in an expressive parameter space.  Second, the system 
has parameters and structures to describe trajectories over different timescales through the 
instantaneous expressive spaces, allowing the user to define or scale expressive information in the 
context of what has come before.  Finally, the system has the capability for a user to create separate 
“cues,” each of which has a particular mapping from input data to output control parameters.  These 
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cues provide the system with knowledge of a larger-scale temporal structure.  The system is designed 
to allow a user to fluidly shift between actions at any of these different timescales. 
 
Various nodes and operations have been developed as part of the Expressive Performance Extension 
System to address the ability to examine and work with parameters at multiple timescales.   
 

• 1DGraphNodes provide the ability to view a value in the patch as it changes relative to time, 
where the desired value is given as an input.  The timescale that the graph covers can be 
specified by the user. 

• 2DGraphNodes allow the user to view the current point and its historical trace in a two-
parameter space, where the two axis values are given as inputs. 

• PatternComparisonNodes allow the user to draw a shape of a target curve over a specified 
length of time (n frames).  The input values to this node over the previous n frames are then 
stored and compared to the target curve in two ways.  First, the node outputs the absolute 
difference of the target curve and the input curve: averaged over all points, how far from the 
target value is the input value at each point.  Additionally, the node calculates the “relative 
difference”: the average over all points of how the derivative of each pair of points in the 
target curve compares to the derivative of the corresponding points of the input curve.  This 
is a comparison of the relative shapes and patterns of variation of the line, rather than of the 
absolute values.  

• RampNodes continually increment or decrement their output value between 0.0 and 1.0 
based on their input value.  The maximum and minimum expected inputs can be specified. 

• AverageOverTime nodes and AmountOfChange nodes calculate parameters of an input 
stream over a given window. 

 
The Expressive Performance Extension System handles variation in behavior over time at a longer 
scale through the concept of cues.  Each cue is associated with a particular input to output mapping 
flow.  OSC messages sent to the system can place the system in a desired current cue.  This is the 
primary way that the system represents structures that change over longer scales of time, such as 
different sections of a piece.  In addition to changing the details of one mapping based on 
performance data, cues allow a user to create different interactions for the same performance data 
values as a piece progresses.  For example, in one movement of a work the performance designer may 
want to use fast, smooth movements to control a particular soundscape; a minute later, the same 
kind of movements are desired to control a very different soundscape as the sound design of the 
piece progresses.  Cues allow for this kind of long-term variation over the course of a piece.  
 
Cues can be sent from external systems to coordinate the program with other show control systems, 
or to select cues through actions of a performer (such as pushing buttons or using foot pedals to 
switch to a desired cue).  It is also possible to use helper programs to allow a mapping in EPES to 
trigger a desired new mapping cue based on performance information within a cue.   

5.3. Steps for Machine Learning of Expressive Parameters 
In this section, a subset of the steps described in Chapter 4 for selecting and training a system on 
expressive parameters are shown as they are implemented in the Expressive Performance Extension 
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System.  The details of this process in EPES are discussed along with descriptions of how a user can 
perform these actions.   

5.3.1. Select Expressive Qualities 

EPES has a suggested abstract parameter set incorporated into the machine learning nodes.  The 
default parameter set incorporates six expressive parameters that are broadly applicable to physical 
and vocal analysis.  In these definitions, “input” can refer to information from the body and/or the 
voice.  The precise physical or vocal definition of any of these parameters will vary from piece to 
piece and from performance-maker to performance-maker.  
 

• Energy (calm to energetic): Strength and animation of the input.   
• Rate (slow to quick): Frequency of events, speed of gestures. 
• Fluidity (fluid to sharp): Continuity of the input.  How smoothly is the input changing from 

moment to moment?  How legato or staccato is the input? 
• Scale (small to large): Magnitude of the input, relative to some range.  
• Intensity (gentle to intense): Weight and tension of the input.   
• Complexity (simple to complex): Amount of variation of the input, across many aspects and 

scales.  
 
EPES can also handle any other set of parameters desired by the user.  These parameters, like all 
values passed in EPES, should be considered to have floating point values between 0.0 and 1.0.   

5.3.2. Select Sensors 

EPES has the capability to process a wide range of input sensor information.  The primary 
InputDevice interface is taken from the Disembodied Performance system and has been extended 
in this implementation to include meaningful input nodes for a wider range of input modalities, as 
well as to include generic input nodes to support rapid prototyping and exploration.  Several 
varieties of input devices are discussed here, along with the process of constructing a new type of 
device to handle a novel sensing mechanism.   
 
All input devices can take values in any range, which are mapped to floating point values in the 
range 0.0 to 1.0.  The construction methods for a particular input device set the number of input 
parameters and the minimum and maximum expected ranges.  Each input device also has an 
identifying “address,” which is set and stored in the saved show file.  In different types of input 
devices, this address may refer to a serial port identifier, an OSC port, or a webcam identification 
string.  The types of input devices used for a particular show are currently defined by the user in the 
show file.   
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Arduino Input Devices 

EPES currently implements a range of input devices that 
can be used for capturing data from wearable 
sensors.  These nodes assume that the sensors in question 
are connected to an Arduino board or to a Funnel I/O 
board connected as a serial device via XBee radio 
modules.  The generic ArduinoInput sends all analog data 
streams from a Funnel or Arduino board, each on a 
different input data axis.  These axes are by default given 
generic labels corresponding to the associated Arduino 
analog input pin (Analog0, Analog1, etc.).    
 
A series of specific Funnel-based input nodes have also been 
constructed manually for particular combinations of 
wearable sensors.  DanceGlove input devices are designed 
for a glove or armband with two three-axis 
accelerometers.  For the Disembodied Performance System, 
a BreathBand input device was designed expecting only 
one axis of input, the resistive stretch sensor for measuring 
breath.  The sensors on the VAMP glove (accelerometers, 
bend sensors, and pressure sensors) are the expected inputs 
for another constructed input device.  Any of these specialty 
devices could also now be implemented with a generic 
Arduino device.  

Kinect and Webcam Input Devices 

EPES currently implements a few different input devices for 
handling input from a Kinect via the SimpleOpenNI 
library for Processing.  Each of these input devices is 
connected to a separate Processing applet running in its 
own thread that receives video frames and depth images 
from the Kinect, as well as data on skeleton tracking and 
hand tracking, and processes that information into a few 
relevant parameters that differ for different types of input 
nodes.  The most basic version, the KinectInput, outputs 
six parameters: the XYZ location of up to two hands 
tracked by the Kinect.  If a hand is lost, this node will 
continue to output the last known location of that hand.  
The KinectSkeletonInput device outputs the XYZ position of several points on a detected 
skeleton: right hand, left hand, and head.  Additional possible tracked points include shoulders, 
elbows, knees, and feet.  The KinectWebcamHandsInput performs hand tracking and additionally 
treats the Kinect as a webcam, providing metrics of the amount of variation from frame to frame of 
the camera (a metric of activity).  Additional parameters include the amount of variation within four 

	  
Figure 34. Various input devices for 
EPES 
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different regions of the camera, which can be calibrated in the class file to represent four horizontal 
regions, four vertical regions, or four squares within the image.  
 
In all of these devices, it is possible that the hand assigned as “hand 1” may fluctuate between left 
and right hands, depending on the order of acquisition of hand identifiers.  Future extensions of 
these nodes could maintain some sense of absolute position in determining which hand should be 
assigned as “hand 1” versus “hand 2.”  Of course, this would not accommodate situations in which 
one moved a hand all the way across the body, for example.  Additionally, if hands are moved too 
rapidly, the SimpleOpenNI libraries will repeatedly detect and lose hands.  When hands are 
reacquired, they may have switched from “hand 1” to “hand 2” or vice versa, and produce spurious 
behavior.  The built-in EPES feature calculation nodes for the Kinect attempt to minimize this issue.   
 
EPES also includes a WebcamInput device type that provides the overall activity and four sub-region 
activity metrics given the analysis of an image from a webcam that can be built into the computer or 
connected via USB.  This input type relies on an external PApplet using the Processing 
implementation of OpenCV for image processing.  The identifying address of the desired webcam is 
specified in the show file by a number that can be determined by running any OpenCV software and 
printing the inputs it finds.  The frame rate of the webcam input is the same as that of the overall 
show, as the input device requests the webcam applet to update on every device update step.  
 
These Kinect and webcam input nodes illustrate an important layer of feature computation that 
needs to occur with any kind of complex input modality.  The Kinect provides only a color image 
and an image representing the depth of every pixel.  A webcam provides only the color image.  In 
order for this information to be used in any meaningful way in an input node, specific features to be 
computed are selected.  Some of these may be simple features such as the amount of pixels that have 
changed from the previous frame to the current frame (which requires the use of memory to have 
knowledge of the previous frame).  Others may be more sophisticated features, such as hand 
tracking, that are accomplished by external libraries.  Blob tracking has also been explored in the 
WebcamInput type, though the OpenCV implementation of blob tracking is not efficient enough to 
track more than a few points, and so is not generically useful.  In any case, the image or depth image 
itself is not sufficient as the output for an input device type, so the input device makes visible to the 
system some computed features of the image over time.  

Audio Input Devices 

EPES also incorporates input devices that perform audio analysis within the input device.  The 
AudioAnalysis device uses the Minim libraries for Processing.  This input device makes three main 
parameters available to the mapping system: amplitude, frequency, and consonance.  All of these 
parameters are computed via a Fast Fourier Transform.  The FFT band with the greatest amplitude 
is the frequency value.  Consonance is calculated as a simple measurement of how close the second 
and third strongest frequency bands are to multiples of the fundamental frequency.   
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OSC Input Devices 

EPES can also receive input from any system that speaks the Open Sound Control 
protocol.  Specific subclasses of OSC input nodes listen on a set of OSC addresses defined in the 
class.  OSC nodes expect messages with a single integer, float, or double argument.  The OSC port 
number for each input node is defined in the show file.  
 
Additionally, a GeneralOSCInputNode allows a user to specify in a file any address to listen to and a 
range of values expected as arguments to that address to be mapped to the range 0.0 to 1.0.  OSC 
addresses, identifying labels for each input stream, and input ranges can be added to, modified in, or 
removed from the node through editing a properties file associated with the input device in the main 
show file.  This allows a user to rapidly iterate with desired OSC addresses for input without having 
to create or modify a special OSC input subclass for that device.  In addition, as files can be reloaded 
without the system being restarted, this allows for rapidly changing OSC inputs.    

MIDI Input Devices 

Another class of input device implemented in EPES is a MIDIInput, designed to transform the 
input of MIDI controllers into a format that can be used in mappings.  The implementation uses the 
proMIDI libraries for Processing and Java, with the addition of a supplementary PApplet owned by 
the MIDIInput class to handle the automatic callbacks from the proMIDI library.  The current 
implementation of the MIDIInput device receives information from continuous MIDI controllers, 
using a device address specified in the show file.  To stay reasonably generic, this device node has 
outputs for the first eight controllers on Channel 0.  These values are transformed from the standard 
MIDI scale of 0 – 127 to 0.0 – 1.0.  Future extensions of input devices that integrate MIDI could 
allow the user to specify more specific MIDI controller identification for each desired device 
(controller 1 on channel 0, controller 10 on channel 2, etc.).   
 
This device also incorporates some handling of discrete MIDI notes as well as continuous controller 
values.  One challenge in the mapping process is determining what information is relevant from each 
MIDI note.  It is unlikely that an ideal MIDI input ought to have 127 separate ports, one 
corresponding to each note (though this is the case in some systems, e.g. Quartz Composer).  In the 
current EPES implementation, the device outputs the current note number value and velocity value 
(both scaled from 0 – 127 to 0.0 – 1.0).  A future issue to extend MIDI handling functionality is 
how to handle maintaining duration information about specific notes, rather than treating the onset 
of a note as a discrete trigger.  If the duration of notes is relevant, there are design questions about 
how to manage polyphony.     

5.3.3. Select Features and Perform Feature Computation  

After input devices are selected, the input device nodes can be hooked up to nodes designed for 
feature computation.  Importantly, this feature computation stage allows for many different kinds of 
simple to complex features to be analyzed about an input data stream or set of data streams.  This 
can include basic features such as temporal statistics that do not care about what kind of data is used 
as an input (the average value of an input over a particular temporal window length, the derivative of 
a particular input stream) and more sophisticated features that take advantage of some knowledge of 
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the form of the input.  There are a variety of options for feature computation for specific sensor 
types built into EPES, as well as generic feature computation strategies.  It is important to note that 
many of the specific input devices already provide some layer of feature computation in their design, 
such as the WebcamInput, which outputs the amount of pixels changed in the image and in 
quadrants of the image since the prior frame.  The additional feature computation nodes currently 
implemented primarily handle calculating features of the input over time.  
 
For several of the existing input device types that handle particular sensors, such as the 
DanceGloveInput, KinectInput, WebcamInput, or AudioAnalysis, individual hand-crafted 
feature computation nodes have been developed that calculate a particular set of features from the 
input parameters.  Many of these features are calculated over a window length that can be specified 
by the user.  The set of features that is calculated by these nodes was selected to cover some of the 
specific types of features determined to be relevant in vocal and physical expression, particularly 
metrics of energy and variation over different time scales.  The specific relationship between input 
parameters and output feature values is calculated differently for each node.  This relationship has 
been empirically determined by hand and scaled between 0.0 – 1.0.  The features included in this 
analysis are: overall change (how much each input parameter has varied from frame to frame over the 
past window); average change (the average overall change of the inputs over the past window); 
derivative change (the amount of change over all input parameters in the past four frames, looking at 
a smaller window of time than the overall change value); balance (a metric of how much the input is 
varying similarly or dissimilarly across dimensions); overall value (a weighted average of all 
parameters); and range (how far apart the smallest and largest values of each parameter have been in 
the last window).   
 
A final feature, accumulated change, requires additional explanation.  In the development of various 
productions such as Death and the Powers, a feature of expressive input that I have found to be 
particularly relevant is a metric of how much variation there has been over longer timescales than an 
immediate window.  If the input parameters have been changing a large amount, the accumulated 
change value will gradually increase (to a maximum of 1.0).  If the input parameters have not been 
changing, the accumulated value will gradually decrease (to a minimum of 0.0).  The value will vary 
on each frame by an amount proportional to how much the inputs have been changing.  Thus, 
accumulated change is a metric of the historical variation of the input parameters.  Typically, 
increment and decrement ranges for accumulated change values are not set evenly, such that the 
value requires “more effort” to bring high, and returns to its baseline of 0.0 without sustained high 
variation.  This accumulation value is particularly useful as it reflects the “norm” of a piece over a 
length of time.  One sharp gesture conveys a different type of meaning than one sharp gesture in the 
middle of many other sharp gestures.  If a particular mode of movement continues for a period of 
time, we grow accustomed to it.  This accumulated change value seeks to capture that sense of 
normalization.       
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Other types of nodes in EPES have been designed for the computation of features from any type of 
parameter input, rather than calculated for a specific sensor setup.  The ChangeNode calculates the 
amount of change in the input parameter over the specified window size in frames.  This amount of 
change is calculated by summing over the window the difference of each stored value and the prior 
value.  An AverageOverTime node calculates the average value of the input parameter over the 
specified window size.  The RampNode performs the calculation of accumulated change discussed 
previously, with values for the amount of incrementing and decrementing specified by the user.  The 
TemporalScalingNode automatically scales the current input value based on the highest and lowest 
values that have been seen in a specified window.   It is important to note that all of these features 
are features of the input over time, rather than immediate properties of the input.  All of these allow 
the user to adjust the window size as desired to examine different timeframes.  Generally a static 
window size is used for a particular instance of the node, which can be set via a Parameter.  Other 
nodes compare the current values of multiple input parameters to determine features of the input, 
such as the MaxNode, MeanNode, and MinNode.  
 
In addition to the built-in feature computation nodes, other processes can be used for feature 
computation outside of EPES with the results brought into the system via an input device (either 
through OSC or through a custom input device).  This allows the quick integration of existing 
feature computation or feature extraction techniques in whatever system is most convenient for the 
user.  For example, in the Vocal Vibrations installation described in Chapter 6, the EPES input node 
received via OSC a variety of vocal features calculated in an external Max/MSP patch.  These 
features were all computationally calculated from the current input signal (such as voice loudness, 
fundamental frequency, and spectral centroid), with temporal features calculated in EPES.       
 
It is important to note that the machine learning algorithms used for EPES are intended to be able 
to handle both relevant and irrelevant features of the input.  This is an important distinction to have 
the system be functional: part of the reason for incorporating machine learning techniques is that 
users may not always know what features of a given input signal are relevant for identifying the 
quality of movement or voice that they care about.  Thus, while the system supports selecting a 
variety of features that may be particularly expressive, it does not dictate that only features known to 
be relevant can be used as inputs to the machine learning stage.   

	  
Figure 35. Sensor-specific feature computation nodes for EPES 
Each of these nodes takes the output parameters of a particular input device and calculates a similar set of features: overall change, 
accumulated change, average change, derivative change, balance, overall value, and range. 
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5.3.4. Collect Training Data 

Once a sample set of expressive parameters has been chosen, the 
user can then collect training data examples labeled with different 
values of those expressive parameters.  An 
MLExtendableTrainingNode allows a user to specify the desired 
number of expressive parameters and the names of those 
parameters.  Any number of inputs can be connected to these 
nodes.  These nodes contain an instance of the 
TrainingDataCollector class, which handles storing values of all 
inputs across each time frame and compiling collections of values 
into samples.  Starting the mapping system begins collecting data 
and stopping the system ends a sample.  Each parameter has a slider 
that represents the current desired value of that parameter for the 
given sample.  These values can be set before starting to capture 
each sample, but should not be changed mid-sample.    
 
Via a checkbox, the user can select which parameter or set of 
parameters should be active for a given sample.  If a parameter is 
active, the current sample should be added to the stored dataset for 
that parameter.  This allows the ability to train each parameter 
individually or in small combinations as desired, rather than having 
to invent training data examples that vary across all parameters 
simultaneously.  For example, say one is capturing vocal training 
data on a set of parameters including complexity, rate, and 
intensity.  If all parameters were captured simultaneously, for each 
training example to be given to the system the user would have to 
determine how that example should be valued along all three 
axes.   It is a much easier process to envision a set of examples that 
cover the desired range of different levels of complexity, a second 
set of examples that have different rates, and a third set of examples 
with different intensities.  While it is useful to have some variation 
across each set of examples, as discussed in Chapter 4, this model is 
simpler for a user to conceptualize.   
 
Once some data samples have been captured, a user can view and 
edit those samples as desired.  By clicking the “view training data” 
button on an MLExtendableTrainingNode, a separate window is 
launched that provides the ability to view the training examples currently saved for each parameter, 
change the value label for any example, and remove any example.  This ability to rapidly modify 
training data is especially useful for correcting mistakes in the training data capture process.  For 
example, say that you are in the middle of capturing movement data samples that are intended to 
have low intensity.  Then you switch to high intensity examples, but forget to change the value of 
the parameter slider until you have captured two examples.  The training data window allows you to 

	  
Figure 36. EPES machine learning 
training node 
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quickly adjust the label on those two examples, rather than discard all of the previously collected 
data.   
 

One technical issue to be addressed with temporal data is 
that all training examples of particular qualities (whether 
vocal or physical) will be varied in length (number of 
frames).  This makes such examples harder to compare to 
one another, as well as to format to fit machine learning 
algorithms that typically expect all examples to be of the 
same length.  The Expressive Performance Extension system 
makes the choice to standardize all training data examples 
and testing data examples to the same normalized length, 
which can be specified by the user in the Settings window 
of the node.  Early versions of the system obtained this 
length standardization by trimming longer samples and 
zero-padding shorter samples.  The current version of EPES 
performs the standardization process through stretching or 
compressing the input data vectors to fit a normalized 
length.  For vectors that are too short, the system linearly 
extrapolates extra data points between the original data 
points to extend the vector to the desired length.  The 
system handles vectors that are too long by averaging 
multiple data points from the original vector into one data 
point in the new normalized vector.  This process is 
performed separately on each data source incorporated in 
the input vector.  For example, if the input data is captured 
from three sensor streams, the data vector sent to the 
machine learning systems will consist of interwoven data 

points from those sensor streams, in temporal order: [x1, y1, z1, x2, y2, z2, x3, y3, z3].  Simply 
normalizing this vector would not be meaningful, as the data streams are separate and their values 
should not be averaged together or extrapolated between.  Thus, the algorithm first separates the 
data into component vectors ([x1, x2, x3], [y1, y2, y3], and [z1, z2, z3]), normalizes each 
component vector to the desired length (for example into [x21, x22], [y21, y22], and [z21, z22]), and 
reintegrates these normalized components into a new normalized vector ([x21, y21, z21, x22, y22, 
z22]).  This normalized vector is then used as input to the desired machine learning 
process.  Developing this strategy for temporal normalization of training data was a key step in 
preparing training data examples that could be used for regression purposes. This technique allows 
the use of machine learning algorithms that require a fixed number of input dimensions, such as 
Neural Networks, without padding the inputs with meaningless information.  This technique also 
greatly simplifies labeling data.    
 
It is important to note that because of this normalization step, it is desirable for training data 
examples to be captured that are of fairly similar lengths.  For example, say the movement being 
captured is different tempos of waving a hand back and forth, and the input data is the position of 

	  
Figure 37. Training Data Editor window 
In the Training Data Editor, users can view saved 
data samples for any parameter, remove particular 
samples, and re-label samples as desired.    
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the hand.  If two examples are reasonably similar in length, the example with faster waving will have 
many more inflections when the hand changes direction than the slow waving example.  However, 
say that the fast waving is performed twice as fast as the slow waving, but only captured for half the 
length of time.  When the two examples are normalized in time, they may appear much more similar 
than intended.  
 
