
Perceptual Synthesis Engine:
An Audio-Driven Timbre Generator

Tristan Jehan

Master of Science in Media Arts and Sciences
at the

Massachusetts Institute of Technology

September 2001

Perceptual Synthesis Engine:
An Audio-Driven Timbre Generator

Tristan Jehan

Diplôme d’Ingénieur en Informatique et Télécommunications
IFSIC — Université de Rennes 1 — France (1997)

Submited to the Program in Media Arts and Sciences,
School of Architecture and Planning,

in partial fulfillment of the requirements for the degree of

Master of Science in Media Arts and Sciences

at the

Massachusetts Institute of Technology

September 2001

c©2001 Massachusetts Institute of Technology
All rights reserved.

Author .

Program in Media Arts and Sciences
September 2001

Certified by .

Tod Machover
Professor of Music and Media

Thesis Supervisor

Accepted by. .

Dr. Andrew B. Lippman
Chair, Departmental Committee on Graduate Students

Program in Media Arts and Sciences

Perceptual Synthesis Engine:
An Audio-Driven Timbre Generator

Tristan Jehan

Submited to the Program in Media Arts and Sciences,
School of Architecture and Planning,

in partial fulfillment of the requirements for the degree of

Master of Science in Media Arts and Sciences

at the

Massachusetts Institute of Technology

September 2001

Abstract

A real-time synthesis engine which models and predicts the timbre of acoustic
instruments based on perceptual features extracted from an audio stream is
presented. The thesis describes the modeling sequence including the analysis
of natural sounds, the inference step that finds the mapping between control
and output parameters, the timbre prediction step, and the sound synthe-
sis. The system enables applications such as cross-synthesis, pitch shifting or
compression of acoustic instruments, and timbre morphing between instru-
ment families. It is fully implemented in the Max/MSP environment. The
Perceptual Synthesis Engine was developed for the Hyperviolin as a novel,
generic and perceptually meaningful synthesis technique for non-discretely
pitched instruments.

Advisor: Tod Machover
Title: Professor of Music and Media

Perceptual Synthesis Engine:
An Audio-Driven Timbre Generator

Thesis Committee

Thesis Supervisor Tod Machover
Professor of Music and Media

MIT Program in Media Arts and Sciences

Thesis Reader Joe Paradiso
Principal Research Scientist

MIT Media Laboratory

Thesis Reader Miller Puckette
Professor of Music

University of California, San Diego

Thesis Reader Barry Vercoe
Professor of Media Arts and Sciences

MIT Program in Media Arts and Sciences

To my Cati. . .

Preface

As a concert violinist with the luxury of owning a Stradivarius violin made
in 1732, I have always been skeptical of attempts to “electrify” a string
instrument. I have tried various electric violins over the years but none have
compelled me to bring them to the concert hall. The traditional methods
of extracting sound from a violin and “enhancing” it electronically usually
result in an unappealing and artificial sound.

Recently, though, I have been intrigued by the work being done at the
Media Lab by Tristan Jehan. I have had the privilege of working with him
in the development of a new instrument dubbed the “hyperviolin.” This new
instrument uses raw data extracted from the audio of the violin and then fed
into the computer. Using Tristan’s “sound models,” this raw data provided
by me and the hyperviolin can be turned into such sounds as the human voice
or the panpipes. When I first heard the sound of a singing voice coming from
Tristan’s computer, I thought it was simply a recording. But when I found
out that it was not anyone singing at all, but merely a “print” of someone’s
voice applied to random data (pitch, loudness, etc.), I got excited by the
possibilities.

When these sound models are used in conjunction with the hyperviolin, I
am able to sound like a soprano or a trumpet (or something in between!) all
while playing the violin in a normal fashion. The fact that this is all processed
on the fly with little delay between bow-stroke and sound is testament to the
efficiency of Tristan’s software.

Tristan Jehan’s work is certainly groundbreaking and is sure to inspire
the minds of many musicians. In the coming months I plan to apply these
new techniques to music both new and old. The possibilities are endless.

Joshua Bell

Aknowledgements

I would like to gratefully thank

my advisor Tod Machover for providing me with a space in his group, for
supporting this research, and for pushing me along these two years. His
ambition and optimism were always refreshing to me.

the other members of my comittee, Joe Paradiso, Miller Puckette, and Barry
Vercoe, for spending the time with this work, and for their valuable insights.

Bernd Schoner for providing his CWM code and for helping me with it. He
definitely knows what it means to write a paper, and I am glad he was there
for the two that we have written together. Bernd is my friend.

my love Cati Vaucelle for her great support, her conceptual insight, and
simply for being there. She has changed my life since I have started this
project and it would certainly have not ended up being the same without
her. My deepest love goes to her, and I dedicate this thesis to her.

