
Sparkler: An Audio-Driven Interactive Live
Computer Performance for Symphony Orchestra

Tristan Jehan, Tod Machover, Mike Fabio
MIT Media Laboratory

email:{tristan, tod, revrev}@media.mit.edu

Abstract

This paper describes the design, implementation,
and application of an audio-driven computer-based
system for live and interactive performance with an or-
chestra. We begin by describing the compositional and
musical goals, emphasizing the electronics aspect. We
then discuss the challenges of working with an orches-
tra and integrating the electronics in a concert hall. We
describe the hardware setup and then detail the soft-
ware implementation, from audio analysis and “per-
ceptual parameter” estimation to the generative algo-
rithm.

1 Introduction

The orchestra is a musical institution that has the
potential to take the lead in experimenting with the in-
tegration technology and new music. However, it has
not been at the forefront of the computer-music com-
munity. We have therefore endeavored to develop a
computer-based system that interacts with a full sym-
phony orchestra in the context of a live performance.

This system was developed for Tod Machover’s
pieceSparkler for orchestra and interactive electronics
(Machover 2001).Sparkler was premiered on October
14, 2001 by the American Composers Orchestra, con-
ducted by Paul Lustig Dunkel in Carnegie Hall, New
York City. It was commissioned by the American Com-
posers Orchestra for itsOrchestra Tech program, and
was designed to be the opening work of a larger project
called Toy Symphony that was premiered in Berlin
on February 24, 2002 by the Deutsches Symphonie-
Orchester, conducted by Kent Nagano.

2 Musical Goals

Sparkler was written to explore many different re-
lationships between acoustic orchestral sound and elec-
tronic sound, sometimes contrasting the two, some-
times complementing them, and at other times blend-
ing the two into a new whole. Most previous work
involved specially designed electronic instruments to
complement the orchestra (Madden, Smith, Wright,

and Wessel 2001), or musical events synchronized to a
score follower (Puckette 1992) or solo instruments that
were enhanced in some way (e.g. amplified or electron-
ically processed). Our piece uses microphones to cap-
ture the audio of the entire orchestra which is then an-
alyzed in real time and formulated into perceptual pa-
rameters through software. These instrumental sound
masses — which are performed with a certain freedom
by players and conductor — generate and control com-
plex electronic extensions, turning the whole ensemble
into a kind of “hyperorchestra” (Whiting 2002).

The musicians play their traditional acoustic instru-
ments without any modifications or additions. There
are only a few carefully placed microphones used to
capture large sections of the orchestra sound. We gen-
erate the electronic sounds through flexible algorithms
that take in streams of analyzed features from the au-
dio and create complex sound textures that evolve over
the course of the piece. At the climactic section, the
orchestra shapes a kind of “texture blob” by bring-
ing out different instrumental timbres and creating dra-
matic accents. To both the players and audience it is
quite clear that the orchestra is directly controlling the
electronics and is dramatically shaping this expressive
enhancement of its own playing.

3 Challenges

There are practical, logistical, and technical chal-
lenges that come up when working with orchestras.
Concert halls are not always set up with amplification
and microphones, and it can be difficult to incorporate
even the simplest piece of equipment on stage. Am-
plified synthetic sounds are not easy to mix with an
orchestra. The acoustics of a concert hall and the dy-
namic range of an orchestra does not necessarily fit
well with an electronic setup. It is definitely not easy to
mike an orchestra and accomplish accurate instrumen-
tal group differentiation with the amount of reverbera-
tion present. Fortunately, we were able to experiment
with several types of microphones and placements with
the local MIT Symphony Orchestra in the early stages
of our work. Rehearsal time was extremely limited, so
reliability and flexibility was key. There were several
parameters and ranges that could only be set during a



live rehearsal. Proper microphone calibration had to be
very simple and could only be done with a fully silent
house. In a concert situation, this could only be done
with a mouse click during the fraction of a second that
precedes the onset of the piece when both orchestra and
audience are very quiet. Since the conductor needs to
start anywhere in the piece in rehearsal, the software
had to be flexible enough to jump to any section in-
stantly. As we were dealing with dozens of musicians
— often playing different notes — on each audio chan-
nel (three total), it was unrealistic to extract and use
pitch. Spectral energy gave a better source of informa-
tion. The real challenge was to measure the activity
of the entire orchestra as an entity, not as a group of
soloists.