For rapid capture of example training data, a foot pedal was suggested by Marc Downie as a useful 
addition to the system.  A Yamaha piano pedal has therefore been integrated to start and stop data 
capture, with data capture beginning when the pedal is depressed and ending when the pedal is 
released.  This allows for several samples of movement or vocal information to be easily obtained 
from one continuous example, without having to pause in between to stop and start the system 
manually. 
 
The additional advantage of this pedal is the capture of cleaner data.  In the capture of a training 
data example, it is important to examine whether the entire example is representative of the quality 
intended.  In a system started and stopped with a keystroke, mouse click, or particular gesture, part 
of those auxiliary movements and potentially the sounds of those actions will also be captured in the 
training data.  This issue then requires the data to be preprocessed (for example, removing the 
beginning and end of the sample) so as to remove traces of undesired movement.  With vocal data or 
movement that is primarily upper-body movement, the movement required to activate a foot pedal 
should not affect the details of the data that is being captured. 

5.3.5. Train Model 

When some example data has been collected, a model can be trained to recognize the selected 
parameters.  The current implementation of the Expressive Performance Extension System requires 
labeled data, with the labels being a floating point value from 0.0 to 1.0.  Since the system is 
designed for the ability to analyze continuous parameters, the algorithms currently implemented in 
the MLTrainingNodes and MLEvaluationNodes are all capable of performing regression.  To treat 
this as a classification system on a particular axis (recognizing whether a movement is “slow” or fast”) 
rather than a regression system (recognizing “how fast” a movement is), training data could be saved 
with only 0.0 or 1.0 values and the output could be thresholded in a post-processing step.  The 
current implementation of EPES allows the selection of Neural Networks or Support Vector 
Machines.   
 
EPES incorporates the Encog machine learning framework, which includes a set of Java libraries 
implementing a variety of machine learning algorithms as well as classes for processing and 
normalizing data.  Individual EPES classes are written to allow interaction with the various Encog 
classes that implement particular algorithms.  EPES defines an MLHandler interface, which includes 
a variety of basic functions including the ability to train a model with a given dataset, to save file 
representations of trained models, and to evaluate a particular example according to stored 
models.  This generalization allows the process of capturing training examples to be completely 
separated from the selection of a machine learning algorithm to train.  When the user hits the “Train 
System” button on the MLExtendableTrainingNode, a model is created and saved to the filename 
specified, using the Encog libraries for serializing model information.   
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In the current version of the system, each expressive parameter is handled with a separate model and 
trained independently.  For example, when the user selects Neural Networks as the desired training 
algorithm, a separate network will be trained for each parameter, given the separate data set captured 
for that parameter.  This allows for partial training of systems: say that the user has four parameters 
that he will want to work with eventually, but wants to test the behavior of only one parameter at 
the moment.  Since training data examples are captured separately by parameter and a separate 
model is trained for each parameter, the user can develop a model that he is happy with for his first 
parameter.  His further actions to gather data on other parameters and train the system on those will 
not affect the model of the first parameter.   
 
Once a model has been trained, that model can then be tested and 
used via an MLExtendableEvaluationNode.  These nodes, given 
the folder identifying the location of a desired trained model (or set 
of models, in the case of multiple parameters), create an instance of 
that model that can then be given new samples to generate output 
values.  As with the TrainingDataCollector structures for the 
training nodes, a TestingDataCollector supports the 
breakdown of a stream of live data into samples to be run through 
the stored models.  As this system is optimized for the analysis of 
continuous parameters, this TestingDataCollector does not 
have to do sample segmentation on the basis of specific features of 
the signal, as would be the case to improve performance in a gesture 
recognition system.  Instead, the last N points for each input stream are stored and passed as a 
sample, where N is the window length defined by the user (which is expected to correspond to the 
normalized sample window length specified in the training process).  Thus, a new sample is 
evaluated on every frame of the system.  

5.3.6. Refine and Iterate 

As discussed earlier, one of the key requirements of working with training data sets is the ability for a 
user to quickly and easily modify the data captured as part of the workflow.  What happens if a user 
accidentally records a data example with the wrong label or output value set?  What happens if a user 
adds examples that she then does not think are “good” examples, or that decrease the performance of 
the system?  What if a sensor was malfunctioning, causing problematic input data?  What if a user 
wants to copy some good training data captured in the process of making another piece, or to 
combine several sets of training data?  It is necessary for a system to allow the user to change stored 
output values and labels, as well as to easily add and remove entries.     
 
Initial representations of training data in EPES were simply text files containing input data sets 
associated with the desired output values corresponding to each input set.  However, easy 
modification of the training data by users demanded that more information be stored with the 
training data set, and that this data be accessible through the EPES interface.  Each data example is 
now timestamped so as to make it easier to identify which example was labeled in error.  A button 
on each MLTrainingNode brings up a window through which users can explore and adjust the data 

	  
Figure 38. Machine learning 
evaluation node 
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in the training file associated with that node.  The user can select a parameter to view all associated 
training data examples.  This interface window allows for deletion of and relabeling individual 
examples.  Once the training data has been modified to the user’s satisfaction, hitting “save” will 
store this new training data set and load it into the associated machine learning training node, so 
that all changes become active.   
 
More extensive modifications such as combining training data examples from multiple existing files 
can be performed directly on the files by copying the desired examples into the new file.  Each 
MLTrainingNode has a button to force a reload of training data, which can be used if the training 
data has been manually modified on disk.  Similarly, a MLEvaluationNode has a button to reload a 
trained model from a file, in case additional data has been added and the model retrained since the 
last time it was loaded.   
 
As discussed in Chapter 4, one of the key design principles of systems for performance extension is 
the ability to create and adjust mappings on the fly while the system is running without needing a 
separate compilation stage.  In order to experiment more flexibly and rapidly with mappings, 
JavaScript evaluation nodes have also been developed for EPES.  These JavaScript nodes can take any 
number of inputs and evaluate a JavaScript program entered into the node to determine the output 
value.  The JavaScript code is edited in a separate popup frame; when the new code is saved, that 
code is immediately evaluated on the next output step.  These nodes are designed for rapid iteration 
of new processing techniques, so that several variations can be explored in real time without the need 
for coding new nodes and recompilation.  If a particular functionality is found to be especially useful 
and sufficiently generic, a new mapping node can then be developed offline that implements that 
functionality.  However, it is preferable not to have to code a new node every time one needs a new 
kind of analysis or mapping procedure, especially if that analysis is not particularly general but better 
suited for a specific mapping. 
 
These JavaScript nodes also offer the ability to compress basic equations that might take up 
unnecessary visual space in the mapping.  For example, a scripting node could easily contain within 
one node the code to take two inputs, multiply them together with a specified value, add the result 
to a third input, and output that value if it is over a given threshold or 0 if it is under the 
threshold.  To do this in the standard mapping system would require a multiplication node, two 
parameter nodes, a sum node, and a threshold node.  A possible extension of this concept would be 
to add the ability to create expandable sub-mappings within a mapping patch, as is offered in Quartz 
Composer and Max MSP.  In these programs, a patch can contain sub-patches that themselves are 
complete input-to-output mappings.  

5.3.7. Integrate with Other Components and Systems  

Like the majority of the show control systems that have been developed in the Opera of the Future 
group over the past several years, the Expressive Performance Extension System communicates via 
the Open Sound Control protocol using custom Java libraries designed by Peter Torpey.  The Open 
Sound Control protocol is widely implemented and allows EPES not only to communicate with a 
variety of our custom input systems and output systems but also to directly communicate with many 
popular existing systems for generation of sound and visualizations, such as Max/MSP, Processing, 
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ChucK, Pure Data, and Quartz Composer.  If the desired system to be controlled does not take 
OSC directly, helper programs such as OSCulator allow for easy transformation of OSC messages 
into other formats, such as MIDI triggers or control messages.  This allows EPES to communicate 
with other popularly used systems such as Ableton Live, which can receive MIDI but not OSC 
directly.   
 
The original Disembodied Performance System was designed to have one output node with a 
particular predetermined set of output parameters corresponding to the control parameters of the 
RenderDesigner visualization system.  For the continuing use and extension of the system, the 
output node has been generalized to output to any set of OSC addresses specified in the show 
file.  Additionally, the output node can send output OSC messages to multiple network addresses 
and multiple OSC ports.  In the future, an output node might store which messages are relevant for 
which port and which network address, so as to eliminate unnecessary data passing.  In the majority 
of cases, the amount of extraneous information passed will be small enough as not to be problematic.  
 
EPES can also be connected via OSC to any external system for gathering and processing input data. 
EPES currently includes preprogrammed input nodes for handling a variety of sensing systems such 
as the Kinect and webcam activity processing, but many existing systems also exist for processing this 
kind of input data in different ways.  Many other kinds of complex input data processing systems 
can be incorporated into the overall system without having to develop a new type of input node, 
since the GeneralOSCInputNode can take any addresses and scale any range of inputs to 0.0 – 1.0. 
 
One might ask whether it would be better to have a single mapping and generation system that 
handled the entire data pathway, from input signal gathering through producing the final output 
media such as sound or visuals.  However, this would limit the pieces that could be created via this 
system.  A mapping system that can communicate in a popular protocol with existing input and 
output systems will prove substantially more flexible with respect to the works that can be created, as 
different existing output systems are carefully designed for working with particular types of media.   
 
Since EPES can communicate with any input or output sensing system, the overall computational 
demands can be split across multiple computers or locations as necessary.  For example, in Death and 
the Powers, the mapping system ran on a separate computer than the computer handling the visual 
rendering to allow the greatest speed possible for complex visual renderings.  In the global interactive 
simulcast of Death and the Powers (discussed in Chapter 6), the mapping system sent output control 
data not only to other computers and systems within the show, but via a server to hundreds of cell 
phones that each performed visual rendering given the control parameters.   

5.4. Summary of the Expressive Performance Extension System 
This chapter has presented the design and features of the Expressive Performance Analysis System 
and shown how it implements many of the principles for technological system design defined in 
Chapter 4.  It has shown an example workflow for machine learning of expressive qualities in EPES: 
selecting expressive qualities, picking input sensors, selecting features for the system to compute, 
collecting training data, training a model, and using the trained model as part of mappings. 
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As a specific example of how this system could be used in practice to speed the development of 
extended performances, let us look back at the performance qualities used for Death and the Powers.  
In the Disembodied Performance System, the performer’s movement is translated into a modified 
Laban Effort Space of time, weight, and flow.  For Powers, that process of movement quality analysis 
was carried out completely manually, by hand-coding a QualityAnalysisNode that takes the 
accelerometer data and calculates values of the desired parameters based on empirical exploration of 
possible mathematical relationships.  Time was associated with the amount of change of the 
accelerometer values, flow by accumulating the amount of change over time, and weight by scaling 
the summed accelerometer values (the amount of “energy” in the movement).  It is important to 
note that these calculations were refined over the development of the nodes, requiring significant 
testing and experimentation with different values.  Additionally, this process results in a specifically 
created analysis node that is not flexible enough to handle changes of sensor input easily.  
 

  
For comparison, a test was performed with EPES to train the system to recognize a subset of the 
same parameters used in Powers.  The original wearable sensors and DanceGlove input devices used 
for Powers were hooked up to the GloveFeatureComputation node to determine an assortment of 
features of the combined input signals: overall change, accumulated change, average change, overall 
value, derivative, and range.   Rapidly, the feature computation and machine learning nodes were set 
up, training data collected, and the resulting values compared with the hand-coded node.  9 training 

	  	  	  	  
Figure 39. Comparison of Time parameters  
Graphs show the continuous Time values generated by a hand-coded analysis node and a trained machine learning node 
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data examples were used, labeled with different desired values of time.  5 examples were labeled 1.0, 
representing still/very slow movement, and 4 examples were labeled 0.0, representing very rapid 
movement.  These labels correspond to the very slow and very fast values produced by the 
QualityAnalysisNode.  Eight of these examples were collected in the first data collection set, with 
another example of very slow movement captured after initial training and testing of the system 
when it was seen that the trained model was more accurate at capturing fast movement than slow 
movement.  The length of these training data examples was normalized to half a second (15 frames 
at a frame rate of 30 frames per second).   
 
A feedforward Neural Network was trained on the example data via the 
MLExtendableTrainingNode.  This Neural Network used the default structure and number of 
nodes built into EPES, with one hidden layer consisting of 30 nodes.  The size of this hidden layer 
had previously been determined through empirical exploration of the effects of different numbers of 
nodes in the hidden layer on output accuracy, generalizability, and speed of training.  This network 
has an input dimensionality of 90, with the 6 inputs multiplied by the 15 frames of the normalized 
window size.  The resulting trained system was able to interpolate from the examples to produce 
continuous output data that was quite similar to the values produced by the hand-coded system.  
Figure 39 shows graphs of the hand-coded value of time and the trained value of time, both 
calculated simultaneously on the same accelerometer input from two DanceGlove input devices.   
 

	  
Figure 40. Comparison of Time and Flow parameters 
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As the measurement of flow was originally envisioned to reflect the change of the time parameter 
over a long scale of time, a quick replica was produced using the output of the trained 
MLExtendableEvaluationNode as input to a RampNode.  The screenshot in Figure 40 shows the 
comparison of the time and flow values from the hand-coded QualityAnalysisNode (on the top 
half of the screen) with the time value calculated by the trained Neural Network and the flow value 
calculated from the trained time value using the RampNode for longer-scale temporal analysis of data.    
 
Upon further examination of the original implementation of the weight parameter, the hand-coded 
computational relationship between the desired quality and the input data was found to be fairly 
weak.  The value of the accelerometer axes varies more with their orientation in relationship to 
gravity than to the performer’s actual movement, as would have been more desirable.  Thus, a 
comparison between the hand-coded implementation and a trained version would not have been 
particularly meaningful.  This likely explains why weight was not used in many mappings for Powers, 
with time and flow proving much more intuitively responsive.   
 
Had we had the full EPES system while developing Death and the Powers, it would be interesting to 
see how our vocabulary of movement and vocal exploration could have been expanded.  For 
example, while it was challenging to find a meaningful mathematical definition of weight for a hand-
coded node, it would have been much simpler to give examples of strong and light movements.  
Initial training data could have be captured in the development process, and additional examples 
could have been added to the system in the course of rehearsal.   
 
The following chapter will present a variety of larger-scale performances and installations that have 
incorporated EPES in their design and implementation.  These include an installation based on 
expressive free movement, a public experience around the singing voice, and a set of performances 
extending body and voice.  Discussion of these pieces and their development processes will show 
more specific examples of how this system integrates into live interactive contexts and allows 
expressive analysis of both movement and voice.   
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6. Primary Evaluation Projects 
 
As part of my dissertation research, I incorporated the Expressive Performance Extension System 
into several performance and installation projects, exploring a variety of the behaviors of the system 
and its use in different vocal and physical contexts.  Through discussion of these works, this chapter 
analyzes specific uses of the system in performance and installation contexts.  It addresses the design 
goals of each experience, their development processes, the ways in which they incorporate the 
technologies and frameworks described in this dissertation, and the ways in which they illustrate 
previously discussed design principles for technical performance extension. 
 
The first of these projects discussed is the Powers Sensor Chair, an interactive sonic installation 
where users can shape musical material from Death and the Powers through their expressive 
movements.  The second project discussed is Vocal Vibrations, a public installation that encourages 
people to explore their singing voices and to have a novel experience of their voice in the form of 
vibration.  The third project is Crenulations and Excursions and Temporal Excursions, a set of short 
solo performance and installation pieces exploring the voice and the body as expressive controllers 
for a soundscape.  Other projects that have incorporated aspects of the Expressive Performance 
Extension System are also discussed, including: Trajectories, a multi-modal performance piece for 
eight actors and one narrator who gesturally manipulates sonic and visual elements; a variety of 
cross-disciplinary performances and experiences developed by participants in two Blikwisseling 
workshops in the Netherlands; and new visual and interactive content on mobile devices and an 
LED chandelier, developed for the February 2014 performances and global interactive simulcast of 
Death and the Powers in Dallas. 

6.1 The Body: Powers Sensor Chair 

6.1.1. Description 

The Powers Sensor Chair was inspired by the original Sensor Chair designed by the Opera of the 
Future group for a project with the magicians Penn and Teller (Paradiso & Gershenfeld, 1997).  
That chair used capacitive sensing to detect the arm movement of a seated user, with sensors at the 
four corners of a frame detecting the position of the user’s hands in relation to that frame.  In this 
way, users could trigger sounds when they passed into the plane of the frame.  One “percussive” 
mode divided the XY coordinate space into different sound zones, so that the location of the user’s 
hand when crossing a particular threshold on the Z axis determined which particular sound to 
trigger.  In another mode, the entrance of the user’s hand into the Z plane of the frame triggered a 
sound, while the movement of the hand in the XY plane adjusted timbral coordinates of that sound.  
In a third mode, movement in the active space could influence the behavior of multiple notes at a 
time, dragging or guiding them through a frequency space. 
 
For this re-envisioning of the Sensor Chair, we wanted to create an interactive installation where a 
participant could play with the sonic world of Death and the Powers, extending some of the 
movement capture technologies used in the live performance into experiences in which anyone could 
participate.  This installation allowed visitors a special glimpse into Death and the Powers by giving 
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them a new way to experience the auditory world of the opera, including vocal outbursts and 
murmurs, the sounds of the show’s special Hyperinstruments, and rich spatialized textures.  
 

 
In this installation, a solo participant sitting in a chair discovers that when she moves her hands and 
arms, the air in front of her becomes an instrument.  With a small, delicate movement, a sharp and 
energetic thrust of her hand, or a smooth caress of the space around her, she can use her expressive 
movement to play with and sculpt a rich sound environment drawn from the opera.  The sound 
surrounds her and the other visitors who become an audience for her performance.   
 
Importantly, rather than using the sort of spatially-specific control models used in the original 
Sensor Chair, the new Powers Sensor Chair was designed with a focus on qualities of movement as 
the primary method of control.  Similar to the aims of the Disembodied Performance System used in 
Death and the Powers, the goal of the Powers Sensor Chair is to augment a visitor’s natural physical 
explorations, rather than to teach him a particular gestural vocabulary or a fixed and predetermined 
way of physically interacting with the experience.  While this is a type of instrument, it is an 
instrument that allows each player to find his or her own way to play it.  
 
In February 2014, the Powers Sensor Chair was played and experienced by a wide variety of 
audiences at the lobby of the Winspear Opera House, where it ran for around an hour and a half 
before each performance of Death and the Powers as well as for special Dallas Opera events.  The 
chair was then transferred to the Perot Museum of Nature and Science, where it ran daily during the 
museum’s standard open hours for two weeks.  The Powers Sensor Chair then was installed in the 
Opera of the Future group space at the Media Lab, where it has been used by a variety of visitors 
during our sponsor week and other demos. 

6.1.2. Technical Implementation and Mappings 

The Powers Sensor Chair tracks the visitor’s motion through a Kinect.  Movement data is then 
processed to determine expressive qualities in the Expressive Performance Extension System.  This 

	   	   	  
Figure 41. The original Sensor Chair and the Powers Sensor Chair 
L: Joe Paradiso in the original Sensor Chair (photo from Popular Science).  Center: the set of Death and the Powers (photo by Matt 
Chekowski).  Right: the author in the Powers Sensor Chair (photo by Karen Almond).   
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information is mapped to control triggering of a variety of sound samples via MIDI, parameters 
shaping spatialization and dynamics of the soundscape, and parameters of the software program to 
shape the lighting patterns on the LED strips.  The overall system diagram for the Powers Sensor 
Chair is shown in Figure 42.   

Sensing System  

Key requirements and features of the 
desired sensing system for this installation 
were: 

• A user should not have to have any 
preparatory steps to be sensed.  He 
should be able to sit in the chair 
and immediately begin. 

• The sensor should be able to detect 
the motion of the hands, arms, and 
upper body. 

• The sensing precision should work 
on both large arm movements and 
small hand and finger movements. 

• The participant was known to 
have his movement and physical 
orientation confined within a 
known area.   

• The sensing mechanism should be 
as invisible as possible to the 
participants. 

 
In order to meet these sensing needs, a Microsoft Kinect was selected as the primary sensing 
mechanism for the Powers Sensor Chair.  This Kinect is located on the floor approximately five feet 
in front of the chair, facing up toward the participant.  An additional pressure sensor is located under 
one leg of the chair to detect when a participant is seated.  
 
The SimpleOpenNI library for Processing was utilized in order to interact with the Kinect through 
Java.  This library provides convenient wrappers and methods for getting access to the Kinect’s 
webcam data, depth camera data, and higher-level processing such as user, skeleton, and hand-
tracking data.  A special input node, the KinectInputNode, was developed for EPES to process the 
Kinect data and output three categories of data.  The first is hand tracking data for up to two hands, 
as obtained via the SimpleOpenNI libraries for Processing.  The second is overall activity 
measurements generated via computer vision analysis of the Kinect’s webcam, including an overall 
measurement of activity in a selected region of interest (specified in the input node and calibrated for 
a particular piece) and measurements of activity in four separate horizontal bands within that region 
of interest.  For this installation, the observed region of interest in the webcam was calibrated to be 
bounded on the bottom by the seat of the chair (the user’s lap), on the sides by the LED strips, and 
on the top to include a user’s arms raised all the way up.  The third feature comes from the Kinect’s 

	  
Figure 42. Powers Sensor Chair system diagram 
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depth sensing camera, and is a measurement of what percentage of the pixels seen is closer to the 
Kinect than a depth threshold specified in the input node.  These aspects of the data available via the 
Kinect were selected to provide a wide range of information and to be resilient to different kinds of 
movement.   
 