Joshua Bell for playing his Stradivarius violin beautifully for the purpose of
data collection, for his musical ideas, for spending his precious time with us,
and for being positive even when things were not running as expected.

Youngmoo Kim, Hila Plittman and Tara Rosenberger for lending their voices
for the purpose of data collection. Their voice models are very precious
material to this work.

Nyssim Lefford and Michael Broxton for help with the recordings and sound
editing.

AKNOWLEDGEMENTS 7

Cyril Drame whose research and clever ideas originally inspired this work
and for his friendship.

Ricardo Garcia for his valuable insight, refreshing excitement, and for his
friendship.

Mary Farbood for her help correcting my English and for her support. Mary
is my friend.

Laird Nolan and Hannes Högni Vilhjálmsson for useful assistance regarding
the English language.

the members of the Hyperinstruments group who helped in one way or an-
other, and for providing me with a nice work environment.

the Media Lab’s Things That Think consortium, and Sega Corporation for
making this work possible.

my friends and family for their love and support.

Thank you all.

Contents

Introduction 12

1 Background and Concept 14

1.1 What is Timbre? . 16

1.2 Synthesis techniques . 17

1.2.1 Physical modeling . 18

1.2.2 Sampling . 18

1.2.3 Abstract modeling . 18

1.2.4 Spectral modeling . 19

1.3 Hyperinstruments . 19

1.4 A Transparent Controller . 22

1.5 Previous Work . 25

2 Perceptual Synthesis Engine 29

2.1 Timbre Analysis and Modeling 29

8

CONTENTS 9

2.2 Timbre Prediction and Synthesis 33

2.3 Noise Analysis/Synthesis . 35

2.4 Cluster-Weighted Modeling 38

2.4.1 Model Architecture . 38

2.4.2 Model Estimation . 41

2.5 Max/MSP Implementation . 43

3 Applications 47

3.1 Timbre synthesis . 47

3.2 Cross-synthesis . 50

3.3 Morphing . 51

3.4 Pitch shifting . 53

3.5 Compression . 54

3.6 Toy Symphony and the Bach Chaconne 55

3.6.1 Classical piece . 55

3.6.2 Original piece . 57

3.7 Discussion . 58

Conclusions and Future Work 60

Appendix A 62

Bibliography 68

List of Figures

1.1 Our controller: a five string Jensen electric violin 21

1.2 A traditional digital synthesis system 23

1.3 Our synthesis system . 23

2.1 Spectrum of a female singing voice 32

2.2 Typical perceptual-feature curves for a female singing voice . . 33

2.3 Timbre analysis and modeling using CWM 34

2.4 Typical noise spectrum of the violin 36

2.5 Typical noise spectrum of the singing voice and clarinet 36

2.6 CWM: One dimensional function approximation 39

2.7 Selected data and cluster allocation 41

2.8 Full model data and cluster allocation 42

3.1 Violin-control input driving a violin model 49

3.2 Three prediction results with a female singing voice input . . . 50

3.3 OpenSound Control server and client 55

10

LIST OF FIGURES 11

3.4 OpenSound Control with the 5-string violin 56

A.1 analyzer∼ help file . 65

A.2 Perceptual Synthesis Engine Max patch 66

A.3 Simple Morphing Max patch 67

Introduction

From the beginning, with the organ, through the piano and finally to the
synthesizer, the evolution of the technology of musical instruments has both
reflected and driven the transformation of music. Where it once was only
an expression in sound — something heard — in our century music has also
become information, data — something to be processed.

Digital audio as it is implemented at present, is not at all structured:
controllable, scalable, and compact [Casey, 1998]. In the context of musical
instruments, this is a major limitation since we would like to control every
aspect of the sound in a musically meaningful manner. There are needs for
higher level descriptions of sound.

Digital instruments as they are implemented today, systematically com-
bine the notion of gesture control and the notion of sound synthesis. Typi-
cally, an arbitrary gesture is used to control at least one synthesis parameter,
e.g., a key equals a fundamental frequency, velocity maps with sound am-
plitude, etc. This basic principle led to the MIDI1 system almost 20 years
ago. The format is in fact very well suited for the keyboard interface and
its low-dimensional control space, i.e., note on/off, key number, and velocity.
The sound synthesizer behind it generates a more-or-less complex waveform
that can be more-or-less transformed using additional controllers such as a
volume pedal or a pitch-bend joystick.

However, MIDI does not describe very well the high-dimensional instru-
ment controllers such as the violin. While keyboards enable many synthesis

1Musical Instrument Digital Interface

INTRODUCTION 13

applications, other instruments2 are typically not used for controlling syn-
thesis algorithms. This is mostly due to the fact that musical gestures like
finger position, blown air, or bow pressure are difficult to measure and to
interpret musically.