4 Implementation

4.1 Hardware

We carefully placed six microphones on stage (see
Figure 1) and mixed them down by pairs to only three
audio channels in a Yamaha O3D digital mixing board.
We paired a cardioid EV microphone and a small shot
gun Shure microphone for each audio channel. We at-
tempted to separate the left section (violins), middle
section (woodwinds, percussions, and brass), and right
section (violas, cellos, and basses) as well as possible.

Violins
Violas

Basses

Cellos
Woodwinds

Percussions
Brass

Computers

1

2 3

4

5

6

A

B

C

Keyboards 1

2

3

Audience

Figure 1: Microphone, keyboard and computer set up
on stage. Microphone channels were mixed down to
three audio input channels as follows: left = 1 and 2,
middle = 3 and 4, right = 5 and 6.

In addition to real-time analysis and algorithmi-
cally generated music, the piece involved three MIDI
keyboards (Yamaha P-80s). Two of them played com-
mercially available MIDI synthesizers (two Yamaha
FS1Rs and two Kurzweil K2500s extended with or-
chestra ROM). The voices often changed during the
course of the piece thanks to the software. The
third keyboard simultaneously sent instructions to the
computer system (voice or channel numbers, modes
and notes available to the generative algorithm) and
played precomposed samples.

The whole piece ran on three locally networked
Macintosh G4 computers (500 MHz with 512 Mb of

RAM.) Although we could have used only two ma-
chines, we chose to separate computational tasks; the
extra machine was being reused for another piece in the
context ofToy Symphony. Each computer had its own
role: computer ‘A’ was theanalysis machine and exclu-
sively dealt with sound analysis; computer ‘B’ was the
keyboard machine which routed all the MIDI data and
also played the precomposed samples of MIDI key-
board 3; and computer ‘C’ was thesynthesis machine
with the generative algorithm and software synthesis
program. All computers used MOTU 2408 sound I/O
hardware with the option of doing multichannel sound
output. We decided to use the stereo house sound sys-
tem since Carnegie Hall — like most concert halls —
is not equipped with a surround-sound system. We
routed all the audio channels directly to the house mix-
ing board (a Yamaha PM1-D).

4.2 Software

Overview

The software was implemented in the Max/MSP
environment (Zicarelli 1998), which allows for fast
prototyping and experimenting with MIDI and au-
dio. Each machine ran its own patch and communi-
cated with one another through a local Ethernet net-
work, using the freely available Max objectsotudp
andOpenSoundControl (OSC) (Wright and Freed
1997). For instance, theanalysis computer sent a con-
tinuous stream of analyzed features (see Audio analy-
sis) to thesynthesis computer. Keyboard 3 both trig-
gered mode changes sent from thekeyboard computer
to the synthesis computer, and sound samples. We
used several samplers loaded with a total of 125 Mb
of precomposed audio sequences in the software syn-
thesis program Reason (Propellerhead 2000). Instruc-
tions also included changing voices on the commercial
synthesizers and rerouting MIDI notes and sustain to
different channels. The Max objectcoll was used
extensively to store lists of program changes as well
as octave transpositions or channel numbers. One key-
board could be playing up to four voices at a time.

Audio analysis

Three audio channels representing left, center, and
right sections of the orchestra were simultaneously
analyzed throughout the whole piece. At the heart
of the analysis was the newly written MSP exter-
nal analyzer∼, previously described in (Jehan and
Schoner 2001).analyzer∼ can estimate the fol-
lowing series of perceptual features: pitch, loudness,
brightness, noisiness, onsets, and Bark scale decompo-
sition (see Figure 2). Given the complex audio signal
to be analyzed, we have not used the pitch extractor or
the onset detector in this application. Each object cal-
culates a real-FFT of approximately 24 ms of audio and



outputs an updated list of features every 12 ms. The ob-
ject is capable of delaying the occurrence of its FFT so
that when used in parallel, occurrences for each object
can be unsynchronized to avoid overloading the CPU.
We exploited this feature to compute the three simul-
taneous FFTs at 3 ms intervals (128 samples at 44.1
KHz.) The analysis application was measured to use
about 15% of CPU load on a 500 MHz Macintosh G4.