The angle of the Kinect was set so as to maintain a successful rate of hand acquisition, as increasingly 
steeper angles (with the Kinect on the floor moved closer to the user) resulted in a lower speed and 
percentage of hand acquisition.  Additionally, tests were performed comparing the hand-tracking 
results when the Kinect was located at an angle above the user pointing down to the user (as if it 
were mounted on a frame); these results were not as successful as when the Kinect was located on the 
floor pointing up to the user.  Mounting the Kinect on an even plane with the user’s arms had been 
removed as an option from the beginning, as that design would interfere with the ability of other 
audience members to observe a participant playing the chair as well as make the sensing mechanism 
too obvious to the user.  
 
One challenge of working with the hand tracking information provided by the Kinect via 
SimpleOpenNI is its loss of information at high speeds of movement.  The built-in hand tracking is 
quite accurate if the user is moving slowly or at a moderate speed, even with both hands being 
tracked.   However, if the user waves her hands at very rapid speeds over a wide area (as might be 
reasonably expected in a standard interaction with the Sensor Chair), the hand-tracking algorithm 
often analyzes that movement as a series of new hand objects with different identifiers, rather than as 
a single hand object with one identifier and a series of new positions.  Given this limitation of the 
sensor data, it was decided that the hand-tracking information should not be the sole data stream 
used for movement analysis.  Additionally, when hands are rapidly lost and re-acquired, it is not 
straightforward to keep track of which hand is the “left hand” or the “right hand.”  Fortunately, the 
desired interaction paradigm did not need to differentiate between movements made with one hand 
and movements made with the other hand.  The KinectInputNode was designed to always provide 
the current XYZ position of the two most recently identified hands (or most recent hand, if only one 
hand is being tracked).  As spurious tracked hand IDs are generated during fast movement and then 
destroyed by the SimpleOpenNI libraries, the input node continually updates its currently active IDs 
to maintain the most up-to-date information.   
 
Another challenge with the Kinect hand-tracking data was the occasional tendency of the system to 
identify an unrelated piece of background/object in the environment as a “hand.”  Since this object 
would not move out of the field of the camera, that “hand,” once identified, would persist.  In order 
for the Kinect input node to avoid getting stuck tracking one of these spurious ‘hands,” the input 
node stops tracking a particular hand ID if that hand’s location has not changed in any dimension 
within a very small threshold for the past two seconds.  Even if a user holds his hand very still, 
natural tiny movements generally are registered by the input node as enough movement to maintain 
connection with that hand.  
 
The KinectWebcamInput device was extended to output an additional parameter, relating to the 
percentage of points in the image with a Z-depth lower than a given threshold (that is, closer to the 
sensor than a given threshold).  This input device performs a mathematical rotation on the depth 
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information from the sensor to compensate for the fact that the Kinect is placed on the floor in front 
of the user rather than on a horizontal axis with the user’s hands.  The raw data indicates that points 
at a given horizontal distance from the Kinect have different depth values depending on their height 
above the floor, which does not correspond to the user’s perception.  The transformation allows us 
to approximately compensate for this effect.  In this manner, even if the user’s precise hand positions 
are not currently being detected, it is possible to track the key distinction of whether the user has 
hands in the desired control range. 
 
One additional sensor is used in this installation: a pressure 
sensor located under one of the legs of the Chair.  This 
sensor’s values are smoothed and thresholded to detect 
whether someone is sitting on the Chair or not; this 
information is provided as an input node to EPES.  In the 
mapping system, this sensor can be used as a switch to 
determine whether the data from the other sensing 
strategies should be considered or rejected.  This sensor has 
a threshold value that was easily adjusted as the chair was 
tested on a variety of participants, in order to obtain a value 
that would work for even the small children using the Chair 
at the Perot Museum.  For very small children perching on 
the front of the seat, a museum guide could rest a hand on 
the back of the chair to maintain contact with the pressure 
sensor.  Through this step, participants were encouraged to 
remain seated in the Chair if they wanted to continue 
controlling sound and lights.  If they stood up, the 
interactive sound would fade out and return to a standard 
loop.   

Feature Computation and Expressive Parameter Analysis  

These hand tracking and webcam activity data streams are then processed via feature computation 
nodes to determine additional features across different timescales, such as their rates of change, 
derivatives, and smoothed values.  In the EPES feature computation nodes used for this piece, the 
features chosen for computation were selected by hand and the calculation functions were hand-
coded.  The three different types of sensor data provided by the KinectWebcamInput device 
(activity in the selected region of the webcam, percentage of pixels over the specified Z threshold, 
and the XZY locations of each hand) are each processed to obtain the same temporal features over a 
half-second window, 15 frames at a frame rate of 30 frames per second.  These features are defined 
in the WebcamFeatureComputation and KinectTwoHandFeatureComputation nodes, as 
discussed in Chapter 5: overall change (how much each input parameter has varied from frame to 
frame summed over the past window); average change (the average amount all the values have 
changed over the past window); derivative change (the amount of change over all input parameters in 
the past four frames, looking at a smaller window of time than the overall change value); overall value 
(a weighted average over the window of all parameters); and accumulated change (an accumulated 
metric of input variation that is incremented or decremented on each frame by an amount 

	  
Figure 43. A young visitor in the Powers Sensor 
Chair 
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proportional to how much the inputs have been changing).  A subset of these features are then used 
as direct inputs to the machine learning algorithms. 
 
The features used as inputs for training expressive parameters included features of the points over the 
Z threshold (overall change, average change, derivative change), and of the hand-tracking information 
(overall change, derivative change).  Some of the training samples were gathered when the Kinect was 
providing accurate hand-tracking information (when the hands were moving slowly and fluidly), 
while others were obtained while the Kinect was not correctly tracking (if the hands were moving 
very rapidly and being lost by the tracking system).  This behavior of the system was deemed similar 
to the sensor values that would be measured on real participant data.   
 
I selected three high-level expressive parameters to be learned by the system: rate, energy, and fluidity.  
Training data examples were captured separately for each of the parameters.  The normalized length 
of the training data examples saved by the system was half a second.  These training data examples 
primarily focused on different kinds of movements of the arms and were all performed by myself 
seated in the chair.  I used a foot pedal to start and stop the system for capturing each example, since 
the user’s feet are outside of the region of interest sensed by the webcam.  In all cases, I made sure to 
have a static backdrop behind me so that any movement picked up by the system would be from my 
performance.  This was consistent with the expected installation setting. 
 
The final number of training data examples used were: 11 for energy, with 5 labeled 0.0 (calm) and 6 
labeled 1.0 (energetic); 13 for fluidity, with 6 labeled 0.0 (fluid, smooth) and 7 labeled 1.0 (jerky, 
discontinuous); and 10 for rate, with 4 labeled 0.01 (very slow) and 6 labeled 1.0 (very fast).  In the 
original training set for rate, the examples gathered included some labeled 0.0 (being completely 
still), and some labeled 1.0 (moving very rapidly).  However, as I began to use this learned parameter 
in mappings, I discovered that I was not as interested in the range from no movement to very fast 
movement as I was interested in the range from very slow movement to very fast movement.  I 
captured a new dataset to reflect this range.  
 
These training data examples were captured with the Kinect positioned at an appropriate distance 
and angle from the chair, but before the platform for the installation was built and installed.  The 
resulting trained values were found to be still accurate once the setup had been installed in the 
Winspear.  Since the distance between the Kinect and the chair was predetermined and fixed, as was 
the angle of the Kinect, the sensor input was predicted to be comparable between locations.   
 
Standard feedforward Neural Networks with sigmoid activation functions were used for performing 
regression on the labeled training data examples and live test input examples.  These networks used 
the default Neural Network structure and settings defined in the Expressive Performance Extension 
System, with one hidden layer with 30 nodes.  This number of nodes in the intermediate layer had 
been tested on a variety of vocal and physical inputs, and found to increase the accuracy of the 
trained results while not being so large as to make the system require too many iterations to train or 
not be generalizable.  The Encog Neural Network’s default number of nodes in the hidden layer (8) 
had been found to be too small to produce accurate results given a high-dimensional input.  The 
dimensionality of the input in this context is the number of input data streams (5 inputs) multiplied 
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by the normalized window length (15 frames).  This results in a model with 75 nodes in the input 
layer, one hidden layer with 30 nodes, and a single node in the output layer.  Three networks were 
trained, one for each expressive parameter.  The output value for each network represents the 
predicted value of that parameter, and labels for training data represent the ideal output value for 
that parameter.  These networks were then incorporated into MLExtendableEvaluationNodes for 
testing and mapping. 
 
My process for testing each version of the trained network for a particular parameter focused on 
several aspects.  For each test, I ran the evaluation system in real time for generally around 20-30 
seconds (evaluating a new sample on each frame), providing examples that I believed to have quality 
values at various points along the parametric axis being evaluated.  Could the trained system 
correctly output a high value for something I thought should have a high value?  A low value for 
something with a low value?  What about examples that I thought should be somewhere in between, 
how did it handle those examples?  What about examples that I knew how I thought they should be 
labeled, but that were different than the examples I’d used to train the system?   The accuracy of the 
system was judged in real time by observing the changing values of the expressive parameters via a 
1DGraphNode.  I typically began by testing each parameter individually, then watching several 
graphs simultaneously to observe the composite results.  As part of the testing process, once I had 
completed a few trial mappings, I brought in additional participants who were unfamiliar with the 
system to see how the system responded to different types of movement.  I observed both the values 
that were output by the system and the sonic behavior of the system caused through mappings to 
these expressive parameters.   
 
At each point in the testing, if I was not satisfied with the results of the training, I would add a 
training data example or two that seemed to represent the aspect of the quality that the system was 
not evaluating correctly, retrain the system, and repeat the testing.  This process was generally 
repeated a few times for each parameter.  Occasionally, an added example would cause the system’s 
performance to degrade.  In this case, the newly added example would be removed and a different 
example recorded in its place.  
 
In the structure of the mappings, I used both the learned expressive parameters and other lower-level 
features.  This combination of levels of analysis helped to compensate for the slight latency 
introduced by the machine learning.  For example, a sudden change of movement from slow to fast 
would be expected to produce an audible result.  Given the half-second training and analysis 
window, the system will not recognize this change in the rate parameter immediately.  However, the 
derivative change feature can be used to pick up a particularly large change and trigger a layer of the 
system to respond immediately, with other layers coming in as the machine learning catches up, if 
the participant continues to move quickly. 

Mappings: OSCtoMIDIGenerator 

For the Sensor Chair, as well as Crenulations and Excursions and Temporal Excursions (discussed later 
in this chapter), the desired output of the mapping system was control parameters for a 
soundscape.  These soundscapes were constructed from a variety of individual prerecorded sound 
samples.  In the case of the Powers Sensor Chair, the samples were drawn from material used in and 
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collected for Death and the Powers.  In the case of Crenulations and Excursions  and Temporal 
Excursions, this material was primarily excerpted from open source samples (both recordings and 
generated samples) collected from Freesound.org.  These samples were mapped to MIDI keyboards, 
which are then controlled by an converter program I designed for generating MIDI notes 
parametrically.  This program, the OSCtoMIDIGenerator, controls up to 16 channels of MIDI.      
 
In the OSCtoMIDIGenerator, input control values have a different OSC address for each MIDI 
channel.  The note message for a given channel specifies where along the keyboard for that channel 
the next note played should be located.  Input values of 0.0f to 1.0f are mapped from the minimum 
to the maximum MIDI note desired for each keyboard; these values are specified individually for 
each channel in the OSCtoMIDIGenerator.  Keyboards can be assembled with many different 
logical progressions along the keyboard.  In a standard instrument, pitch may be the feature along 
which the keyboard is sorted.  In other keyboards of samples, other arrangement mechanisms may be 
meaningful.  For example, a set of vocal samples could be arranged from pure vocal tones to complex 
timbres, or from simple and slow melodies to complex and rapid melodies.  The location of a current 
note along a keyboard is therefore an expressive piece of information.   
 
Each MIDI channel in the OSCtoMIDIGenerator can be specified as either a continuously playing 
keyboard or a triggered keyboard.  In a continuously playing channel, an input rate parameter 
determine how rapidly notes should be selected from that MIDI keyboard.  The OSC input 
messages for rate are mapped from 0.0-1.0 to a number of frames between notes.  This mapping 
range of frames is currently implemented to be the same for all MIDI channels.  At each analysis 
frame in the program, the system checks the time at which the most recent note in a given keyboard 
was played, and the current value for the desired number of frames between notes.  If the current 
time is later than the specified delay, a new note will be played that frame using the current note 
value.  In a triggered keyboard, the system keeps track of the previous input values  for rate.  An 
OSC input rate value change to 1.0 will cause the current note value to be emitted immediately on 
the current frame.  A minimum time between triggers can also be set, so as to prevent overly rapid 
triggering of notes on a signal that has not been de-bounced and thus fluctuates back and forth 
around 1.0.  These triggered keyboards can be used for generating notes precisely with a particular 
behavior (when a movement’s energy crossed a particular threshold, for example).   
 
The OSCtoMIDIGenerator also has parameters for controlling the volume of each note played.  As 
with the note value, this value for volume for every channel is updated on each received OSC 
message, but only looked up when a note is triggered or the delay length between continuous notes 
has passed.  This system has generally been used with samples set up to play the entire sample given a 
Note On MIDI message, but the OSCtoMIDIGenerator also incorporates a duration parameter that 
reflects how long in seconds a particular note should be held before a corresponding MIDI Note Off 
message is sent.   
 
In this way, the OSCtoMIDIGenerator creates MIDI messages based on shaping and triggering 
information it receives via OSC.  In the Powers Sensor Chair implementation, these MIDI messages 
are then sent to Max/MSP where they are used to control a virtual MIDI instrument.  The different 
channels of this instrument each consist of a different type of Powers samples arranged with a 
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particular mapping from low to high.  One keyboard is entirely samples of James Maddalena singing 
the word “more” on different melodic patterns, building from the simplest single notes to the fastest 
and most complex melodies.  In Death and the Powers, these samples are combined into longer 
multi-layered triggers used in Scene 4, the love scene between Powers’ wife Evvy and Powers as the 
Chandelier.  Another keyboard consists of Chandelier sounds from Scene 4, building from low 
drones to multilayered textures to sharp string “bongs.”  Another keyboard is constructed of bits of 
samples from the Prologue and the Epilogue, the high twinkling music accompanying the robots.   

Mappings: LED Control Program 

The original Sensor Chair was designed with light bulbs at the four corners of the sensing space, 
whose intensity varied with the proximity of the performer or participant’s hand.  This served as 
feedback about the location of the user’s hand.  Since the Powers Sensor Chair was not designed to 
use specific location sensing, but instead expressive qualities of movement, I determined that the 
kind of feedback provided by lights on either side should similarly be qualitative rather than 
positional.  The lights do not imply to the user that he should put his hand in specific places, but 
instead help give feedback on his levels of energy and rate of movement.   
 

The Powers Sensor Chair incorporates two LED columns, 
one on either side of the active sensing area.  Each of these 
columns consists of a frosted acrylic tube with a strip of 60 
individually addressable RGB LEDs, running according to 
the NeoPixel specifications (“The Magic of NeoPixels | 
Adafruit NeoPixel Überguide | Adafruit Learning System,” 
n.d.).  The basic behavior of the LEDs is a point or points 
of light moving in a sinusoidal pattern up and down the 
tubes.  I developed two programs to create and control 
these sinusoidal patterns of light in the tubes.   
 
An Arduino Mega running custom software controls the 
behavior of these points of light and calculates and sets the 
intensity of each pixel at each moment, given parameters to 
shape the desired sinusoidal patterns.  The program on the 
Mega adjusts several control variables of the lights, 
including their peak brightness (intensity), the speed of 
movement of the point along the sinusoidal path (rate), the 
number of moving points along the whole LED strip 

(density), and the “width” of each point (size).  Width is a measurement of how many LEDs a 
“point” occupies: the central LED is the current location of the traveling point, and the included 
LEDs to either side of center decrease linearly in intensity.  All of these parameters have been 
designed to be continuously variable except for density, which is translated to a discrete number of 
points from 1 to 10.  An additional application written in Java translates Open Sound Control 
messages into serial control commands for the Arduino Mega program.  In the mappings used for 
this installation, the lights speed up, grow brighter, and grow more complex (consisting of more 
points and smaller points) as the user becomes more energetic in her motions and maintains that 

	  
Figure 44. A visitor observes the lighting 
patterns on the Powers Sensor Chair 
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level of energy over time.  Brightness is also used to respond to particularly high-intensity 
movements.   

Backdrop and Environment 

Behind the Sensor Chair, a backdrop made of twisted tissue paper was set up in the Winspear Lobby 
to provide a visual focus for audiences watching a participant play with the installation, to help 
provide a consistent backdrop for the camera sensing (so that others passing behind the installation 
would not confuse the signal), and to help focus sound around the participant in the chair.  The 
design of this backdrop was inspired by that the paper backdrop used for the Crenulations and 
Excursions installation, combined with the appearance of the LED walls used for Death and the 
Powers.  When the Sensor Chair was moved to the Perot, the platform was located against a wall in 
the space, eliminating several of the challenges for which the tissue paper backdrop was originally 
developed.  In addition, in order to properly install a wheelchair accessible ramp in the Perot, it was 
necessary to remove the tissue paper backdrop.   
 
In order to make the Chair accessible to those in wheelchairs, as desired for both the Perot and the 
Winspear, additional mappings were created that were identical to the primary mappings but did not 
incorporate the use of the under-chair sensor.  The Chair itself is not affixed to the platform but 
instead sits in holes cut in the shape of the legs.  For the Sensor Chair setup to be adjusted for a 
handicapped participant, the only steps are to temporarily remove the physical chair, move the 
participant’s wheelchair into the active sensing space, and switch mapping modes. 

6.1.3. Analysis: High-Level Qualities and Participant Experience 

 

 
The user populations at the two locations where the Sensor Chair was presented were quite different; 
the Winspear audiences were primarily adults (many of whom were interested in the fusion of 
technology and art), while the Perot audiences were primarily children and their families.  In order 
to design a piece that would work similarly well in both locations, it was necessary to create an 
installation with a “low floor, high ceiling.”  That is, it was necessary for a novice (perhaps a child 
just waving their arms rapidly) to immediately have a sense of control of the experience, a direct 

	  	  	  	   	  	  	  	   	  	  	   	  
Figure 45. Powers Sensor Chair visitors at the Winspear and Perot 
A variety of different people played the Powers Sensor Chair in its two installation locations in Dallas, the lobby of the Winspear 
Opera House and the Perot Museum of Nature and Science. 
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connection between his movements and the sound he was experiencing.  However, it was also 
necessary to provide more sophisticated levels of control available for those who wanted to take a 
little bit of time to explore the installation and try a variety of kinds of movement.   
 
One aspect of the Sensor Chair that was particularly interesting to observe was the wide range of 
movement vocabularies that different participants used to engage with the chair.  Since there were no 
particular instructions specified by the exhibit or by the staff (besides general instructions such as 
“try moving your hands”), visitors were free to experiment with whatever movement came to 
mind.  I believe this flexibility of movement vocabularies for interaction was supported by the fact 
that the mappings for the Sensor Chair focused on qualities of movement rather than on gesture 
recognition or on position-based information.  The mappings did not require that a visitor used the 
same gestural vocabulary in the chair as I used while designing the interaction, or that a visitor learn 
a particular mapping of space to sound; instead, participants could use their own natural movements 
in dialogue with the Chair’s sonic design.  Participants were freed to explore and be comfortable 
with the installation because it was clear that there was not one “right way,” one obvious vocabulary 
of interaction.  The chair did something interesting no matter what they did.  They could 
experiment with a variety of different behaviors to see how the chair responded to them, but they 
were not constrained by trying to learn the interface.  
 
An unexpected aspect of the limited set of instructions 
given to Sensor Chair visitors showed up in the range of 
activities participants experimented with beyond moving 
their arms and hands.  Some visitors tried playing the chair 
by moving their feet, leaning side to side, or moving their 
head into the active zone.  Quite interestingly, some 
participants explored the use of the Chair as a duet 
instrument, despite the form factor of a single chair 
indicating a solo experience.  Couples sat together on the 
Chair and attempted to coordinate their movements.  In 
the Perot, parents sat with young children on their laps (I 
observed some with children as young as one or two years 
old) and guided their hands and arms.  This unanticipated 
use case was also made possible by the design of the system 
not limiting all the movement analysis to a specific body.  
As long as at least one person was sitting on the Chair, the 
sensing is activated.    
 
While the sonic landscape provided immediate feedback for 
participants, the lighting on either side of the Chair also served as valuable feedback.  This visual 
element appeared to be one of the primary ways that people could immediately tell they were having 
an effect on the space.  Additionally, I observed an interesting interplay between the movement of 
the lighting and participants’ movement explorations.  The sinusoidal lighting patterns were 
designed to never go completely still or dark regardless of whether the participant was engaging with 
the instrument or not.  I suspect that the continuous spatial movement in the lighting gave a sense of 

	  
Figure 46. A couple plays a duet on the Powers 
Sensor Chair 
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motion to participants and suggested that they should be moving as well.  Indeed, the qualities of 
participants’ movements were also occasionally influenced by the qualities of the visible lighting.  I 
observed some participants pacing their motions to the speed of the lights along the LED tubes, and 
other participants consciously or unconsciously mimicking the sinusoidal patterns by moving their 
arms up and down.  Some users were not sure whether the LED tubes were the movement sensors; 
generally, participants did not detect the Kinect positioned on the floor in front of them.  
 