Music is built from sound [Bregman, 1990] and from the interaction be-
tween the musician and the sound generated on his instrument. Music was
born from listening rather than performing a gesture. The gesture is a hap-
tic feedback mechanism in order to reach a musical goal [O’Modhrain, 2000]
but the sound is the auditory feedback that has rooted the music. In that
matter, I believe that perception of sound should play a key role in the sound
synthesis process and the musical creation.

The purpose of this thesis is to develop a timbre model that can be used
as a creative tool by professional musicians playing an arbitrary controller in-
strument. The model is controlled by the perceptual features pitch, loudness
and brightness, extracted from the audio stream of the controller instrument,
rather than the musical gestures. Ideally, the system aims to be a “universal”
synthesizer or can be seen as an interface between a musical sound controller
and a musical sound output of arbitrary timbre. Chapter 2 describes the
modeling sequence including the analysis of natural sounds, the inference
step that finds the mapping between control and output parameters, the
timbre prediction step, and the sound synthesis.

This novel structured technique enables several applications, including
the cross-synthesis and morphing of musical instruments.

The work described in this thesis was partly published in the two articles
below:

[Jehan and Schoner] Jehan, T. and Schoner, B. (2001) An Audio-Driven,
Spectral Analysis-Based, Perceptual Synthesis Engine. Audio Engineering
Society, Proceedings of the 110th Convention. Amsterdam, May 2001.

[Jehan and Schoner] Jehan, T. and Schoner, B. (2001) An Audio-Driven
Perceptually Meaningful Timbre Synthesizer. In Proceedings International
Computer Music Conference, La Habana, Cuba.

2Violin, cello, trumpet, oboe, trombone, saxophone, or flute, to name a few

Chapter 1

Background and Concept

The appearance of new musical instruments comes together with the artistic
creation and the development of new composition styles. For instance, there
has been a constant evolution among keyboard instruments begining with the
organ (Middle Ages), and followed by the harpsichord (14th century), piano
forte (18th century), electric piano (1950’s), electronic synthesizer (1960’s),
and digital synthesizer (1980’s). Each evolution offers a particular and orig-
inal new dimension in the sound output and control, although the interface
is already familiar to the player.

Some musicians have changed their playing style when shifting from one
instrument to another. For example Herbie Hancock — very popular jazz
pianist since the 60’s (The Miles Davis quintet) — played a key role in the
development of the jazz-rock movement of the late 60’s and 70’s when playing
a Fender Rhodes electric piano in his band “Headhunters” [Hancock, 1973].
New artistic values are associated with new musical instruments. These new
instruments may feature original interfaces (see section Hyperinstruments) or
they can be based on already existing interfaces, e.g., a keyboard, which has
the advantage of being instantly exploitable by the already skilled musician
who can find new areas to express his mature art.

Our digital age permits very ambitious developments of instruments.
The information technology and signal processing algorithms now serve
music composition [Farbood, 2001] and sound analysis/synthesis worlds

CHAPTER 1. BACKGROUND AND CONCEPT 15

[Mathews, 1969]. Computing power has become cheap and available for most
demanding real-time applications. The amazing success of keyboard instru-
ments such as the Yamaha DX7 (180,000 units sold) has demonstrated the
interest for new and creative digital instruments: a greater variety of sounds
have become accessible to the keyboard player. Unfortunately, there is little
or no digital synthesis technology available to the non-keyboard player.

What do musicians control while playing a musical intrument? They are
different possible answers to that question. A non-musican would probably
say things like “finger position, bow speed and pressure, amount of blown
air.” The expert would rather say “pitch contour, articulation, or timbre:”
he does abstraction of the gesture that leads to the music and concentrates on
the artistic value that he wants to address. Fine musicians are very sensitive
to the sound response of a particular instrument at which they are proficient.
With electronic instruments, they usually agree on the expressivity of controls
as more important than the reproduction of waveforms.

Unlike with acoustic instruments, digital controllers are disconnected
from the sound generating mechanisms that they are virtually attached to,
allowing totally new forms of instruments. However, one of the main chal-
lenges when designing these instruments is to reattach these two modules
in an intuitive and meaningful manner. It is a hard research topic that en-
courages much exploration. In the case of an expert instrument such as the
violin, the controlling mechanism — the action of bowing — is intuitively
correlated to the sound that is generated — the vibration of the string is
amplified by the body of the instrument, which produces the sound. The de-
sign of sound controllers for skilled musicians should not underestimate that
traditional tight relationship between the musician and his/her instrument.