Figure 2: Theanalyzer∼ object in action. The
top graphic shows a snapshot of instantaneous loud-
ness, brightness, noisiness, and Bark spectral decom-
position. The bottom window depicts the pitch curve
of a singing voice.

More features were then derived from the raw anal-
ysis data. “Activity” was estimated from the loudness
dynamics over a large period of time, i.e. the range be-
tween minimum and maximum loudness value over the
last second. “Panning loudness” and “panning activity”
— a sort of localization of center loudness and activity
— were estimated by calculating thecentroid (i.e. cen-
ter of gravity) three loudness values and the three ac-
tivity values respectively. The centroid was calculated
by the equation

centroid =
∑N

k=1 k · ak
∑N

k=1 ak

(1)

whereak is the amplitude of the value of indexk andN
is the maximum number of values. In our caseN = 3.

Since this equation returns a float value, it had to
be rescaled to a MIDI compatible 7-bit integer (range
from 0 to 127) just like all the rest of the analysis data.
The raw data could at any moment in the performance
be slightly rescaled through sliders so that it always
ranged nicely from 0 to 127.

A specially written Max object calledsmoother
was frequently used to smooth noisy data, making it
perceptually more realistic.smoother features a me-
dian filter and a first-order low-pass filter and can pro-
cess Max lists of integers and floats. The low-pass filter
output is given by

Yn = C · Xn + (1 − C) · Yn−1 (2)

whereXn is the current input,Yn−1 the previous out-
put, andC the filter coefficient, with0 < C < 1.

Generative algorithm

During an important section of the piece, the con-
ductor has more freedom in controlling certain aspects
of timbre, by purposely emphasizing particular sec-
tions of the orchestra or groups of musicians. The
tempo at this point in the piece becomes very free, and
a single measure can last for a minute or so. The gener-
ative algorithm (Rowe 1992) does not rely on a partic-
ular beat or sequence of notes but is very flexible. It is
designed to sound like a “cloud” of sounds or a “texture
blob” that reacts to timbre changes and sound activity
in an organic manner. Since the musicians were con-
strained by the available notes and rhythms that they
could improvise with at any time, the “clouds” had to
be constrained around those notes as well as pushed
and pulled out of those limits when a particularly dra-
matic sound event occurred.

The texture blob section is composed of five differ-
ent textures, each one being started and stopped from
instructions sent by keyboard 3. Each texture is built
out of six similar “core algorithms,” each one gener-
ating notes on a given MIDI channel. The core algo-
rithms take four arguments: the minimum and max-
imum length of notes (in ms) and the minimum and
maximum speed rate of notes (in ms). It has 17 in-
puts, 12 being directly controllable by the result of the
analysis with normalized values ranging from 0 to 127,
i.e. volume, rhythmic speed, global pitch range, cen-
ter note, probability, local pitch range, velocity range,
velocity center, length range, length center, voice tim-
bre, voice effect. The five remaining inputs are on/off,
list of available notes, timbre controller number, ef-
fect controller number, and channel number. Inside
the core algorithm, there exists several sub-algorithms
that stochastically control the generation of pitches
and rhythms (Winkler 1998), the note velocities and
lengths, the timbre changes, and some additional ef-
fects.



Typically we worked on mapping the normalized
result of the analysis to the different inputs of each core
algorithm until we were satisfied with the musical ef-
fect and the reactivity to sound input. For example,
brightness was intuitively mapped to center note. The
higher the brightness value, the higher the pitch. Other
intuitive mappings include the control of volume and
rhythmic speed by analyzed loudness and activity re-
spectively. We also mapped the activity parameter to
the probability input. If the activity of the orchestra in-
creases, the range of available notes used for synthesis
widens. We sometimes associated one analysis chan-
nel to a pair of core algorithms, resulting in a specific
part of the orchestra having a particular sound color.