The Powers Sensor Chair is also interesting to consider through Benford’s framework of expected, 
sensed, and desired actions.  For example, a limitation of the sensing methods of the Powers Sensor 
Chair is the precision of the Kinect hand tracking algorithms when the user is moving his or her 
arms very quickly with large movements.  As such movements are certainly both expected and 
desired, it is necessary to design the interface to compensate.  For instance, some of my original 
experimental mappings used the built-in Kinect hand tracking as the sole method of determining 
whether a user’s hand was in the correct range to trigger notes.  Given the range of expected and 
desired movements that go outside the bounds of the sensing capabilities, later designs incorporated 
raw depth-tracking information to provide backup, less precise sensing capabilities.   
 
An important point brought up by Benford is the opportunity to use expected but not sensed 
movements to allow for users to rest.  In the context of the Sensor Chair, we are not tracking hand 
movements that a user performs behind the frame with lights, only those at or in front of the 
frame.  This is not a limitation of the sensor setup, but an intentional choice to allow users a way to 
have their movement not be sensed.  In a musical context, it is very important for users to have 
moments of silence and control over when they are playing or not.  While holding one’s hands 
completely still in the tracking field causes the sound design to become quiet, this does not allow the 
user a break.  The ability to sit quietly in the chair without the majority of movement being sensed 
proves a useful way for participants to pace themselves in their explorations.   
 
One thing that was especially interesting to note in my observations of Powers Sensor Chair visitors 
was the degree to which people were amazed that their movement could have a sonic effect.  To 
some extent, this was a result that surprised me.  We live in a world where technology is 
omnipresent.  People are constantly interacting with their cell phones and computer screens.  The 
Kinect and Wii let video games use the body as a controller.  Speech recognition techniques have 
gotten increasingly accurate.   Even small children, like the visitors at the Perot Museum, are 
exceedingly familiar with the power of technologies and expect to be able to do things easily via a 
computer or handheld device.  And yet, when participants sit in the Sensor Chair and the first vocal 
sample plays, the first reaction of participants is usually one of astonishment, followed by even 
greater astonishment upon moving for the first time and finding the system react to that motion.  
Seeing that the sonic behavior and the lighting of the chair are not autonomous but actually has a 
connection to one’s own actions seems to still be a surprising experience for the majority of 
participants.  This interface seems to create a sense of magic in its interaction.  I suspect this 
experience is partially due to the interface using free movement, rather than requiring interaction 
with a mouse or touchscreen.  Additionally, its feedback comes in the form of auditory and abstract 
lighting, rather than using any visualization of the participant’s body as in a Kinect-based video 
game.  Finally, there are few interfaces that people interact with on a regular basis that do not have a 
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set vocabulary of interaction or a particular goal.  I hypothesize that a system that provided access to 
an immersive, interactive experience, but did not dictate the form of interaction with it, proved 
particularly compelling.  
 
To conclude, the Powers Sensor Chair demonstrates a few key features: 

• The chair focused on control mappings using expressive qualities, rather than specific 
gestures or physical positions in space. 

• A qualitative parametric model of physical expression supported interesting results with 
many different users’ vocabularies of movement. 

• Participants were comfortable exploring the installation, perhaps because it was clear that 
there was not one “right way” to use it or one obvious vocabulary of interaction. 

• Use of both trained parameters and computed features in mappings helped to address any 
latency introduced by Neural Network evaluation.  

• The installation systems ran smoothly while on display for several weeks and used by 
hundreds of visitors. 

6.2. The Voice: Vocal Vibrations 

6.2.1. The Vocal Vibrations Initiative 

In the Opera of the Future group, we are currently seeking to expand our work in technologies for 
sophisticated measurement and extension of the singing voice in performance to create new kinds of 
vocal experiences in which everybody can participate.  Many people are not comfortable “singing” or 
do not feel that they can use their voice to become part of a rich musical experience.  To address this, 
we are developing techniques to engage the public in the regular practice of thoughtful singing and 
vocalizing, both as an individual experience and as part of a community.  In addition, we are 
exploring the ways that the singing voice can affect the body and mind, and how the act of focused 
vocalization can build contemplative practice, concentration, and listening skills. 
 
Since the summer of 2012, we have been exploring these topics through the Vocal Vibrations 
initiative.  As part of this initiative, we launched the first Vocal Vibrations public installation in 
March 2014, commissioned by art-science lab Le Laboratoire in Paris.  The Opera of the Future 
team involved in this project consisted of Tod Machover, myself, Rebecca Kleinberger, and Charles 
Holbrow.  We sought to create a space where people could come and explore their voices, both 
through a public space for careful listening and through a solo interactive vocal experience that used 
multiple sensory modalities to help the user explore their own voice and the vibrations created by 
their voice.  
 
My role in this project was as a primary interaction designer of this installation, defining a 
meaningful set of expressive vocal parameters and shaping the resulting behavior of the system.  The 
solo interactive portion of the installation incorporates the Expressive Performance Extension 
System, which analyzes and recognizes expressive parameters of a user’s voice and uses that 
information to shape the user’s experience, primarily through vibration in a handheld device that we 
called the Orb.  
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6.2.2. Components of the Vocal Vibrations Installation  

The Chapel 

When installation visitors arrive at Le Laboratoire, they first 
enter a public space, which we call the “Chapel,” designed 
to encourage careful and meditative listening.  In the 
Chapel, 10 Bowers and Wilkins high-fidelity speakers are 
located around the space playing a spatialized composition 
by Tod Machover constructed from recordings of an early 
music choral ensemble, solo soprano vocal explorations, and 
Tuvan throat singers (Machover, 2014a).  The composition 
in the Chapel centers around one particular pitch, a D, 
which participants are encouraged to follow.  At any point, 
singing a D will fit into the composition.  Headphones 
located on benches in the space play voices singing the D in 
different octaves to help participants hear the pitch and 
locate it in the larger composition.   
 
Also on display in the Chapel space is the Gemini chaise designed by Neri Oxman.  This piece 
explores different acoustic and resonant properties of materials, with the eventual goal of 

 
Figure 47. Vocal Vibrations installation at Le Laboratoire 
The Vocal Vibrations space can be experienced in many ways.  Image by Bold Design.  

	  
Figure 48. Visitors to the Vocal Vibrations 
Chapel  
The Chapel provides a space for careful listening to 
music together with other visitors.  Image by Le 
Laboratoire. 
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constructing a personal space for singing that could modify the acoustic properties of one’s voice and 
the sound in the surrounding space.  Gemini is constructed from resonant wood and sound-
dampening 3D printed shapes in 40 different material combinations, with varying stiffnesses, 
opacities, and colors.   

The Cocoon 

After a visitor has spent time in the Chapel, an assistant leads her to a solo experience in an isolated 
environment within the installation, the “Cocoon.”  The private Cocoon environment guides an 
individual to explore his or her voice and its vibrations, augmented by tactile and acoustic 
stimuli.  In the Cocoon, the visitor is given headphones, a headset microphone, and a small vibrating 
Orb to hold.  The assistant instructs her to sing the D, be guided by everything she hears in the 
headphones and follow what she hears with her voice, and see how the vibrations in the Orb change 
with her voice.  She is then left alone in the Cocoon to have a solo vocal experience, while a six-
minute pre-composed soundtrack by Tod Machover plays in the headphones (Machover, 
2014b).  In this environment, we seek to encourage visitors to experiment and play with their voices, 
as well as to gain new understanding of their voices and the vibrations produced in their body. 

The Orb 

As we worked to develop the Vocal Vibrations installation, 
it became clear that we needed something to enhance 
awareness of the vibrations in the body caused by 
singing.  We originally began with the idea that a 
participant in the installation would sit in a chair that was 
enhanced with vibratory properties that could be mapped 
to respond to the qualities of the voice.  We tried several 
experiments with the effects of transducers touching various 
points on the body.  We also explored the tactile effects of 
series of vibratory motors hooked up to respond to vocal 
parameters.  However, few of the experiments on the body 
were fully compelling; rather than enhancing the sensation 
of one’s own vocal vibration, it was challenging to create an effect that did not simply feel like a 
massage chair.   
 
Through these experiments, we found that transducers playing the raw vocal signal were most 
compelling when touched with the hands and fingertips. The hands are one of the most sensitive 
parts of the body, with many closely spaced nerve endings for detecting vibration (Gunther, 2001).  
We found that the hands could detect many variations in vibration caused by amplitude, frequency, 
and timbre.  Given these results, we decided to develop a device that could be held in the hands that 
would vibrate with a participant’s voice and give them an awareness of the variation of vibration 
contained in their voice.    
 
The prototype version of this device was developed in Fall 2013, and shown at the Media Lab 
sponsor meeting.  We used a hollow glass sphere as the base for the device and attached five 

	  
Figure 49. The Orb 
Five transducers glued to the inside of the ceramic 
Orb allow vibration patterns to be generated across 
the object’s surface.  Photo by Bold Design.  
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transducers to the interior, one on the top and four around the sides.  Each transducer could receive 
a different signal.  After the transducers were affixed to the inside, the remainder of the sphere was 
stuffed with wool and polyfill batting, so as to hold the transducers firmly in place against the curved 
interior surface and avoid the vibration of the transducers causing them to detach from the surface.   
 
The data analysis that we used for this version had separate programs for initial feature computation 
and for extended feature computation and expressive analysis.  One program (developed by Rebecca 
Kleinberger) captured basic vocal analysis parameters such as loudness, frequency, harmonicity, and 
noisiness from a live microphone stream.  These parameters were then sent to the Expressive 
Performance Extension System, which performed additional layers of computational analysis at 
multiple timescales, looking at smoothed harmonicity and loudness over time, overall change of the 
signal, derivative change, and average amount of change.  Through these values, we focused on the 
overall stability of the input signal.  These analysis results were then mapped in EPES to the input 
parameters of a Max/MSP patch for controlling the Orb: should the sound move from transducer to 
transducer, how quickly, in how scattered of a pattern, how prominent additional sounds should be, 
how fast should the Orb’s additional pulses of sound be?  The Max/MSP patch used the raw vocal 
signal and this control data from EPES to determine what sound patterns to send to the Orb’s 
transducers.   
 
We explored many variations of mappings from input sound parameters to behaviors of the 
vibration in the Orb.  Initial experiments showed that even simply sending the pure vocal signal to 
the Orb was quite interesting, as very small changes in the voice caused completely connected 
transformations in the experienced vibration.  And yet, due to the modality transformation, the 
experience was not simply that of touching a loudspeaker.  The surface and material of the Orb 
affected the ways that the vibration patterns interacted and were amplified or dampened, such that 
different frequencies of the voice or different amplitude patterns began to take on their own 
behavior. 
 
We also experimented with different patterns of moving sound around the Orb, either from the 
direct audio signal or from a generated wave or burst pattern.  Due to the resonance of the Orb’s 
material, simply playing sound from one transducer versus a different transducer was not particularly 
noticeable; for example, it was difficult to distinguish tactilely whether a sound was being sent to the 
left-most transducer, the right-most transducer, or the top transducer.  Smoothly shifting a sound 
from one transducer to another was also hard to distinguish by touch.  In order to have a sense of 
spatial variation in the vibration, we found it necessary to use quick pulses of sound that could be 
rotated or bounced around the orb from one transducer to another. 
 
The mapping that proved most compelling in this initial version used a blend of a pure vocal signal 
sent to the top transducer and a pulse that could be brought in to rotate around the other 
transducers.  We sought to emphasize the simplicity or complexity of the user’s voice in an 
unexpected direction, by rewarding a pure, extended tone with a growing complexity of the 
vibration experience.  Speaking or making other complex sounds caused the orb to fall back to 
outputting the pure vocal signal.  If a pure tone was held for long enough, the mapping brought up 
the intensity and speed of the moving pulse, building from a tiny shudder to a complex 
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shake.  Meanwhile, having a layer of the raw vocal signal incorporated into the Orb’s top transducer 
kept the results feeling immediately connected to changes of input. 
 
The Orb used for the final installation was designed in collaboration with the French company Bold 
Design.  This Orb is made from ceramic, with two pieces held together by small screws.  Due to its 
asymmetry, it turns out to have some interesting vibrational properties.  When the transducers are 
installed, input signals of different frequencies propagate with different decay rates across different 
parts of the Orb.  Low signals resonate more in the rounded end, higher signals resonate more in the 
pointed end.  A frequency sweep or a signal that is changing in frequency rapidly results in the 
impression of the signal moving from end to end of the Orb.   

Musical Material and Simple Vocal Interactions 

Since a major goal of this installation was to give novices the ability to be part of a musical 
experience centered around their voice, we explored what kind of musical tasks we could give 
someone that would be simple, not intimidating, and still rich enough to fit into a musical 
experience.  We determined that one of the easiest “gateways” into a musical experience would be 
simply asking participants to sing only one note, to experiment and explore variations on a single 
pitch.  They could play with rhythm, with vowels, with timbres, with positioning the sound in 
different places in their head and body.  They would not have to learn a part beforehand, they could 
be taught their basic part quickly and easily.  The musical experience around them could then be 
composed such that this single note would always fit into the composition.   
 
The sonic material gathered for the Vocal Vibrations installation primarily consists of vocal material 
recorded from a choral group specializing in early music (Blue Heron) and an operatically trained 
soprano (Sara Heaton).  Other material was recorded from the Tuvan throat-singing ensemble 
Alash.  Over a set of recording sessions, we captured a wide range of raw material for the installation, 
varying from musical material pre-composed by Tod Machover to improvisations in a specific 
timbre.  With Blue Heron, we recorded a number of chords and melodies sung with a very pure tone 
on a variety of vowels, as well as with improvised “morphing” timbres.  With Sara Heaton, we 
recorded a wider variety of material: individual notes in the key of the piece, with a variety of timbres 
and articulations; pre-composed melodic fragments with multiple and shifting timbres; longer 
melodies; improvised passages of morphing timbres; improvisations with continually gliding and 
shifting pitches; even explorations of whispered sounds and unvoiced sounds.  The majority of this 
material was composed to center on a D.  Through these recording sessions, we sought to capture 
material that could be edited into short fragments.  Those fragments then served as the building 
blocks of both the individual interactive experience and the longer composition for the Chapel.   

6.2.3. Development of the Cocoon Solo Experience 

I will primarily focus on this installation’s individual, interactive experience, the Cocoon, as this is 
the aspect of the Vocal Vibrations installation that incorporates the Expressive Performance 
Extension System.  Additionally, the Cocoon is particularly interesting in the extent to which our 
conception of the interactive experience changed frequently throughout the development process.  
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EPES supported rapid prototyping of a variety of different interactive models as we sought to 
determine what interaction design would support our overall goals for the experience.   
 
Our goals for the Cocoon experience were multiple.  First, 
we wanted to give people a new way to explore singing and 
vocalizing, to draw those who are not usually singers into a 
musical experience through their voices.  Second, we hoped 
to guide people to use their voices as a tool for careful 
listening to music.  The third goal was to draw participants’ 
attention to the way in which the act of vocalizing creates 
vibrations in their bodies, and to enhance that vibration 
and their awareness of voice as a tactile experience.  As we 
worked to realize the individual Cocoon experience, we 
continued shaping these goals and tried to use them as 
guidelines.  We knew that the interactive technologies and 
techniques we were using needed to support these goals and not become a distraction from them.   
 
Perhaps more so than in most other projects, our ideas about how this individual Cocoon experience 
would work and what the interactivity would look like shifted substantially between our early 
conceptions and our final realization.  The flexibility of EPES was found to be quite useful as we 
explored a variety of different ideas.  While we were rapidly prototyping different kinds of mappings 
and incorporating different input information and output models, we did not have to change the 
technological core of the experience.  The data pathway remained the same throughout a variety of 
different interaction models, allowing us to flexibly experiment with many different ideas.  The 
nature and purpose of the mappings changed substantially throughout the development process, but 
the core of the system did not. 
 
Our basic signal flow remained the same throughout the design process.  A Max/MSP patch 
(designed by Rebecca Kleinberger) first calculates computational features of the voice, given a 
microphone input.  These computational features are sent via OSC to an input node in EPES, 
which handles additional feature computation (such as the variation of features over time), adds 
higher-level trained parameters, and allows the creation of mappings to output control parameters. 
These mappings can incorporate both low-level computational features and high-level abstract 
parameters.  The output control parameters are sent via OSC to another Max/MSP patch that 
controls output sound for the headphones and the behaviors of the Orb.  The input Max patch for 
vocal feature computation could mostly have been replaced with an extension of EPES’s existing 
vocal processing input nodes (which currently analyze fundamental frequency, harmonicity, and 
amplitude from a microphone signal), but it was decided to keep the analysis of computational 
features in a separate system for ease of development with multiple collaborators.   
 

	  
Figure 50. The Vocal Vibrations Cocoon 
Participants entered the Cocoon space to have a 
solo vocal experience with the Orb.  Photo via Le 
Laboratoire. 
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We originally intended to combine a pre-determined shape of the experience, which could serve as a 
guideline for the user, with moment-to-moment interactive sound generation.  A pre-composed 
baseline track could serve as the core and throughline of the installation, with different kinds of 
sound at different moments helping to sculpt the participant’s experience.  On top of that stable 
core, we could layer fragments of material (including melodic snippets, additional notes, and 
different timbres) that would be added in response to the participant’s vocal qualities.  By using 
different mappings at different points in the experience (easily changed at times synchronized with 
the playback of the core track), we could make different vocabularies of interaction accessible at 
different moments.  However, as the development of this initial Vocal Vibrations installation 
progressed, we chose to simplify the interaction design substantially to draw closer to the goals of the 
experience.   
 
An important question in the Vocal Vibrations solo portion of the installation was the balance 
between how much the system and musical content should be in reaction to the participant’s 
vocalizations, and how much the musical content should guide the participant’s vocalizations.  In an 
earlier design for the experience, we had considered using brief text phrases displayed in front of a 
participant to suggest how she might vocalize in relationship to what she was hearing (“like this,” 
“something unexpected,” etc.).  As the design of the Cocoon space evolved, it was clear that 
displaying text would not be a good option, so we discussed giving a participant instructions at the 
beginning telling them to vocally follow what they heard in the experience.  However, the danger 

	  
Figure 51. System diagram for the Cocoon experience 
The system flow of the Cocoon remained constant even as we explored many variations on the shape of the experience and the nature 
of a participant’s vocal interaction.  
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with having this instruction in an interactive system was the prospect of the participant and the 
system ending up in a feedback loop, where the user would follow the sound qualities suggested by 
the system, which would then further enhance those sound qualities, which the user would then 
repeat. 
 
Once Tod had finished composing the soundtrack for the individual experience in the Cocoon, it 
became clear that it was a very interesting experience simply to sing along with and be guided by that 
piece of music as a polished whole.  Originally, we had envisioned that everything a participant 
heard in the headphones would be shaped and controlled by their vocal behavior, providing a full 
instrument under their control.  We explored whether we wanted to interactively affect the playback 
of the Cocoon composition through standard techniques such as breaking it into layers to be built 
up by the participant’s involvement, adding samples interactively triggered on top of it, or changing 
the processing of the sound in real time.  However, the existing Cocoon music plus a participant’s 
vocal explorations stood strongly on its own.  We realized that the music had its own shape and arc 
that guided the participant through a variety of vocal explorations; to strip the music down to 
various layers would lose some of the power of the complete piece of music.  Similarly, with the 
careful composition of the musical arc, incorporating various additional material or audio processing 
triggered interactively did not feel necessary or helpful either.  
 
Therefore, we chose to use an ideal mix of the Cocoon piece for headphones created by Charles 
Holbrow, which carefully spatialized the material to add another dimension for a participant to 
vocally explore.  We decided to try having the participant’s live voice fed back into the headphones, 
and have the sound of this vocal reinforcement be an aspect affected by the user’s vocalization.  We 
experimented with different techniques for vocal modification, including binaural spatialization of 
the user’s voice, vocoding, pitch modification, and other effect parameters.  We used the Expressive 
Performance Extension system in our rapid iteration process.  As we were experimenting with 
different vocal modification effects in Max/MSP, we kept iterating on new mappings in EPES to 
explore the entire loop of the system, from computational feature analysis through high-level 
parametric representation to output control parameters.  As we continued our experiments, it was 
clear that any distortion of the voice needed to be carefully performed.  The musical material used 
for the composition is primarily pure, unprocessed voice, and a distorted voice would not fit into the 
composition.  Any vocal shaping needed to be quite subtle.    
 
As we progressively simplified the interaction design of the Cocoon in the weeks leading up to the 
installation’s arrival in Paris, we realized that a fully interactive instrumental model, where the user 
controlled aspects of what they heard through how they vocalized, was not actually what we wanted 
for this experience.  Our goals included bringing people into a state of focus, where they could 
carefully listen to music, explore vocally, and experience their voice as vibration.  We came to the 
conclusion that giving participants too much active and conscious control over what they heard 
(whether through changing aspects of the musical composition, affecting the processing of their own 
voices, or triggering generated vibration patterns in the Orb) would actually detract from the core of 
the experience.  Instead of having the user “control” the musical composition, we chose to have the 
soundtrack for the experience “control” the behavior of the participant.  Instead of hoping that a 
participant would happen to try different kinds of vocalizations and find themselves rewarded by 
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some interactive result, we believed that the participant’s explorations could be influenced more 
strongly by having everything they heard be carefully composed as a path for them to follow vocally.  
In fact, we even went further and took the stance that hearing one’s own voice in the headphones 
was not only unnecessary, but even distracting.  The point of this experience was not to hear oneself 
singing beautifully, but to feel free to play with one’s voice, to experience one’s voice as 
vibration.  We felt that hearing one’s own voice fed back into the headphones could lead to self-
consciousness about how one’s voice was blending with the musical composition, or about how 
“good” or “correct” one sounded.   
 

We went through a similar simplification process in shaping 
the users’ interaction with the Orb in the interactive 
installation.  At first we envisioned the vibrational behavior 
of the Orb going in many different directions, with 
different pre-composed vibration patterns triggered by 
aspects of a user’s voice, and certain vocal behaviors 
obviously “rewarded.”  For example, in the early mapping 
previously discussed, holding a pure note eventually caused 
the orb to add little knocking patterns that bounced around 
the sphere creating a kind of “purring” sensation.  Many 
different kinds of tactile effects were tested on the Orb, and 
we explored various EPES mappings from vocal behavior to 
the shaping of those effects.  However, the thing that was 
most compelling turned out to be material that felt like it 
came directly from the user’s voice, such as using a filtered 
audio signal from the microphone  and moving that 
microphone signal in patterns around the Orb.  Modes that 
made the Orb appear to have too much of its own behavior 
(such as vibrational patterns completely unrelated to the 
actual vocal signal even though they were triggered or 
affected by characteristics of the vocal signal) broke the 
effect that this was a user’s voice turned into vibration.   

 
For the final version of the solo Cocoon experience, characteristics of the user’s voice subtly affected 
the movement behavior of the sound patterns in the Orb, while the composition heard in the 
headphones was static.  Based on parameters of the user’s voice, we adjusted how much the audio 
signal was coming from all transducers or how much it was moving or bouncing around the Orb, 
and how quickly the signal was moving from transducer to transducer.  We incorporated 
computational detection of vocal onsets to help link the movement of the sound to the user’s 
articulation of new sounds.  These subtle mappings allowed us to draw the participant’s focus to the 
vibration of his or her voice and to the act of carefully listening and vocally exploring, while still 
maintaining a sense of liveness and variety in the tactile experience.   
 
We carefully thought about what information was necessary to give participants beforehand to put 
them in the right mindset for this experience.  In the installation, a trained mediator brings 

	  
Figure 52. Vocalizing while holding the Orb 
In the Cocoon experience, a visitor listens to a 
carefully sculpted composition and is instructed to 
sing a D guided by the music.  The Orb vibrates 
with the vocalization.  Photo by Rebecca 
Kleinberger. 
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participants individually into the Cocoon and prepares them for the individual experience, by fitting 
them with microphone and headphones, giving them the Orb, and starting the pre-composed 
track.  We gave the mediators a number of instructional points to convey to participants: 

• This is a solo experience, You will be alone and free to experiment and play with your voice. 
• It will last six minutes.   
• Like the Chapel, this experience centers on one note, the D, that you can hear and sing along 

with.   
• Try to be guided by and follow the music that you hear.  
• This is a very different kind of experience of your voice, so don’t worry if you don’t hear 

your voice in the way you expect. 
• The more you experiment and try different things, the more the Orb will come alive with 

your voice. See how different things feel. 

6.2.4. Different Temporal Scales of High-Level Parameters 

For Vocal Vibrations, one of the most important steps was determining which kinds of parameters 
we wanted to measure from the voice.  We determined that there were three categories of relevant 
information: low-level features (such as frequency and amplitude), mid-level features that could still 
be computationally calculated from the signal (such as the number of onsets within a given temporal 
window and the spectral centroid), and high-level parameters that could be abstracted from the voice 
through machine learning (such as stability, intensity, and complexity).   
 
In our analysis of the individual Cocoon experience, we identified one particular high-level 
expressive quality scale as being particularly useful.  Originally, while prototyping a more 
instrumental model, we trained parameters such as intensity and complexity.  However, once we had 
determined that the composition heard in the experience would be static, we started to see how that 
composition affected the vocal behavior of participants.  A participant can respond vocally to the 
pre-shaped piece of music in many ways, with two kinds of models at the extremes.  One extreme is 
a meditative model: trying to hold the D as purely and steadily as possible throughout regardless of 
the variation in the musical composition.  The other is an exploratory model: playing with many 
different variations of rhythm, timbre, position of the sound, etc. as inspired by the variation in the 
musical composition.  Given this, we decided to explore a qualitative parametric continuum of 
exploration from meditative to exploratory, as this parameter was highly relevant in describing an 
individual’s expressive arc during this particular experience.  
 
As we continued simplifying the interaction design, it was clear that we did not need this exploratory 
to meditative axis to affect the behavior of the music from moment to moment.  Instead we viewed 
this parameter as something analyzed over the course of a participant’s complete experience and used 
to provide some qualitative feedback about that experience.  This experience has no “right” or 
“wrong” way of engaging with it, so we would not want to give feedback that related to accuracy 
(how good someone was at keeping on the D, for example, or how closely they followed the kind of 
sounds at each point of the musical composition).  However, giving exploratory-meditative feedback 
about the overall experience might help guide people to try new things on additional visits to the 
installation.  A larger goal of the Vocal Vibrations project has been the creation of models for long-
time engagement with the singing voice.  While the initial Paris installation is an experience that 
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many people will only visit once, we wanted to continue thinking about models of repeat 
engagement.  What if, after trying the experience, a visitor was given a card with some feedback 
about his experience?  Say, where he fell along the meditative to exploratory scale, divided into a few 
different stages?  He could then be given instructions about things to try for his next time at the 
experience: “You were very exploratory and played with a lot of different aspects of your voice.  A 
different kind of experience you could try next time would be to really focus on holding the D, 
trying to keep it very steady…” 
 
The final computation of exploration consisted of analysis at two timescales.  First, a machine 
learning node was trained on vocal examples that were approximately one to three seconds long, 
consisting of several examples on each side of the spectrum and a few in the middle.  The evaluation 
node calculates the desired value on the prior two seconds of data.  This produces a continuous 
meditative to exploratory value reflecting the current amount of vocal exploration over the past two 
seconds.  Second, a post-processing algorithm is used on this continuous parameter to produce a 
value representing the visitor’s exploration over the course of their experience. 
 
Vocal features that are used as input to the Expressive Performance Extension System include a 
variety of vocal features calculated computationally in an external Max/MSP program.  These 
features are calculated on the current FFT window and include “Loudness,” “Noisiness,” 
“Frequency,” “Skewness,” “Odd to Even Ratio,” “Centroid,” “Sharpness,” and whether or not an 
“Onset” is currently occurring.  Additional features that describe the behavior of some of these values 
over time are calculated within EPES, including the number of onsets in the past second, the 
amount of variation of loudness over the past quarter second, the amount of variation in frequency 
over the past quarter second, and the amount of variation in the spectral centroid over the past 
quarter second.  Six of these metrics are used directly as inputs to the machine learning process for 
exploration: amount of variation in loudness, amount of variation in frequency, amount of variation 
in skewness, amount of variation in sharpness, amount of variation in the spectral centroid, and the 
number of onsets in the past second.  These features of variation were used rather than the direct 
values for parameters such as frequency and loudness because I considered the amount of change or 
lack of change along many axes more likely to indicate expression than the specifics of how those 
values changed.  
 
The final training data set for exploration consists of 14 examples.  5 are labeled 0.0, representing 
extremely meditative samples (long notes, steady pitch, steady timbre).  5 are labeled 1.0, 
representing very exploratory vocalizations (rhythmic variation, lots of timbre change).  4 are labeled 
0.36, serving as examples of some gentle vocal variation (perhaps changing only timbre).  The 
addition of these intermediate values helped to correctly scale the range of the trained system, 
showing that variation in timbre still meant that the user was exploring different vocalizations, even 
if the pitch was reasonably continuous.   
 
This training data set was gathered in Paris to replace the original training data, since the amount of 
background noise due to the Chapel piece playing simultaneously in the space was substantially 
different than the amount of background noise for the training examples recorded at the Media 
Lab.  This required the microphone levels and the sensitivity of the computational analysis 
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algorithms to be changed to attempt to only pick up signal when a user was singing, which provided 
different ranges of values to the system.  Due to the speed of the process for capturing new training 
data examples, it was possible to easily replace training data and get more accuracy in the real space.   
 
A multi-layer feedforward Neural Network was used to perform regression on the input data to 
produce a value for exploration.  This network has 360 input nodes (6 inputs multiplied by 60 
frames of data, 2 seconds at 30 frames per second), 30 hidden nodes, and one output node.  The 
trained network is then used to evaluate input data continually in real time, calculating a current 
value from the past two seconds of data.  While the length of the samples used in this process 
introduces an element of latency that would be extremely noticeable if any output value was being 
controlled live by this parameter, this latency is completely acceptable in this evaluation process 
because it is being used for a calculation whose results are not presented to the user during the 
experience.  Even if some kind of feedback about the user’s amount of exploration was desired in the 
middle of the experience (perhaps through a visualization), it is reasonable that this metric would not 
be something expected to change completely in a fraction of a second. 
 
A second expressive vocal parameter of stability was also added to refine the concept of the expressive 
space of exploration.  This parameter attempted to draw out the difference between the kind of 
variation that is caused by a user being very free with different kinds of vocalizations around a pitch, 
and the kind of variation that represents the user giving up on holding a note and just speaking or 
jumping around through many pitches.  The former type of variation is more desirable in this 
experience, the latter is less desirable.  While one extreme of each axis may be similar (stable, 
meditative notes), the other extreme is fairly different (exploratory variation vs. random variation).  
A separate set of training data was gathered for this parameter using a different machine learning 
training node, as the desired length of examples was shorter than those used for the exploration data.  
This training data consists of 16 examples labeled 0.0 (very unstable, random, talking) and 5 labeled 
1.0 (very stable, constant pitch, smoothly changing or steady timbre).  This parameter took more 
iterations for gathering sufficient training data than other parameters, attempting to clarify the 
distinction between very random vocal input (such as talking) from vocal input that varied but was 
still expressively meaningful.  When testing on a pulsed rhythm on one pitch, for example, the 
system should not predict “very unstable.”  
 
In addition to the continuous exploration and stability values calculated live on the user’s vocal 
behavior, a post-processing algorithm was designed to gather a value for this exploration parameter 
that represents the participant’s overall percentage of exploratory versus meditative behavior through 
the course of the entire experience.  This post-processing step checks at each time step to see if the 
participant is currently singing (if the average amplitude for the last second has been above an 
empirically determined threshold).  If so, the current exploration and stability values are stored, as 
well as the amount of change in the spectral centroid over the past two seconds.  The average of the 
stored exploration and stability values can then be calculated and combined through a hand-crafted 
algorithm with the average of the amount of change in the spectral centroid (to reflect subtle timbre 
changes).  This combined value forms a metric of the user’s overall exploratory behavior for a longer 
time period, up to the entire length of the six-minute experience.   
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An important thing to note is that this kind of exploration model requires machine learning at 
longer timescales and several timescales.  Suppose a participant is attempting to hold the D 
reasonably steadily, with consistent timbre and volume.  Too short of an analysis window might 
overly weight moments when the user pauses to take a breath (when no pitched data is captured 
within the given analysis window).  A longer analysis window or set of windows is necessary to 
properly capture concepts of “exploration.”  One could imagine definitions of “exploration” that 
examine only a participant’s timbral variation across the entire experience, for example.  For this 
project, we chose to primarily focus on giving windows of a few seconds long to the machine 
learning systems, and then analyzing the range of values collected throughout the experience to 
determine one “overall” measurement of the experience.  While we did not end up incorporating this 
post-experience feedback layer into the final design of this version of the Vocal Vibrations experience 
due to logistical and staffing limitations at our venue, our experiments with this parameter and the 
resulting feedback were very informative and could easily be integrated into future experiences. 

6.2.5. Public Reaction to the Vocal Vibrations Installation 

The Vocal Vibrations installation had a private opening for press and invited guests on March 27, 
2014, with a public opening on March 28.  The installation is running in Paris through the end of 
September 2014, and will come to the new Le Laboratoire in Cambridge, MA in October 2014.   
 

Participants were very excited to have a completely new 
form of experience with their own voices.  Even visitors 
who began interacting with the installation very quietly and 
tentatively still found the interaction with their voice in the 
Orb and with the musical composition to be compelling.   
Interestingly, we indeed saw many participants 
experimenting with their voices in the exploratory and 
meditative directions that we had predicted and seen in our 
original tests.  Some participants chose to carefully focus on 
the audio experience and to attempt to hold the D steadily.  
Others, interested in the transformation of their voice via 
the Orb, wanted to try many different sounds with their 

voice to see how the Orb would behave.  Accordingly, some visitors found the overall Cocoon 
experience calming, while others found it exciting. 
 
Additionally, visitors found the Chapel experience to be quite engrossing and meditative.  Many 
visitors stayed for long periods, sitting on the cushions and benches and listening to the piece.  Even 
families with small children enjoyed the experience; we observed one family with an infant peacefully 
staying in the Chapel for almost an hour.  Le Laboratoire has also collaborated with other groups in 
Paris to hold experiences in the Chapel space, such as yoga classes and even gatherings for parents 
with babies.   
 
One challenge in the initial opening of the installation, when we were faced with very large crowds, 
was how to let as many people as possible experience the Cocoon.  Since the standard Cocoon 
interaction is structured to be a six-minute individual experience, this normal experience would not 

	  
Figure 53. Cocoon visitors exploring the Orb 
Visitors had a variety of reactions to the experience 
of feeling their voice in the Orb. Photos provided 
by Le Laboratoire. 
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work at times of high traffic.  We thus ran two demonstration variations of the experience during the 
first two days.  We allowed groups of participants into the Cocoon together for an explanation, then 
let each member of the group take a limited turn with the headphones, microphone, and Orb.   In 
order to allow more participants the opportunity to experience the Orb, we also performed some 
demonstrations where one of us would sing to show the effect of different vocal sounds in the Orb 
and pass around the Orb for visitors to hold.  Interestingly, people found the sensation of holding 
someone else’s voice in their hands equally compelling as holding their own; they experienced it as a 
very personal connection.  For the remainder of the installation, the exhibit moderators guided 
individual participants to have the entire six-minute experience.   
 
In the first months that the installation was running, we have received additional feedback from the 
moderators at Le Laboratoire about visitors’ experiences.  Many visitors highly enjoy the experience, 
particularly the solo experience portion.  However, we did get the feedback that visitors commented 
the vibrations of the Orb felt too subtle at high vocal frequencies.  Due to the material properties of 
the ceramic shell, higher frequencies dropped off much more rapidly and did not carry to the 
fingertips as strongly.  In response, we have adjusted the behavior of the Orb to add a slight pitch-
shifted layer of sound to the existing filtered signal, so that there is always a component of the sound 
that was an octave lower than the participant’s voice.  This signal stays sufficiently connected to the 
voice while allowing for a strong vibration in higher vocal ranges.  

6.2.6. The Role of the Expressive Performance Extension System 

An important aspect of the use of the Expressive Performance Extension System in this installation 
was its flexibility for rapid prototyping and iteration throughout the course of the design and 
development process.  We began the concrete development of the Le Laboratoire installation 
imagining one particular model of interaction, but rapidly moved through several different 
interactive models attempting to get the feel of the overall experience right.  Having one system stay 
at the core of the interaction design allowed for consistency and quick development, even as we 
tweaked the computational vocal analysis process and continued to reinvent the output modalities 
and output control parameters.  
 
As we developed the exploratory to meditative scale, a new kind of expressive parameter that was 
meaningful in the context of this specific piece, we also were able to quickly train on examples and 
experiment with mappings.  Had we tried to do these qualitative mappings by hand, it would have 
been much more time-consuming to develop algorithms to connect the variation of several variables 
to a position on this expressive axis.  We knew that several features of the input might be important 
for helping to convey these concepts (such as the amount of change of frequency, change of 
amplitude, change of spectral centroid, harmonicity, and rate of onsets), but we did not need to 
empirically figure out how each of these features was related to our perceptual sense of exploration to 
meditation in order to explore these concepts.   
 
EPES also allowed for development of our interactive ideas in one environment (the Media Lab), 
and then quick re-training of the system when we arrived in Paris and set up the installation in its 
real context.  Since the only input data we were using for the mapping system was parameters of 
audio data from the wearable microphone, the differences in the sonic background environment 
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were a concern.  There was little sound isolation between the Cocoon and the Chapel, so it was 
necessary to retrain our expressive parameters in the real space with the background noise of the 
Chapel.  Since we had already figured out what expressive parameters were useful, and some 
examples of the variety of training data that we needed to capture for each parameter, it was quick to 
capture new data.   
 
As with the Powers Sensor Chair, the Vocal Vibrations installation had to be designed to be 
interesting with a wide variety of input behavior.  Participants were given very broad instructions 
and each participant would come in with their own vocabulary of sonic exploration.  While the arc 
of the musical composition suggested different kinds of sounds and vocalizations that visitors could 
explore, each participant had a unique interaction with the installation, from quietly humming into 
the microphone to slow chanting to swooping glissandos to a broad range of vocalizations.  Some 
participants experimented with many different interactions over the course of their solo experience, 
others preferred to keep one mode of interaction.  The range of each participant’s vocalization and 
variation of vocalization also differed.  Given the great variability of input, and the fact that we could 
not predict anything beforehand about how a participant would interact with the installation, we 
had to design a system that did not have a “right” or a “wrong” way to interact with it.  Different 
vocabularies of interaction might evoke different responses in the Orb, certain kinds of behaviors 
might be found to be particularly powerful, but everything had to be interesting. 
 
In future versions of such a system, it would be useful to do some quick system tuning for each 
participant.  Perhaps when a participant begins vocalizing, the system could listen to the first fifteen 
seconds or so and try to get a sense of whether this person is tentative or bold, singing softly, trying 
many things or being quite stable.  Then the behavior of the Orb could be scaled or moved into 
different modes to create the best possible experience.  For example, if someone comes in and only 
hums very gently, it might make sense to make the Orb quite reactive, so tiny changes of the 
participant’s voice would evoke greater variation in the Orb.   
 
In conclusion, the Vocal Vibrations installation demonstrates several interesting elements: 

• The system supported analysis of expressive parameters at many different timescales: current, 
last phrase, and entire performance.  

• The most interesting expressive axis measured defined a exploratory to meditative vocal 
experience. 

• A subtle interaction through a tactile interface was a better choice than a consciously-
controllable instrumental model for the installation’s goals of encouraging careful listening 
and focusing on one’s own vocal vibrations. Should the system control the user or the user 
control the system? 

• The question of how much and what kind of feedback to provide the user was particularly 
important.   

• The Expressive Performance Extension System was quick to re-train on location as necessary. 
• The design process demonstrated the flexibility of the Expressive Performance Extension 

System throughout the entire development arc of an installation: ideation and quick 
sketches, rapid prototyping, and exhibition. 
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6.3. The Body and Voice: Crenulations and Excursions and Temporal Excursions 
With the Powers Sensor Chair and Vocal Vibrations, we have discussed work featuring analysis and 
mapping of either the voice or the body.  As the Expressive Performance Extension System provides 
similar tools for either performance modality, it was important to test how the system could support 
creating pieces that incorporated both body and voice in combination.  Temporal Excursions is a solo 
vocal and physical performance piece where layers of sound proliferate and surround a performer, 
shaped by qualities of both her voice and her movement.  The sonic world and movement 
vocabulary used for Temporal Excursions is inspired by that of an earlier extended movement piece, 
Crenulations and Excursions, which will be discussed first. 

6.3.1. Crenulations and Excursions 

Crenulations and Excursions is a combination dance 
performance and installation space.  This piece allows a solo 
performer or a visitor to explore a rich sonic space through 
her expressive movement.  With a tiny, energetic 
movement, with a fluid and sweeping gesture, a performer 
can create and shape layers of sound around herself.  
Crenulations and Excursions draws on a conducting 
metaphor rather than an instrumental metaphor, where the 
performer’s movement is generally used to shape and guide 
the qualities of the resulting soundscape rather than to 
trigger individual sounds.  The performance explores the 
body as a subtle and powerful instrument, providing 
continuous control of continuous expression.  
 
Crenulations and Excursions is driven by the Expressive Performance Extension System, which 
captures data about movement in the space and transforms that data to a continuous space of 
abstract expressive parameters.  Points in and trajectories through this parametric space are then 
mapped to control parameters for the ordering and layering of micro-samples of sound arranged in a 
set of sonic spaces.   
 
The sonic material for this piece is controlled via OSCtoMIDIGenerator software described in 
Section 6.1.  This control program determines when different MIDI commands should be sent to a 
virtual MIDI instrument, based on musical shaping information from an interactive mapping.  The 
virtual instrument playback is performed in Max/MSP.  Each MIDI channel features a different 
vocabulary of sound, with small samples that play in their entirety when a note is played.  These 
samples, from .5 to 8 seconds in length, are created from material from Freesound.org, as well as 
from recordings made at the Lab of group vocal improvisation in a resonant space.  The sonic 
vocabulary and note arrangement of the individual MIDI channels include: vocal samples, arranged 
from pure notes to complex chords and processed voices; string-like samples, arranged from a low 
gritty drone to atmospheric synthesized chords to higher-pitched, purer single note samples; and 
“mechanical” samples arranged from legato to staccato, starting with longer multilayered drones and 
moving to short metallic bangs and buzzes.  Another MIDI channel incorporates elements from 

	  
Figure 54. Crenulations and Excursions 
In the Crenulations and Excursions space, a 
performer can create a soundscape through her 
movement.  Photo by Peter Torpey. 
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several of these vocabularies, building through low vocal drones, to layered sung melodic fragments, 
to synthesized chords, to mechanical soundscapes, to staccato bursts of crunching glass, electric 
buzzing, and typing on a keyboard.  In the performance of this piece, sonic palettes from multiple 
keyboards are layered to create even richer sound worlds.  Multiple notes can be played at once.  The 
sound dies away completely only when the performer is still for a few moments, and is brought back 
immediately when she again raises an arm.   
 