Synthesis

All the MIDI data produced by the generative algo-
rithm was sent locally to Reason through several IAC
buses. The sounds were either created in a sampler
(NN-19) or an analog synthesizer (Subtractor) for a to-
tal of 30 virtual devices. The sounds were diverse and
contrasted, and ranged from percussive pitched instru-
ments such as marimba or glockenspiel to much more
synthetic and metallic analog types of sounds. Many
sounds were created using the synthesis program Meta-
synth. Auxiliary effects (i.e. reverb, delay, chorus,
phaser, equalizer) and individual volumes were care-
fully adjusted on each track. The precomposed se-
quences were made using several synthesizers, synthe-
sis programs, and original cello, voice, or violin record-
ings.

5 Conclusions

We have described, conceptually and technically,
the different electronic aspects of the piece including
hardware setup, sound analysis, generative algorithm,
and synthesis. In our final assessment, there are both
successes and failures in our design.

Keyboard 3 used as a controller was a success since
it allowed us to easily send lists of notes (i.e. chords
or scales) to the generative algorithm without relying
on pitch extraction and score following. It was im-
portant to be able to rescale the data in real time since
the analysis for the most part relied on the acoustics of
the performance space, the microphone setup, and the
dynamics of the orchestra. The technical production
was very well organized: setting up the hardware was
very efficient. Neither the microphones nor the pres-
ence of three computers and racks on stage seemed to
disturb the musicians. The collaboration between mu-
sically knowledgeable engineers and composer was a
successful iterative process where the sound result was
refined until both sides were musically and technically
satisfied. The generative algorithm was very flexible,
but additional techniques for creating smoother sound

textures such as additive synthesis could have nicely
complemented our system. Even though both conduc-
tor and orchestra could hear the electronics through the
main house amplification and several additional direc-
tional amplified speakers on stage, they were not nec-
essarily exploring all the possibilities offered by the
system. Longer rehearsal time and formal tests would
have probably helped.

Working with a full orchestra that controls a live
computer-based performance system was a very spe-
cial experience. It is our hope that orchestras in the
future will become more involved with this kind of in-
teractive technology.

Acknowledgements

Special thanks to Laird Nolan and Peter Colao for
the production of the piece and to Ariane Martins for
the management. Also thanks to the MIT Symphony
Orchestra for letting us test with microphone place-
ments. Thanks to Cati Vaucelle and Mary Farbood for
proofreading this article. The worldwide projectToy
Symphony was made possible by the Sega/CSK Corpo-
ration.

References
Jehan, T. and B. Schoner (2001). An audio-driven percep-

tually meaningful timbre synthesizer. InProceedings
International Computer Music Conference, La Ha-
bana, Cuba, pp. 381–388.

Machover, T. (2001).Sparkler - musical score. New York:
Boosey and Hawkes.

Madden, T., R. B. Smith, M. Wright, and D. Wessel
(2001). Preparation for interactive live computer per-
formance in collaboration with a symphony orchestra.
In Proceedings International Computer Music Con-
ference, La Habana, Cuba, pp. 310–313.

Propellerhead (2000).
http://www.propellerheads.se/.

Puckette, M. (1992). Score following in practice. InPro-
ceedings International Computer Music Conference,
San Francisco, pp. 182–185.

Rowe, R. (1992).Interactive Music Systems. MIT Press.

Whiting, M. (2002). Getting to know you: can orches-
tras and technology have a happy marriage? Tod
Machover says yes.Symphony Magazine (January-
February), 15–22.

Winkler, T. (1998).Composing Interactive Music: Tech-
niques and Ideas Using Max. MIT press.

Wright, M. and A. Freed (1997). OpenSound control: A
new protocol for communicating with sound synthe-
sizers. InProceedings International Computer Music
Conference, Thessaloniki, Greece, pp. 101–104.

Zicarelli, D. (1998). An extensible real-time signal pro-
cessing environment for Max. InProceedings Inter-
national Computer Music Conference, Ann Arbor,
Michigan, pp. 463–466.