This performance also incorporates a scenic design 
component to transform the space and create an evocative 
and inviting environment for performance and experience. 
This environment appears as a sculptural and textural 
outgrowth of the Media Lab building, visually extending 
and surprisingly shifting the space.  It mirrors the rich range 
of textures and qualities present in the sound and 
movement, and physically alters the acoustic results of the 
sonic playback to create an enveloping sonic environment.  
This backdrop is constructed of tissue paper attached to 
sheets of poster board that are then mounted on a curved 

display frame.  Speakers are positioned on either side of the scenic backdrop, pointed into the space 
implied by the curve of the scenery.  From afar, the sound design can be heard sufficiently clearly; 
when a performer or installation visitor steps into the space, the sound is enveloping.   
 
Installation visitors are tracked through noninvasive sensing: a Kinect used as a hand tracking system 
and as a webcam processed to determine activity levels in the space.  The solo performer additionally 
wears a set of long gloves enhanced with accelerometers that capture higher levels of detail about her 
arm and hand movements.  All of this data is sent to the Expressive Performance Extension System, 
which handles feature computation and abstract movement quality analysis.  In this version, the 
primary movement qualities are Laban-inspired, consisting of the axes of time, weight, and flow.  The 
impact of different sensor features on the performer’s current location on these expressive axes was 
hand-coded into the QualityAnalysis node class originally designed for Death and the Powers.  
EPES is also used for the mappings from features and abstract qualities to the control parameters for 
the OSCtoMIDIGenerator, including which keyboards are selected, the velocity of given notes, and 
the length of time between notes on continuously playing keyboards.  In addition, to the control 
parameters for the OSCtoMIDIGenerator, other control parameters are sent directly to the 
Max/MSP patch that contains the virtual MIDI instrument.  These parameters affect general aspects 
of the sound as a whole, such as the overall dynamic level.  In the performance version, there are 
several different mappings in EPES, each controlling different sets of keyboards, that are switched via 
a timer in Max/MSP to synchronize with a soft layer of sound that plays throughout the piece.  This 
performance version incorporates input sensor data from both the wearable sensor system and the 
Kinect.  In the installation version, the system is placed in one mode where multiple keyboards are 
layered and controlled, and the only movement capture information comes from the Kinect and the 
Kinect’s webcam, using the specialized KinectInput devices and hand-coded feature computation 
nodes for webcam analysis and for hand tracking analysis.  This piece did not incorporate machine 

	  
Figure 55. The Crenulations installation space 
Speakers on either side of the tissue paper backdrop 
create the sonic space.  Photo by Andy Ryan. 
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learning techniques for expressive quality analysis, as all of the feature computation and expressive 
quality calculation were hand-coded.  
 
I designed and implemented the wide range of creative elements in this piece, including the 
choreography, wearable sensors, sonic systems, interaction design, and scenic design.  I also served as 
the solo performer in the performance version of the piece.  I completed a version of this 
performance and installation for the Media Lab’s first internal version of “The Other Festival” in 
April 2013.   

6.3.2. Temporal Excursions 

As a continuation of Crenulations and Excursions, I developed a solo performance piece titled 
Temporal Excursions for the Media Lab’s Festival of Art and Design.  The first performance of this 
piece took place at the Media Lab in December 2013, as part of a concert of new performance works 
entitled WOOD-WATER-WHISPER-WILD.  This piece sought to expand the movement vocabulary 
of Crenulations and Excursions and incorporate recognition of vocal qualities, creating a performance 
work for both body and voice.  Movement and voice trigger and shape a sound cloud of vocal, 
choral, and mechanical samples to accompany the live vocal performance of a text that is part 
spoken, part sung.  This piece explores the idea of “nostalgia for the present,” the sensation of 
experiencing in a present moment some of the nostalgia one will eventually feel for that moment.  I 
created this piece for myself as a solo performer.      
 

Sensing requirements for this piece included that both 
movement and vocal information be captured, that the 
sensors be quick to transport into the necessary 
performance space and not require additional calibration 
once set up (as this piece was one piece on a program of 
performances), that very subtle movements could be 
captured, and that a clean vocal signal could be obtained 
that was not distorted by the sonic accompaniment.  To 
meet these goals, movement data is captured via 

accelerometers on a pair of long gloves, and vocal data is captured via a stand-mounted 
microphone.       
 
This piece uses the Expressive Performance Extension System to gather input, calculate features, 
perform machine learning to determine expressive parameters, and map movement and vocal 
information to control parameters of the output soundscape.  Signal features calculated within the 
AudioAnalysis input device on the FFT of the input signal include amplitude, frequency, and 
dissonance (a hand-crafted metric of how different the three formats of maximum energy after the 
fundamental frequency are from multiples of the fundamental frequency).  Additional vocal features 
are calculated in the feature computation stage over a half-second window, 15 frames at a frame rate 
of 30 frames per second.  These features are defined in the VocalFeatureComputation node, as 
described in Chapter 5: overall change (how much each input parameter has varied from frame to 
frame over the past window); average change (the average amount of change between frames over the 
past window); derivative change (the amount of change over all input parameters in the past four 

	  
Figure 56. Performing Temporal Excursions 
Image via Paula Aguilera 
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frames, looking at a smaller window of time than the overall change value); overall value (a weighted 
average over the window of all parameters); and accumulated change (an accumulated metric of input 
variation that is incremented or decremented on each frame by an amount proportional to how 
much the inputs have been changing).  The vocal features used as input to the machine learning 
nodes are amplitude, frequency, dissonance, overall change, average change, derivative change, and 
overall value.   
 
Particular vocal qualities of interest learned for this piece were energy and complexity, while key 
movement qualities were inspired by Laban’s concepts of time and flow.   The function between 
accelerometer values on the performer’s gloves and the expressive axes of time and flow was hand-
coded into the QualityAnalysis node class originally designed for Death and the Powers.  The 
vocal qualities were analyzed via the machine learning tools in EPES.  The concept of the complexity 
of the voice was found to be the most significant quality axis used in the design of this piece.  The 
system was trained for this complexity parameter with 6 samples labeled 0.0 that demonstrated a 
simple vocal quality (pure, extended vowel tones in a variety of pitches and amplitudes) and 4 
samples labeled 1.0 that demonstrated a complex vocal quality (sequences of harsh consonants, 
spoken text, and quick rhythms).  This axis of complexity was then used in several performance 
mappings to select different pools of samples with different sonic qualities depending on the 
complexity of the input vocal behavior.  In one performance mode, an additional complexity model 
was trained to reflect a different definition of complexity focused on the singing voice (pure 
extended tones to fast patterns).  This second model used 9 training data examples,  5 samples 
labeled 0.0 demonstrating a simple vocal quality and 4 labeled 1.0 demonstrating a complex vocal 
quality.  Both complexity models were used in one of the performance mappings to control different 
aspects of the sonic extension.  The final training data set for energy consisted of a total of fourteen 
samples, 6 labeled 0.0 (calm examples) and 8 labeled 1.0 (energetic examples).  All of these training 
data examples were normalized to half a second long.  I performed all of the collected vocal training 
examples, since I would be the performer for the final piece.   
 
In the testing process for this piece, small numbers of training examples were gathered for each 
parameter, a model for each parameter was trained on the training data set, and the accuracy of each 
parameter was then tested on live input.  Input samples were evaluated using the most recent half-
second of data as a sliding window.  These predicted values could be compared by eye in real time to 
the expected values.  If the parameter values seen as output did not reflect the desired values, 
additional samples were added to the training set to attempt to clarify the boundaries of the 
parameter.  For example, the initial training data set for energy did not consist of any samples where 
the singer was silent.  On providing test input to the trained system, silence caused the system to 
output high values for energy, which was not seen as desirable or expected behavior.  Additional 
samples of silence were thus added with a 0.0 value for energy.   
 
This system uses feedforward Neural Networks for performing regression on expressive vocal 
parameters, with a separate network trained for each parameter to be analyzed.  These networks are 
constructed with the default Neural Network structure and settings defined in the Expressive 
Performance Extension System, with one hidden layer with 30 nodes.  The dimensionality of the 
input for each of these networks is the number of input data streams (7 inputs) multiplied by the 
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normalized window length (15 frames).  This results 
in a model with 105 nodes in the input layer, one 
hidden layer with 30 nodes, and a single node in the 
output layer.  The output value for each network 
represents the predicted value of that parameter, 
and labels for training data represent the ideal 
output value for that parameter.  These networks 
were then incorporated into 
MLExtendableEvaluationNodes for testing and 
incorporating into mappings. 
 
The piece as a whole develops and builds through 
several different interaction modes, represented by 
different mappings in the Expressive Performance 
Extension System.  The interaction begins with 
pure movement controlling the accompanying 
sound, followed by continuous vocal control, and 
then by two different mapping modes that combine 
expressive information from both movement and 
voice in shaping the sonic accompaniment.  These 
modes are switched by the performer through the 
use of a single foot pedal.  As the desired sequence 
of mappings is known beforehand, the performer 
can trigger the next mapping through pressing on 
the foot pedal, which sends a signal to the 

Max/MSP patch.  The Max patch calculates the number of the next mapping cue, and sends a 
message to the Expressive Performance Extension System to trigger the desired cue.     

6.3.3. Analysis and Evaluation: An Expert Performance System 

This performance was useful to verify that the Expressive Performance Extension System could easily 
learn the desired range of expressive qualities from a reasonably small sample set.  Additionally, since 
Neural Networks were used for the machine learning component, providing examples at both 
extremes of the specified axes allowed for reasonably good interpolation along the axes without 
needing a large set of training data.  I began the process of developing the piece with a first version of 
my desired text and drafts of the keyboards for the soundscapes (borrowed from Crenulations and 
Excursions), then started envisioning how the interaction could develop throughout the piece.  As I 
explored how I wanted the text to be performed, I was able to easily train new sets of experimental 
parameters or retrain parameters based on what I was developing about the performance style.  Was 
the text to be spoken, sung on one note, sung with a range of melodic or timbral variations, some 
combination of all of these?  How could the soundscape bring attention to the distinction between 
spoken and sung text?  How much movement did I want in the piece: would I be standing at a 
microphone with only arm movement, or would I have a broader range of dance movement around 
a space?  What elements of my vocal performance were interesting to highlight?  How much of the 

	  
Figure 57. Temporal Excursions system diagram 
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performance details of the piece (movements, particular melodic patterns) would be improvised or 
be specifically set?  
 
One design aspect that proved especially challenging in this piece was integrating movement 
information and vocal information into a single control mapping.  In my early mapping attempts, 
I explored having certain pools of samples controlled by the body and others by the voice, only to 
find that the effect was that of playing two instruments simultaneously, leading to a challenging 
performance task.  More effective were mappings that incorporated both movement and voice 
information seamlessly to control different aspects of the same instrument: for example, using vocal 
complexity to select kinds of accompanying sound samples (from pure tone vocal samples to harsh 
mechanical sounds) while using the rate of movement to control the density with which those 
samples were layered.  The best mappings encouraged a performance in which movement and voice 
were not thought of as separate control elements, but as unified aspects of an expressive performance. 
 
The creative mapping problem of this piece differs in an interesting way from the movement and 
voice mappings in Death and the Powers.  In Powers, the performer who is measured is unaware of 
the specific results of his expressive actions.  He can perform expressively with his voice and body 
together, without being aware of the digital extensions of his performance.  Our job was to create 
mappings that worked with that natural performance style.  In Temporal Excursions, I was developing 
the performance style along with the development of the mappings to the sonic extension of that 
performance. I was very aware of the sonic results that occurred from shifting vocal or physical 
qualities of my performance, and used that awareness while shaping my performance choices in the 
development of the piece.   
 
An interesting element in designing mappings around these more abstract high-level quality 
parameters was the temporal latency inherent in parameter analysis.  Since this piece was trained on 
training data samples around half a second long, the system would immediately start to identify that 
a given quality (such as complexity) was changing, but would take a moment to be able to confirm 
that the quality had, indeed, shifted to a particular place on the quality axis.  For example, if the 
performer is speaking with high focus on consonants (a complex sound) and then shifts to a 
sustained pitch, the system immediately begins to drop the estimated complexity, but has to wait a 
(noticeable) fraction of a second before correctly identifying that the current sound now has very low 
complexity and reacting appropriately.  On the one hand, this is desirable behavior, since we do not 
want the system reacting to overly short intervals of sound (if a performer is holding sustained notes, 
for example, a breath or a consonant should not immediately be identified by the system as “very 
complex”).  However, it is necessary in mappings and performance to be aware of these different 
layers of temporal latency.   
 
When performed in December for the Media Lab community and other audience members at the 
WOOD-WHISPER-WATER-WILD concert, Temporal Excursions received some very positive 
feedback.  One audience member commented on the way he “forgot about the technology two lines 
in” and was able to experience the emotion and story of the piece.  Given my goals of developing 
new performance experiences through technology rather than performances that are about using new 
technology, this was a particularly satisfying piece of feedback.   
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Temporal Excursions demonstrates a few interesting features of the Expressive Performance Extension 
System and the Expressive Performance Extension Framework: 

• The system and frameworks proved useful for an instrumental model, combining movement 
and vocal analysis for performance extension in a way that was learnable and repeatable. 

• The Expressive Performance Extension System could easily learn the desired range of 
expressive qualities from a reasonably small sample set. 

• Designing output media that was simultaneously controlled by qualities of movement and 
voice required careful thought. 

 

[creation of a sound world through gesture, which then dissolves: mapping #3] 
 
[spoken, no movement, no sound, a pause] 
Tell me, what do you feel for the past?  Or better, what do you feel for the present?  A sense of nostalgia, perhaps, a sense of 
distance?  The feeling that something that was here is now irretrievably far away?  
 
[spoken in tempo, moving, bringing back in sound with movement] 
 
It’s a lonely state, the present.  Distant, disconnected from itself.  Or is that just me? 
 
Here’s the question: would you miss tomorrow, today?  Or maybe it’s the other way around.  Would you miss today, tomorrow?   
 
Imagine: 
[sung, mostly one pitch: mapping #9.  Just voice control of interactive sound] 
you’re standing on a bridge at midnight,  
looking out over the water, 
watching lights shine on the surface. 
And you know you will look back 
and miss this moment 
miss yourself in this moment, 
this place and time. 
And you stand there, looking over the water 
already missing it now. 
 
[Vocal improvisation interlude, no text, movement added...playing with the system, full range, biggest mapping: mapping #12] 
 
[spoken rhythmically] 
And the stories of paths that never happened...the things that never were your past and will never be your future. The ones where 
things went another way, or many other ways.  You miss those too. 
 
[sung on one note: mapping #11, sporadic sounds triggered by movement but quality shaped by voice] 
And you stand on the bridge, 
missing a moment 
that has not yet passed. 
 
[moment of just movement control of sound: mapping #3, as in beginning] 
 
Figure 58. Script for Temporal Excursions 
Shifts between spoken and sung text and changes of mappings are indicated.  
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6.4. Other Projects Utilizing These Systems and Constructs 

6.4.1. Trajectories 

For the first annual HackingArts conference on art, technology, and entrepreneurship at MIT, Peter 
Torpey and I were invited to create a short performance piece with interactive visuals and sound 
using several of the systems that we have designed over the past few years, including the Expressive 
Performance Extension System.  This piece was performed as part of the conference in September 
2013.  
 
This seven-minute theater piece, which we called 
Trajectories, explored the concept of the multiple paths that 
a story or a relationship can take, using the device of an 
imperfect storyteller.  The storyteller (a role I performed) 
creates the world of the story, in which a man and a woman 
meet and connect with one another.  The storyteller does 
not simply create this world through words, but also 
through using her movements to control a soundscape and 
a series of interactive projected visuals.  As the piece 
progresses, however, it becomes clear that she is having 
trouble getting the world just right for the story to progress 
the way it is “supposed to,” requiring her to reset and retry, 
changing her behavior and performance parameters until events happen in the desired manner.  As 
the story takes on more of a life of its own, she starts to long for the many possible alternate paths 
that are, in their own ways, equally true and possible.  The man and woman are then joined by 
several different pairs of actors, each playing out the same interaction in different directions. 
 
Trajectories was an excellent example of how the use of abstract high-level parameters helped to 
simplify communication between a variety of different systems.  The piece integrated many systems: 
the Expressive Performance Extension System; live visuals created through the RenderDesigner 
system originally developed for Death and the Powers; an interactive music generation system, 
ParaMIDI originally developed for Peter Torpey’s performance of Figments; and the 
OSCtoMIDIGenerator system developed for Crenulations and Excursions.  We designed the overall 
shape of the piece in Peter Torpey’s Media Scores software, a scoring and live control system for 
multimedia performance (Torpey, 2013).  In the Media Score, we defined different sections and 
modes of the piece, as well as shaped the overall expressive arc of the show, defined through abstract 
parameters such as intensity, density, and rate.  In the performance, Media Scores sent this 
continuous abstract parameter data to the Expressive Performance Extension System and sent 
discrete triggers to change modes in EPES, ParaMIDI, and RenderDesigner.  EPES took in live 
data from two accelerometer-outfitted gloves and analyzed that to determine positions in a modified 
space of Laban-inspired parameters (weight, time, and flow).  Combined with the live parameter 
data from the score, this data was then mapped to control parameters for ParaMIDI, 
RenderDesigner, and the sonic world.  All of these systems were connected via Open Sound 
Control and used abstract parameters for high-level control and mapping.  
 

	  
Figure 59. The cast of Trajectories 
In the final scene, many different variations on the 
story unfold as the narrator loses control.  Photo 
from Hacking Arts. 
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This piece was an interesting exercise in 
controlling multiple media at once through 
movement.  As we developed mappings for 
different sections of the piece, we found that 
there were times when we wanted the live 
performance to affect the Crenulations 
soundscape, the musical score, and the 
visuals simultaneously.  In order for me to 
be able to think about controlling all of 
these elements as a solo performer, it was 
necessary to design the same qualities of 
movements to have meaningful effects on all 
of the different output media.  I did not 
want to play several separate instruments 
with one movement, I wanted to use the 
language of my body to control many media 
simultaneously with a simultaneous 
effect.  We found that the use of abstract 
parameters and movement qualities was very helpful in this effort, allowing us to think about the 
input movement as a cohesive unit.   

6.4.2. Blikwisseling Workshops 

I have also used the concepts of abstract parametric modeling of movement and voice and these 
performance extension mapping systems in a series of interdisciplinary workshops in the 
Netherlands.  In May 2013 and May 2014, Peter Torpey and I led week-long master classes on 
performance and technology.  These workshops were constructed around the concept of 
“Blikwisseling” (“Change of Perspective”), bringing together participants from a variety of 
backgrounds, from music theater to product design to chemistry to computer science to architecture 
to cinematography to creative technology to music therapy, working together to create performances 
and experiences.    
 
The May 2013 workshop was themed around the 100th anniversary of Stravinsky’s Rite of Spring, 
imagining developments in musical and performance technology in the next 100 years.  In the May 
2014 workshop, the theme was “Waves,” which inspired us to explore how a simple concept and 
structure could be valid across many modalities in both literal and metaphorical ways, from light to 
sound to waves of emotion to water to physical movement to artistic movements.  In both 
workshops, our explorations with the participants included the concept of abstract parameters to 
represent expression in a multimodal performance or experience.  We led the participants through a 
variety of exercises exploring abstract parameters, including the creation of a parametric score using 
pieces of yarn to represent different parameters.  Through these exercises, participants discovered key 
points about parametric representations and performances of a piece, such as the difference between 
discrete triggers and continuous parameters, and the difference between low-level parameters (such 
as volume) and high-level parameters (such as the tension of an argument). 
 

	  
Figure 60. Trajectories system flow diagram 
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Several of the final performance and installation pieces developed as part of both workshops 
incorporated versions of the Expressive Performance Extension System.  In one musical 
performance, the audience was able to collectively conduct a composition through their movement, 
with different sections of the audience in control of different instrumental lines.  In a single-
instrument duet for viola and gestural interface, the qualities of one performer’s movement wearing 
sensor-enhanced gloves manipulated the sound of the violist’s instrument.  One group created a 
ritualistic performance around a special box, which triggered and shaped sounds and recorded text 
by the way it was shaken, thrown, and caught.  A solo performer created an improvisatory “hyper-
theater” experience, where his character of a patient in an asylum was accompanied by sound and 
music triggered by his arm and head gestures.  Finally, in an interactive installation, carrying and 
tossing a ball across different areas of the space controlled visual projections and a musical 
composition, and audio parameters of the musical composition in turn helped shape the visuals in 
real time.  In these pieces, the Expressive Performance Extension System proved flexible for a broad 
range of different concepts and mapping strategies.   

6.4.3. Death and the Powers in Dallas  

In February 2014, we brought Death and the Powers to the Winspear Opera House in Dallas, Texas, 
presented by The Dallas Opera.  An important detail in this set of performances was that the role of 
Simon Powers, originated by James Maddalena and performed by Maddalena in Monaco, Boston, 
and Chicago, was portrayed in Dallas by baritone Robert Orth.  As the character of Simon extends 
into the entire theatrical set, the performance of the actor is used to control a variety of media from 
the patterns of light and color on the LED walls to transformations of the sound in the space to the 
movement of robotic elements.  The mappings of Powers’ expression to all of the interactive media 
were developed based on Maddalena’s performance, so we found ourselves with the challenge of how 
much to adjust the mappings based on the differences in Orth’s performance, and how much to 
guide Orth’s performance to work with the existing technological systems.  We introduced Orth to 
the sensors and the Disembodied Performance System at a visit to the Media Lab, allowing him to 
experiment with how his vocal and physical actions affected the wall visualizations in a few cues. 
 

	  	  	  	  	   	  	  	  	  	   	  	  
Figure 61. Blikwisseling workshop participants 
Left: A participant explains a parametric score made with yarn.  Middle: Early explorations of an augmented viola duet, where arm 
movements by one performer modified the sound of the viola.  Right: Rehearsals for a piece creating a ritual for interacting with a 
movement-sensing box.   
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It was fascinating to see the differences in the output media between Maddalena’s performance and 
Orth’s performance.   In particular, the message had not immediately been conveyed to Orth by the 
directorial team that he was responsible for physically gesturing and moving in the way he would 
onstage even once he had been sent down into the sound isolation booth and been fitted with his 

movement and breath sensors.  In the initial full technical 
rehearsals, the visuals on the walls seemed too dull.  There 
was some quality that we remembered them having that was 
not evident in their current state.  Confused, I examined 
the live sensor data streams via the mapping system, only to 
find that there was almost no movement being detected on 
the sensors on the arms.  I thought perhaps the sensors were 
not being put on Orth during the rehearsal, but I was told 
that his dresser was putting them on correctly for each run.  
We realized that he was wearing the sensors, he simply 
wasn’t moving his body.  After a session with Orth where 
the associate director and I walked him through the show 
and explained the sections where he particularly needed to 
be physically (as well as vocally) expressive, the difference in 
the media for the following rehearsal was striking.  As the 
visuals also respond to the voice, they were already clearly 
connected to the live performance; however, they had been 
missing the element of the mappings controlled by the 
qualities of movement. We were reminded of the influence 
of the gestural input on the resulting visual output: it is, 

indeed, a rather different extended performance when the performer is providing appropriate 
movement content.   

6.4.4. The Powers Interactive Global Simulcast 

The Expressive Performance Extension System was also used to create new performance mappings 
developed for the interactive global simulcast of Death and the Powers that accompanied the opera’s 
performances in Dallas.  In concert with the Dallas production, we sought to address the challenge 
of bringing the opera to a broader audience.  While Powers is designed to be easy to tour, it has 
certain venue and budgetary requirements, and, as with any modern opera, it has limited 
opportunities for performance.  To broaden the show’s reach, the final Dallas performance was 
broadcast live to nine cities around the world as a multi-camera video and surround sound mix.  An 
interactive iPhone and Android application was also designed to accompany the simulcast 
experience.  The design of this broadcast and mobile second-screen experience were guided by two 
primary conceptual challenges: how to privilege the remote audiences, and how to make a remote 
experience that needed to be connected to a live performance of Powers.   
  
The first challenge was to explore how a simulcast experience can be more than the “cheap seats” 
version of a production.  How can a simulcast offer an experience that serves as a counterpart or an 
additional model of experiencing the show, rather than a lesser replacement for the “real thing”?  We 
decided that remote audience members should be privileged, given a glimpse into aspects of the 

	  
Figure 62. Robert Orth as Simon Powers 
Robert Orth in Scene 1 of Death and the Powers 
with Patricia Risley as Evvy and Joelle Harvey as 
Miranda.  Photo by Karen Almond.  
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show that the live audiences may not see.  In fact, to connect these remote audiences to the storyline, 
we envisioned them as part of the pervasive System: others who had gone into the System and were 
thus granted many viewpoints.  What might the show look like from the point of view of a robot, or 
from inside a wall, or from the Chandelier?  How might it feel and look to be inside the 
System?  The video content integrated into the broadcast incorporated these alternate points of view 
using cameras on stage, as well as special processing and distortion effects performed live on certain 
video streams.   
 
As another part of granting the remote audience a privileged viewpoint inside the System, remote 
viewers received second-screen content on their mobile devices through a specially designed 
app.  This content was primarily a language of light and color that echoed or complemented the 
behavior of the Powers walls.  Frequently, the visuals on the second screen devices were designed to 
appear as small sections of the content on the walls, with the idea that many devices in a space 
together would serve to spread the imagery and behavior seen on the screen out across the audience, 
making each audience member a part of the System’s visual presence.   
 

 
The second major conceptual challenge we addressed was creating a simulcast that actually had to be 
performed in sync with a live production.  While the liveness of technology is always a question 
when augmenting performance (as discussed in Chapter 4), the stakes become even higher when 
working in a medium, such as a simulcast, where the physical presence of the performers is 
completely removed from that of the audience.  If one envisions a simulcast that is only shown on a 
video screen, why does it matter that this video is currently broadcast live from a real show 
performed simultaneously?  Would the experience actually be any different if that video had been 
taken at a real show the day before, or two months earlier?  Indeed, there have been broadcasts of live 
performance separated in time from the original production, such as the February 2014 screenings of 
the Broadway production of Romeo and Juliet that closed in December 2013 (Isherwood, 2014).  By 

	  	  	  	   	  	  	  	   	  
Figure 63. Screenshots from the Powers Live mobile application 
At different points in the opera, the Powers Live app showed visualizations that moved and changed based on the live performance of 
the actor playing Simon Powers.  Screenshots provided by Peter Torpey. 
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incorporating interactive technologies into this simulcast, we sought to create an experience where it 
mattered that all of the remote audience members were having that experience simultaneously and in 
sync with the live production.  At special moments in the show, audience members were guided to 
interact with their phones to send information about their participation back to the show.  This 
information was aggregated to affect the behavior of elements in the Winspear and give a sense of the 
presence of the remote audiences.   
 
A major new element incorporated for the Dallas production of Death and the Powers was the 
Moody Foundation Chandelier in the Winspear Opera House in Dallas.  This chandelier features 
over 300 LED rods that can be individually color-controlled and positioned in groups to form 
different shapes.  We connected this chandelier with the Powers show systems, using the chandelier 
to extend the show’s language of light and color and movement out into the audience.  This Moody 
Foundation Chandelier also served as the medium through which remote audiences could contribute 
to the show: at specific times, the remote audiences were guided through the visuals of their second 
screen experience to shake their devices or to touch their devices.  This interactive information was 
fed back to the show networks and aggregated.  We looked at how much audience members were in 
sync (with the downbeats of the music, at one point; with following the contour of a pitch displayed 
on their screen, in another) and modified the visuals on the chandelier to reflect the amount of 
synchronicity. 
 
We chose to shape the large amount of new visual content 
on the Moody Foundation Chandelier and in the second 
screen experience by data from Simon Powers’ live 
performance.  As with the original elements of the show 
(the behavior of light and color on the LED walls, the 
Powers Chandelier, the movement of robotic elements, the 
sonic transformations), the behavior of the Moody 
Foundation Chandelier and the second screen content were 
affected and sculpted in real time, moment to moment, 
completely linked to the expressive movement and breath 
and voice of the performer.  Peter Torpey designed the 
visual content on the chandelier and mobile devices, and we 
collaborated on creating new mappings from the input 
performance data to all of the new visual content using the 
Expressive Performance Extension System.  These 
mappings took as input all of the original performance 
analysis features used in Powers, as well as special audience 
information captured only in the simulcast performance 
(such as the synchronous touch behavior of audience 
members, or what percentage of audience members were 
interacting with their device at a given moment).   
 
This usage of EPES did not incorporate the machine learning nodes, but leveraged several of the 
feature computation properties and other new features of the system, such as the visualization 

	  
Figure 64. The Moody Foundation Chandelier 
The LED rods in the chandelier allowed light and 
movement to spill off the periaktoi set pieces and 
into the audience. 
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tools.  This use case for the system was a major test of the system’s ability to support rapid 
development and iteration of mappings.  The majority of control mappings for the new chandelier 
and mobile content had to be created and tuned in real time during rehearsals, as there was a very 
limited amount of time to tune the new mapping content given live performance data, and no 
rehearsal time was allotted for this process.  We developed a palette of initial mappings before the 
rehearsal process began, but had to adjust and modify them on the fly, as well as quickly add a 
variety of additional mappings as the visual content on the Moody Foundation Chandelier was 
developed and more content was added.  Additionally, the interactive audience mappings had to be 
quickly tuned during the live performance.  The final simulcast performance was our first and only 
opportunity to see the audience mobile interaction data measuring aggregate behavior from 
hundreds of users.  While we had developed mappings and tested those mappings during 
performances and rehearsals with a handful of mobile devices, we did not have the opportunity to 
know what “real data” would look like when scaled.  Given this, we put parameters into the 
mappings that could be immediately adjusted by hand during the performance to scale the data we 
were receiving into a range appropriate for the designed mappings.  The system facilitated these 
rapid modifications even at performance time.   

6.5. Summary of Example Projects and Implementation of Principles 
This chapter has discussed the design and implementation of several expressive works for the voice 
and body that have incorporated versions of the Expressive Performance Extension System, 
including: 

• The Powers Sensor Chair: a movement-based interactive musical installation for novices, 
exploring the sonic world of Death and the Powers 

• Vocal Vibrations: a public installation for inspiring vocal exploration, incorporating 
interactive tactile feedback 

• Crenulations and Excursions/Temporal Excursions: performances where qualities of the body 
and voice control a soundscape 

• Trajectories: a short multimedia extended theatrical performance 
• A series of interactive performances and installations developed by Blikwisseling workshop 

participants in the Netherlands.   
• The Death and the Powers interactive global simulcast, including a interactive second-screen 

experience and visualizations on the Moody Foundation Chandelier 
 
Each of these examples explores different features of the Expressive Performance Extension 
Framework and the Expressive Performance Extension System.  The Powers Sensor Chair 
demonstrated the utility of a qualitative parametric model of physical expression in accommodating 
the movement vocabularies and explorations of a wide range of installation visitors.  Vocal 
Vibrations showed the flexibility of the Expressive Performance Extension System throughout the 
rapid prototyping process for the installation, and tested the system’s ability to incorporate multiple 
timescales of expressive parameters.  Temporal Excursions demonstrated the utility of the system and 
frameworks for an instrumental model, combining movement and vocal analysis for performance 
extension in a way that was learnable and repeatable.  Trajectories showed the utility of a shared 
model of expression in creating a performance that could be extended to control many existing 
output systems.  The Blikwisseling workshop performances showed that the overall structure of 
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creating mappings in EPES was flexible enough to be used quickly by various performance and 
installation creators.  Finally, the Powers interactive global simulcast demonstrated the extension of a 
live performance in one space into media in distant locations through expressive representations of 
that performance.  
 
This chapter has shown specific cases of the design process and framework for creating interactive 
performances and installations discussed in this dissertation.  Through these concrete examples, this 
chapter has shown how the Expressive Performance Extension System has been able to integrate into 
the creative development process and final realization of a variety of different live interactive works, 
from expert performances to installations for novices.  These examples have used different sensing 
systems, different expressive parametric spaces, and different output media.  However, they have all 
been created with the same core interactive system. 
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7. Conclusion and Discussion 
In this dissertation, I have introduced a new model for capturing and extending the power of the 
expressive body and voice.  The Expressive Performance Extension Framework and its 
implementation in the Expressive Performance Extension System lay the groundwork of a novel 
technique for flexibly representing vocal and physical expression and extending that expression into 
digital media.  These methodologies have important implications for expanding the power of a live 
performance or interactive installation across multiple spaces and multiple performance modalities.  
Additionally, as interactive technologies begin to address the body and voice as expressive elements, 
these frameworks and ways of thinking have applications beyond the context of live performance.    

7.1. Primary Contributions 
The Expressive Performance Extension Framework, the Expressive Performance Extension System, 
and the related discussion in this dissertation offer the following contributions: 

• A conceptual framework and methodology for the use of machine learning technologies in 
extending expressive physical and vocal performance. 

• An “instruction manual” for incorporating tools for performance extension into the creative 
process, including a collection of necessary questions for practitioners to address when 
working with machine learning for expressive performance extension in the context of a 
specific performance or installation. 

• A new representation of physical and vocal expression through abstract, high-level expressive 
parametric spaces. 

• A suggested set of parametric “quality” axes equally relevant for describing both vocal and 
physical expression. 

• A framework that supports and prioritizes the continuous analysis of expression through 
regression algorithms, rather than through expression classification tasks. 

• The implementation of a flexible software system for incorporating machine learning 
technologies into extended performances and installations. 

• A systematic description of the expressive role of different elements of performance, 
particularly of various temporal scales of analysis. 

• A catalogue of necessary principles for flexible analysis and mapping systems to be used in 
live performance and rehearsal contexts. 

• A comparison of the strengths of computer systems and the strengths of human technicians 
for extending performance into digital media. 

• Three primary performance and installation works that use the Expressive Performance 
Extension System to use qualities of movement and the voice for control of multimedia: the 
Powers Sensor Chair, Vocal Vibrations, and Crenulations and Excursions/Temporal 
Excursions. 

 
I now return to the set of key questions for technological extension of physical performance that I 
proposed at the beginning of this dissertation, and examine the ways in which my research has 
addressed these questions.   
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How can raw sensor data be abstracted into more meaningful descriptions of physical and vocal 
expression?  What features of physical performance can convey particular expressive and emotional 
content? 
 
The Expressive Performance Extension Framework presented in this dissertation provides a unified 
methodology of analysis for different aspects of physical performance.  Although movement and 
vocalization are both innately shaped by the physical properties of the body, these elements have not 
previously been considered together in frameworks for an expressive performance context.  This 
framework includes computational features, sets of expressive parameters that can describe both body 
and vocal qualities, and methods for transforming raw sensor data into expressive parameters via 
machine learning techniques.  An important aspect of this framework is its analysis of the different 
temporal windows that are appropriate to track different kinds of expressive events.   
 
How can we create evocative high-level descriptions of movement and voice so that they can be used 
intuitively and creatively in the process of choreographing, composing, and performance-making?   
 
I have outlined a set of recommended parameters for representing expressive qualities of movement 
and voice.  This set of expressive parametric axes is sufficiently generic to describe both movement 
and vocal qualities, but constructed to represent a broad range of aspects of physical expression.  
This parameter set consists of energy (calm to energetic), rate (slow to quick), fluidity (legato to 
staccato), scale (small to large), intensity (gentle to intense), and complexity (simple to complex).  
These parameters are inspired by research in dance and vocal analysis, as well as by my own 
experience with extended performance systems and performance representations.  I have also 
discussed methods of determining expressive parametric axes that are useful for describing a specific 
work and presented frameworks that are flexible enough to allow a creator to define and use 
whatever expressive parameters are most meaningful in a particular performance context.   
 
How can we create tools that encourage metaphorical, meaningful, and rich associations between 
movement and media, rather than naïve one-to-one sensor to output mappings? 
 
With the development of the Expressive Performance Extension System, I have demonstrated a 
concrete technological model that uses high-level descriptions of movement and vocal expression to 
enhance the behavior of a human performer or installation visitor.  This system incorporates 
machine learning techniques for flexibly defining and working with abstract expressive parameters of 
movement and voice.  It thus steps beyond standard models of gesture recognition or 
preprogrammed sets of specific continuous parameters that limit designers of performances or 
installations.  This system has been incorporated into a variety of installation and performance 
contexts and tested in real-time scenarios.  In this dissertation, I have also presented a variety of 
principles that are important for designing systems for meaningful performance extension, 
particularly systems that incorporate machine learning techniques for analysis of expressive 
qualities.    
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What principles should systems for performance extension follow in order to be easily incorporated 
into existing creative processes?  What are good practices for extending live physical and vocal 
performance through machine learning techniques?    
 
While this dissertation has centered on the use of machine learning systems for learning abstract 
parametric qualities of movement and voice, it has also explored the broader context of designing 
technologies that extend a live performance.  Through the Expressive Performance Extension 
Framework, I have formalized a set of the core issues and questions to be addressed by a practitioner 
who seeks to create a technologically extended performance or installation, as well as defined 
requirements for systems to assist in performance extension.  I have presented a workflow for 
augmenting a performance through machine learning of expressive parameters, exploring both the 
creative issues and the technical issues that are relevant at each stage.  At every step in this workflow, 
core questions are presented for consideration by a performance creator.  This work does not seek to 
present a fixed set of answers to these questions, as the majority of these answers will vary with every 
performance and installation depending on the artistic goals and constraints of the work.  Instead, I 
seek to give practitioners a structure for thinking about performance extension technologies and a 
methodology for determining how best to integrate those technologies into the goals of their 
experience.  Additionally, this framework provides the field of technological performance extension 
with methodologies and practices for incorporating high-level parameters and machine learning of 
movement qualities into existing performance practices. 
 
This dissertation has also presented some of my contributions to the repertoire of augmented 
expression, including several performance and installation works for the extended body and the 
extended voice.  The majority of my works presented here (including the Disembodied Performance 
System for Death and the Powers, the Gestural Media Framework and Four Asynchronicities, the 
Powers Global Simulcast, the Powers Sensor Chair, Crenulations and Excursions/Temporal Excursions, 
and Vocal Vibrations) have incorporated high-level parametric expressive spaces.  The latter three 
works have also incorporated machine learning techniques for analyzing expressive movement and 
vocal qualities at various stages of the development process.  For a range of different performances 
and installations, this dissertation has explored the development process of each piece, the artistic 
and design goals of each experience, and the use of the principles, frameworks, and systems presented 
in this dissertation.  
  

• VAMP exemplified the power of well-mapped movement to create a compelling gestural 
instrument.   

• The Gestural Media Framework and Four Asynchronicities showed that continuous concepts 
of movement quality were more interesting in performance than simple gesture recognition 
used to trigger events.   

• The Disembodied Performance System for Death and the Powers extended a performer’s 
vocal and physical expression into many simultaneous modalities while taking advantage of 
his virtuosic skillset.   

• The Sleep No More Extension balanced the storytelling skills of human operators and an 
interactive content generation system. 
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• The Powers Sensor Chair demonstrated the utility of a qualitative parametric model of 
physical expression in accommodating the movement vocabularies and explorations of a wide 
range of installation visitors.   

• Vocal Vibrations showed the flexibility of the Expressive Performance Extension System 
throughout a rapid prototyping process, and incorporated multiple timescales of expressive 
parameters.   

• Temporal Excursions explored the utility of the dissertation system and frameworks for an 
instrumental model, combining both movement and vocal analysis for performance 
extension in a way that was learnable and repeatable.   

• The Powers Global Simulcast explored extending a live performance across a variety of spaces 
and devices through an expressive representation of that performance. 

7.2. Next Steps 
For the further development of the Expressive Performance Extension System, there are various 
features to be implemented or extended that would add to the general applicability and ease of use of 
the system.  Additionally, the concepts and systems developed as part of this dissertation lay the 
groundwork for addressing other challenges in the field of performance extension, as well as issues in 
domains beyond performances and installations.  Formal representations of physical expression can 
be used for transformation into other modalities, for the persistence of performance expression, for 
modularity of creative tasks, for performance analysis, and even for the process of training performers 
or novices.  

7.2.1. Next Stages for the Expressive Performance Extension System 

As I continue to use and develop the Expressive Performance Extension System through live 
performance and installation contexts, I will continue to refine the necessary techniques for 
performance extension and the needs of the system to be increasingly integral to the rehearsal 
process, yet as invisible as possible. 
 
First, there are improvements that could be made to the system that would make it even quicker to 
modify input and output devices.  For example, it would be useful to be able to add additional input 
devices and output addresses on the fly via the GUI as the system is running, rather than manually in 
the show file or through additional properties files.  The GeneralOSCInput device allows for some 
aspects of this behavior, but requires reloading the mapping file.  More generic types of input 
devices, similar to the OSC inputs and Arduino inputs, would reduce the amount of coding 
necessary to use the system with a variety of sensing systems.  Additionally, while the system 
currently utilizes a single output device that can send messages to multiple IP addresses and ports, it 
might be beneficial to create multiple output device nodes that can be associated with different 
addresses and ports so as to limit the amount of data flowing through the network.  
 
The data flow structure of the Expressive Performance Extension System has great flexibility 
inherent in its feature computation step.  More types of feature computation nodes can be created 
for the system, including techniques for automatic feature extraction, as well as nodes for particular 
feature computation techniques that have tunable settings to easily adapt to many different kinds of 
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sensor inputs.  Most of the types of computed features described in this thesis look at time windows 
of less than ten seconds, and do not compare the live performance with any predetermined score.  
Additional varieties of feature computation nodes could be created to provide feedback on variation 
from a recorded norm or a canonical form. 
 
An interesting larger-scale addition to EPES would be to provide additional handles in the mapping 
system for creating more complex rule sets and conditional logic: do this thing X only if these three 
things ABC have already happened.  This sort of performance logic is closer in concept to the JEML 
story logic engine designed for the Sleep No More Extension (discussed in Section 4.2.4).  How does 
one construct a set of rules about what options are possible at any particular state of the 
performance, when those options depend on everything from prior actions to a performer’s current 
behavior to the current section of the performance?   
 
Integrating more backup features to the system would be useful in ensuring its stability across a 
variety of performance situations and potential technological failures.  As the input and output 
systems become increasingly complex, backup systems are increasingly necessary.  In the current 
EPES implementation, Parameter nodes can allow an external technician to have a layer of real-
time control over a live performance in case of technical failure.  Say the sensing system completely 
fails mid-performance: how can a technician monitoring the system step in and simulate some 
data?  By attaching a Parameter in place of the output of the expressive parametric analysis, the 
technician can adjust some high-level values on the fly.  This will not, of course, have the detail and 
expressivity of the live experience, but would likely be better (in many circumstances) then 
completely turning off the system and removing all variability from the digital media.  However, 
what if the system also incorporated the ability to immediately switch from live data to some kind of 
saved performance data for playback?  Performance data from a rehearsal could be recorded, and 
then run in loose temporal synchrony with the live performance, ready in case of emergency.   
 
A few other potentially useful features to add to future versions of the system include: 

• Additional techniques for representing and visualizing trajectories of a parameter over time. 
• JavaScript nodes that incorporate a sense of state and time, for even more flexible 

experimentation. 
• The ability to confine more information within one visual node through sub-mappings or 

encapsulation of groups of nodes (as in Max/MSP, Quartz Composer). 
• Techniques for representation of relationships between multiple performers or performers in 

relationship to a performance space. 

7.2.2. Further Extensions of Machine Learning and Feature Computation  

The range of machine learning techniques built into the Expressive Performance Extension System 
could easily be extended in a variety of ways to help support the use of the system in a rehearsal 
process and to add further layers of mapping capabilities to the system.  Additional machine learning 
algorithms for continuous parametric evaluation could be added and more settings could be made 
available to the user for adjusting variables of individual algorithms.  It might also be useful to 
integrate the machine learning evaluation and training node classes into a single node for more ease 
in switching back and forth between training and testing in the middle of rehearsal.  
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So far, this research has focused on the extent to which expressive performance can be analyzed via 
continuous qualitative parameters rather than through gesture or speech recognition 
techniques.  The system could later be extended to incorporate more gesture recognition capabilities 
and discrete classification tools.  The existing structure of EPES can be used for recognition of 
gestures (identifying the probability of specific gestures) if thresholds are set for each output 
parameter of a regression algorithm, but a next step of complexity would be to incorporate structures 
designed directly for gesture recognition and switching system behavior based on gestures.  For 
example: if the gesture recognized is raising the hand, map the expressive information in one way; if 
it is pushing the hand down and to the side, map the expressive information in a different way. 
 
However, the usefulness of integrating such gesture recognition techniques will be significantly 
affected by improvements in algorithms’ abilities to predict a given gesture. If the desired behavior of 
the system is to interpret expressive data differently depending on the current gesture, only 
recognizing the gesture once it has been completed will not be particularly helpful.  When a 
performer begins to raise her arm, how quickly can a system detect that she is raising her arm and 
branch into the desired mappings?  If the system is inaccurate in its prediction, how quickly can it 
tell that and recover gracefully?  As audience members, we watch and make predictions about what 
we think will happen next.  We find it meaningful when our predictions are satisfied or 
thwarted.  Our interactive systems will also need to be able to go on that kind of journey. 
 
Another area in which the Expressive Performance Extension System can be extended is by adding 
interfaces to allow quicker collection and labeling of training data examples.  The current training 
data gathering phase requires the user to manually segment training data by starting and stopping 
the system for each example.  Automatic sample segmentation techniques could be easily developed 
for the training phase.  For example, what if the user wanted a longer sequence of movements to be 
automatically separated into multiple training data examples labeled as “very fluid” movements?  
This separation could be performed either by segmenting a data stream on particular features (pauses 
in movement or vocal silences, for example), or by storing many overlapping windows of data as 
individual samples. 
 
Additionally, tools could be added to the Expressive Performance Extension System to allow for 
rapid live annotation of live or previously captured data streams.  Imagine that overlapping windows 
of data were continually added to the training data set, with their labels determined by a slider that is 
moved by the user in real time while watching the performer being measured.  A performance-maker 
could sit in rehearsal and annotate many training data examples on the fly, without having to take 
time from the rehearsal explicitly for capturing labeled examples.  Since parameters can be trained 
separately, it is likely to be an achievable goal for the user to track the changing value of one 
parameter at a time.  What if the same process could be performed while playing back a sequence of 
sensor data that has captured from a performance or rehearsal, synchronized to a video?  This would 
allow the user to perform additional system training offline, without the performers needing to be 
present.  This would also allow the user to create labeled training data for a variety of parameters 
given the same example sequence of movement.   
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This extended system could also be adapted to assist in the handling of weakly labeled data, where 
new training data examples from a performance or rehearsal could be labeled automatically by the 
system based on the parameter labels that it calculates given an existing set of training data.  What if 
a choreographer has trained a system on one a particular piece, but wants to refine those definitions 
for another piece?  Imagine that the system is run during a rehearsal to automatically label new 
training examples as described above.  With a video system added to play back the rehearsal video in 
sync with this weakly labeled data, a user could observe the system’s guesses at labeling the 
performance along the specified expressive axes and then modify the labels where the user does not 
agree with the system.   

7.2.3. Creative Modularity Through Expressive Parameters 

The structure of the Expressive Performance Extension system allows for a several levels of 
modularity in creating performance works.  For example, training data sets and trained models can 
be reused in other performance or rehearsal contexts.  Suppose a choreographer has already created 
one expressive model.  He can start with the original set of input data and mappings, then keep the 
core definition of expression but change mappings.  Alternately, he can keep the mappings between a 
particular expressive parametric space and a particular set of output media, but change the definition 
of what those expressive parameters mean or how they are measured.  One person’s definition of 
expression in performance could even be applied to someone else’s piece.  
 
This flexibility supports practitioners in developing certain aspects of their interactive space 
independently over the course of different performance pieces.  For example, the soundscape that I 
created for Crenulations and Excursions had its roots in one of the sonic worlds developed for Four 
Asynchronicities, which was itself inspired by samples I used in an earlier choreographic piece.  The 
same soundscape and triggering software was incorporated into Trajectories and extended even 
further for use in Temporal Excursions.  Through the exploration of this sonic output vocabulary, I 
have grown and refined the soundscape and the OSCtoMIDIGenerator tool separately from the 
individual pieces or mappings.  Similarly, one could expand and develop a particular parametric set 
or pool of training data over a variety of pieces.   
 
The persistence of training data is a particularly interesting concept: it is not a score, not a mapping, 
and yet it is a carefully designed part of a piece.  One could take the same sensors, computed 
features, training data, and expressive parameters, but create very different mappings with the same 
or different output media elements.  There is some essential concept of expression that is created by 
the performance-maker and encoded in the labeling of the training data, but that expression does 
not dictate the overall shape of the piece, the elements of the temporal structure, or the vocabulary 
used in performance.  Indeed, that expressive encoding may be reusable in many different contexts.   
 
The Expressive Performance Extension Framework’s focus on high-level parameters also encourages 
a different type of authorship of expressive interaction.  An author of an interactive performance 
work or installation can create a piece that can be performed without a specific gestural vocabulary.  
The performers do not need to learn a particular choreography to interact with that particular 
creation, but the author still has a high level of control and shaping over the experience.  There is a 
particular kind of artistry that is inherent in defining the expressive parameters and creating a 
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mapping, which can remain constant even in a variety of different contexts.  The Powers Sensor 
Chair is one example of a system that leveraged this strength of the Expressive Performance 
Extension System.  This piece was designed to be on the installation side of the continuum of 
expertise discussed in Chapter 2, where those who encounter the instrument are novices at the 
experience.  The system was able to support the creation of an instrument with a very particular 
character determined by its interaction design, but that did not have too many preconceptions about 
how it would be played.    
 
This system’s representation of expression through high-level parameter sets also allows for 
modularity in the division of labor around a performance or installation.  It frees different members 
of a creative team to create different aspects of a piece, while keeping everyone focused on the same 
kind of expressive space.  One set of parameters informs everyone’s creative process.  The 
choreographer may not need to know exactly how the movement may be extended into digital 
media, only that there is a particular parametric space to play with.  The visual designer can begin 
creating interactive projections without yet knowing the specific choreography.  A sound artist can 
compose a sonic piece that responds to particular high-level control parameters.  All of this work can 
be developed simultaneously, connected and structured through a shared expressive vocabulary.  

7.2.4. Expressive Extension in Other Performance Modalities  

While the systems and frameworks discussed in this dissertation have been designed with the goal of 
describing and extending movement and the voice, these structures are also applicable for many 
other forms of performance.  In particular, this framework’s focus on regression rather than 
classification can be a general-purpose mapping concept for expressive performance.  Similarly, the 
use of continuous expressive parameters as the core of a mapping is novel and generalizable to other 
performance domains.  
 
For example, the same systems and workflow could be used in the development of a new extended 
musical instrument, such as an augmented instrument or an entirely new interface.  Say that the 
desired instrument to be augmented was a piano.  Performance data that could be sensed from this 
instrument might include the audio signal, which notes the performer plays (given a digital keyboard 
or some sensors on the keys of a traditional piano), how hard the performer hits the keys, which 
pedals are pressed, etc.  Additional auxiliary data might come from sensors picking up the movement 
of the performer’s upper body or head.    
 
At the feature computation stage, many high-level musical features could be added, such as 
information about rhythmic structures, the deviation of a signal from a given rhythm, the variation 
of the tempo from moment to moment in relationship to a score, the amount of melodic tension, 
etc.  These high-level and lower-level features could be used as inputs to an expressive parameter 
space of musical expression.  While there are many different types of musical features that have been 
explored in expressive contexts, the final connection between these kinds of features and an 
expressive description of the performance is still subjective and would benefit from the sort of 
analysis explored in the Expressive Performance Extension Framework.  
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7.2.5. Performance Analysis and Training 

The Expressive Performance Extension Framework and EPES can also be applied to the context of 
performance analysis.  Regardless of whether a performance piece includes any technological 
performance extension techniques, the ability to measure aspects of the expressivity of that 
performance can still be used to study and analyze that performance in new ways.  For example, 
imagine that a set of expressive curves are calculated throughout an entire performance, based on 
training examples.  These curves are recorded in sync with video of that performance.  By looking at 
the labels that now annotate the originally unlabeled performance, what information can be gained 
about the piece?  What can we learn about the structure of the piece?  We can use several labeled 
performances of the same piece to learn more about how that piece varies between performances, or 
how different performers vary in their interpretation of the same piece.   
 
Similarly, these techniques can be useful as training tools. In the field of dance, transmission of the 
details of a particular piece is typically performed through a few limited strategies: direct training 
from an original performer, video, and/or notation systems.  A system like EPES could easily be 
modified to serve as a complement to typical dance notation systems or video recordings.  Could a 
performer learn not only the choreographic vocabulary of a piece but also the expressivity of its 
original performance?  Could he learn not only the notes of the song but also the expressive vocal 
shaping?  What if he could be evaluated by the system and get feedback about how accurate he was 
in reproducing an expressive model? 
 
To do these sorts of training and analysis tasks, the system could be reasonably easily extended to 
record the values of a set of expressive parameters of an original performer, measure a new 
performer’s expression along the same parameters, and compare the two sets of metrics.  In cases 
where the overall timing of a piece is constrained by a musical recording (in the case of a dance 
performance to a specific piece of music), this comparison is straightforward.  For performances 
where the timing varies more widely, some normalization of time across different sections would be 
necessary.  A performer could then be given feedback about his or her performance either in real 
time or as a summary afterwards.   
 
As a performer’s expression starts to be used to affect more aspects of a piece, this kind of training 
may be particularly useful.  For example, let us examine the Dallas performances of Death and the 
Powers and the replacement of our original baritone James Maddalena with Robert Orth in the role 
of Simon Powers.  While the creative team chose not to dictate too many aspects of Orth’s 
performance, there was a certain amount of consistency we hoped to obtain from the many 
visualizations and sound manipulations that would be affected by the performance of whoever was in 
the role of Simon Powers.  We did not want to show Maddalena or Orth the direct visual results of 
their performance, lest they get in a feedback loop of attempting to make the system respond in a 
particular visual way.  But what if the creative team could examine some representation of Orth’s 
expressive performance, compare it to a representation of Maddalena’s original performance, and 
through that discover ways to direct Orth’s performance?  
 
Many other interesting questions arise when discussing the analysis of performance through 
expressive parameters.  What is the canonical form of a particular dance or vocal piece, and how can 
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that form be shared?  Is that form purely the sequence of choreographic motions or a musical score, 
or does it involve some concept of a particular performer’s expressivity?  Could someone learn the 
choreographic or performance style of a particular performer, given metrics of their expression?  Do 
particular performers have an expressive signature that could be analyzed through these kinds of 
systems?  
 
On a related point, how can a system train people who are not yet expressive with their voices or 
bodies to be more expressive?  The Vocal Vibrations project has begun to explore this field, with the 
goal of designing an experience that would inspire novices to explore the possibilities of their voices.  
What if you could get direct feedback from a system about the dimensions of expressivity of your 
voice?  This kind of feedback about your own parameters of expression could be used not only for 
training purposes, but also for increasing your general awareness of your own expressive patterns.  
What are your styles of expression, given a particular vocabulary of movement or song?  
 
Current interfaces or games that give feedback on singing, such as the Rock Band game, generally 
focus on giving the user feedback about how their pitch compares over time to the desired pitch.  
Interfaces for novices that measure and give feedback on physical movement, like the game Dance 
Central, similarly look at only whether your body is in the correct position at the correct moment.  
What if the question was not whether you could match the pitch or movement correctly at a 
specified time, but whether could you match a defined expressive arc of a piece?  What if you were 
freed from using a specific vocabulary, but instead allowed to explore a range of vocabularies and 
styles while examining how those affected your performance?  Or what if, while learning a particular 
song or dance piece, your focus was on learning the expressive shape of the piece in addition to (or 
even before) precisely learning the notes and movements?  

7.2.6. Expressive Extension in Other Domains  

The concepts and systems developed as part of this dissertation lay the groundwork for addressing 
problems of expressive representation in domains beyond extended performances and installations.  
For example, expressive gestural or vocal input could be used as parametric input into compositional 
tools.  What might it mean to tell a system that you want the next part of the piece to be “like this,” 
where “this” is a time-varying quality of movement, or a vocal phrase?  How could compositional 
parameters be shaped by example?  In systems such as Torpey’s Media Scores (Torpey, 2013), the 
shape of compositional elements over time can be entered via an expressive drawing interface.  What 
if the desired quality of a particular moment could be communicated to a system through a 
movement of the hand, or a vocalization?   
 
In the field of Human-Computer Interaction, researchers have primarily focused on detecting 
individual gestures and words, with the interpersonal generalization goal of having one system be 
able to recognize many users performing the same gesture or saying the same text.  As we have seen 
in this thesis and the related research, variation in movement and vocal examples is significant for 
expressive or emotional communication.  There is a broad push toward detecting users’ emotions, 
although generally the emotions detected are users’ innate emotions, rather than emotions that the 
users are intending to express to the system.  However, systems are not often created to allow 
interface designers to construct systems at a high level with that kind of information.  Say you know 
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how happy or energetic or calm or abrupt a user is: then what should be done with that information?  
The easier it is to obtain high-level representations of the expressive and emotional content of a 
user’s behavior, the more that designers can design their interfaces to be shaped by those 
representations.   
 
More broadly, this exploration of expressive movement and voice technologies will be relevant for 
designers of many different kinds of immersive experiences.  As discovered with the Powers Sensor 
Chair, even though the world has become generally saturated with technology, people still do not 
expect their own movement to cause an effect in a space.  Similarly, Vocal Vibrations showed how 
deeply visitors connected with an experience that was centered on their own voice.  Movement and 
voice are two of the most personal, unique, and expressive ways that we can communicate with the 
world.  Thus, using the body and the voice expressively can allow people to have very personal 
encounters with a space or with a technology.    

7.3. The Future of Extended Performance  
This chapter has shown how the work discussed in this dissertation has achieved the research goals 
outlined in the introduction: a creative framework and design principles for performance extension 
through technology, a computational system for high-level analysis and mapping of physical and 
vocal qualities, and several performances and installations that contribute to the repertoire of 
extended expression.  These tools and principles support the main research question of how to 
transform movement and voice data into meaningful, expressive information.  As the field of 
performance becomes increasingly technological, these kinds of methodologies will be necessary to 
help that field evolve in ways that support the humans at the center of the performance traditions.   

7.3.1. The Multimodal Performance 

We are now at a point where different performance disciplines are merging, creating hybrid 
performance experiences that cannot be classified solely as works of “dance” or “music” or “theater.”  
We are perhaps moving closer to Wagner’s concept of Gesamtkunstwerk, a model of a “unified 
artwork” that would combine all forms of art via the theater (Wagner, 1895).  Interactive 
technologies are the next element that can be brought into these rich, boundary-defying 
performances.  Beyond serving as an individual element that can be added to a performance, 
technology can also support the expressive integration and unification of many other modalities.  An 
increasing number of theatrical systems are already under some level of technological and 
computational control, from stage lighting to sound manipulation to the movement of set pieces to 
projections.  This gives us the potential to connect these different forms of media into unified 
expressive systems.  However, the ability to connect these many systems in a live performance has so 
far generally been limited to envisioning that particular actions will occur simultaneously.  The 
connection between multiple media elements is time, either in the form of shared timecode or shared 
cues.  The media elements are composed in reference to time and perhaps a set of actions represented 
through a script or score.     
 
Creating performances that integrate many types of media may become easier through the model of 
a shared representation of performance that can be extended into a variety of modalities.  What are 
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the possibilities when all of these systems can be linked to the expressive performance of an actor, 
dancer, or singer, to become completely connected into one multimodal experience?  The opera 
Death and the Powers is an early example of such a performance extension, where visualizations, 
sound, and robotic movement of scenic elements are connected through the live behavior of the lead 
actor.  Tools that capture and represent expressive performance in meaningful ways may be the key 
to creating these multimodal connections.   
 
Through the use of a central vocabulary of expressive parameters, different members of the creative 
team for a particular piece can collaborate around a shared vision of what is important about a 
particular live performance.  Visuals, sound, music, dance, scenic elements, and theatrical 
performance can be directly connected, with one computational model of expression linking many 
aspects of the performance in real time.  An expressive quality of a performer’s body can become a 
musical quality, a quality in an artistic visualization, and a quality of scenic lighting.  The voice can 
transform the robotic scenery or the soundscape.  Through careful design of mappings and mapping 
systems, all of these media can come together into a single expressive experience.    

7.3.2. The Multi-Spatial Performance 

Additionally, as performances stretch outside of a single performance space, the question of 
extending expression becomes even broader.  For an experience like the Sleep No More Extension’s 
online component, or the Powers Global Interactive Simulcast, what does it mean to have a live 
performance connected to experiences that are located at an extreme distance from the theater?  How 
can something on a mobile device feel like it resonates with a live performer’s actions thousands of 
miles away?  How can an experience taking place online feel like it is connected expressively with a 
real performance?  How can multiple performance spaces in different locations be connected 
together to create larger performance experiences?  High-level representations of a performer’s 
physical expression will assist performance-makers in transforming that expression not only into 
other modalities within the theater, but also into modalities that can allow that expression to be 
experienced remotely in a variety of ways.  
 
Modeling a performer’s expressivity with regards to space and abstracting expression away from the 
form of a particular space may be important components in translating that performance across 
spaces.  The majority of the systems described in this dissertation have focused on the expressive 
qualities of a performer within his or her personal kinesphere.  New parameters of expression could 
be added and trained on features of a performer’s physical relationship to the performance space or 
his relationship to other performers within a space, examining spatial connections such as those 
explored in Section 4.1.4.  Once there is a model of the performer’s expressivity with regards to the 
performance space, can we transmit a sense of this connection in order to link very different types of 
spaces?  A performer in relationship to one particular space evokes a particular feeling.  That feeling 
can be transmitted and then transformed into elements that evoke the same feeling in the context of 
another space (a different theater, a cinema, a tiny room, an outdoor location, a giant warehouse, a 
specially architected space, an online world, a mobile screen...).  
 
It is important to note that in these cases where a performance is sent from one space to a variety of 
other spaces or transformed into alternate modes of experience, having a high-level representation of 
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expression provides a compact method of communication between the main performance venue and 
other venues.  The analyzed expressive performance information can be the primary information 
transmitted, rather than a large amount of raw sensor data.  This performance information can then 
be interpreted in individual ways by each of the different spaces receiving that information.   

7.3.3. The Human Performance 

As we continue to incorporate technology into these multimodal, multi-spatial performances and 
installations, it is vital that we keep our focus on the human at the center, the most important part of 
a performance.  Our systems should both serve the goals of a particular performance work and 
extend the nature of live, human, performance.  Is it clear that there is live control, affected by 
moment-to-moment variation of a performer, different every night?  Is the technology a core part of 
the storytelling and the performance experience, rather than being included for the sake of the 
technology?  Technology in performance too often takes the form of giant projection screens with 
content divorced from the live performers, or giant speakers with sound distant from a performer’s 
actions.  Our technologies need to support the performers, rather than overwhelm them.   
 
Imagine, in a time not far from now, that a performance is taking place.  At first, when the audience 
arrives, they find a large empty space.  As the audience members start to tentatively walk around the 
room, they find that some level of their nervous movement is echoed in the space by thin threads of 
light that agitatedly shift across the walls.  A woman smiles and waves her hand rapidly, and one 
thread of light playfully darts around the space.  As other audience members pick up her movements, 
walk with different tempos, or gather together in clusters, patterns start to emerge from the strands 
of light.  The lines shift, becoming more confident, complex, and smooth as the audience relaxes and 
tries different kinds of movements.  Suddenly, a man dressed all in white enters the room and holds 
up his hand, suspended.  The threads of light cluster behind him into an excited ball.  With a sharp 
flick of his hand, the light scatters around the walls and a drone slowly becomes audible.  The man 
begins to sing a sad, wordless melody, the emotion in his voice reflected through the threads of light 
dimming and drooping.  He starts to pace through the space, passing audience members and 
momentarily interacting with some of them.  Their reactions to his encounters create ripples of light 
through the space, some startled, some excited, some calm.  As the performance goes on, the space 
continues to envelop the audience in light and sound, reflecting and enhancing the performer’s 
actions and emotions as well as the audience’s own behavior.  The audience members do not care 
about how this experience is implemented.  Instead, they are captivated and brought into the story 
unfolding before them.      
 
The theater has the ability to make magic out of thin air, out of nothing more than talented people 
onstage with perhaps scraps of paper or a piece of fabric or some lights or a piece of furniture.  
Technologies need to become a fully integrated part of the magic of a complete performance 
experience, in the expressive service of the performer and the performance-creators.  That, after all, is 
the fundamental goal for a future of technological performance: systems that are true extensions of 
and complements to a live performance, by recognizing and responding to subtleties of timing, 
articulation, and expression that make every performance fundamentally unrepeatable and unique. 
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