Specially designed commercial controllers with embedded sensors already
exist, e.g., Yamaha WX5 wind MIDI controller. Some devices have been
developed that pick up the sound of an electric instrument and convert it to
MIDI, e.g., Roland GR-1 pitch-to-MIDI converter. Roland has also produced
a guitar synthesizer module (GR-33) that first tracks pitch and loudness. It
then controls an internal synth but also adds an “intelligent” harmony feature
that can generate complex tones from the guitar signal. All current systems
present weaknesses either on the quality of sounds they can generate or on
the controls they offer over the synthesis. They are also instrument specific.

CHAPTER 1. BACKGROUND AND CONCEPT 16

1.1 What is Timbre?

Timbre is defined as the particular quality of a sound that distinguishes it
from other sounds of the same pitch and loudness. This definition addresses
the hard problem of characterizing the notion of timbre. We certainly lack
the vocabulary for describing it. It may be rough, sharp, thin, bright, etc.
We find better cues in the observation of the acoustic signal.

One important timbral factor is certainly the harmonic structure — the
(in)harmonicity [Handel, 1989] — how equally spaced the partials are (see
figure 2.1 in section 2.1). Into that category, and closely related, falls the
notion of periodicity. We consider pitched musical instruments periodic
as pitch is rooted in the notion of periodicity (20–20KHz) in some form.
Another factor is the average spectral shape or how rapidly does the en-
ergy fall off as you go into the higher partials. We approximate it by us-
ing the spectral centroid (see equation 2.12), a sort of center of gravity
for spectrum. A third but important one is the formant structure: the
“bumpiness” of the spectrum. This for example allows to differentiate voice
sounds such as “aaaaa” and “eeeee.” And finally, an important timbral as-
pect is the spectrum variations in time, especially at the attack and decay
[Risset, 1969, Grey, 1978, Wessel, 1979, Risset and Mathews, 1981]. A lot of
timbral information is, for instance, contained in the onset of a note when the
periodic partials were born and before they settle. Timbre is difficult to fully
describe with few numbers of controls, either for compression [Verma, 1999],
analysis, or musical synthesis applications [Masri, 1996, Jensen, 1999].

Different techniques are used to describe those timbral parameters. For
example Linear Predictive Coding (LPC) [Makhoul, 1975] is a method that
efficiently describes a formant structure and is widely used for speech syn-
thesis. It is implemented as a filter and is excited by white noise (to simulate
unvoiced phonemes) or a pulsed source whose repetition rate is the desired
pitch (to simulate voiced phonemes).

At IRCAM, Rodet et al. have implemented a singing voice model entitled
CHANT [Rodet et al., 1984] based on a modified synthesis method termed
FOF (Forme d’Onde Formantique1). Each formant filter is implemented

1Formant Wave Functions.

CHAPTER 1. BACKGROUND AND CONCEPT 17

separately and phase-aligned to avoid interference. Each pitch period impulse
is individually filtered and responses are then time-aligned and summed to
generate the full sound.

Some other techniques also allow one to modify some aspects of tim-
bre, and for example take some audio parameters of one source to influ-
ence another. Appeared a long time after the original analog vocoder, the
phase vocoder [Portnoff, 1976, Dolson, 1986, Roads, 1995] is a good example
of spectrum-domain manipulation of sound. The vocoder is an electronic sig-
nal processor consisting of a bank of filters spaced across the frequency band
of interest. A voice signal is analyzed by the filter bank in real time, and
the output applied to a voltage-controlled filter bank or an oscillator bank
to produce a distorted reproduction of the original. In any case, the phase
vocoder inevitably involves modification of the analysis before resynthesis,
resulting in a musical transformation that maintains a sense of the identity
of the source. Two analyzed signals can be multiplied in the spectrum do-
main, i.e., each point in spectrum A are multiplied by each corresponding
point in spectrum B. The result, named cross-synthesis sounds like a source
sound (e.g. a voice) controlling another sound (e.g. a synthesizer sound).
The effect can be heard in many popular music tracks.

1.2 Synthesis techniques

A sound synthesis technique maps time-varying musical control information
into sound. Each different synthesis method can be evaluated not only in
terms of the class of sounds it is able to produce, but also in terms of the
musical control it affords the musician. However, certain fundamental ideas
for sound synthesis are shared by multiple techniques. The next few para-
graphs recall the different main classes of digital synthesis techniques since
Mathews’ first instrument2.

2In 1970, Mathews pioneered the GROOVE system (Generated Real-time Output Op-
erations on Voltage-controlled Equipment), the first fully developed hybrid system for
music synthesis, utilizing a Honeywell DDP-224 computer with a simple cathode ray tube
display, disk and tape storage devices. The synthesizer generated sounds via an interface
for analog devices and two 12-bit D/A converters. Input devices consisted of a “qwerty”
keyboard, a 24-note keyboard, four rotary knobs, and a three dimensional rotary joystick.

CHAPTER 1. BACKGROUND AND CONCEPT 18

1.2.1 Physical modeling

Physical models reconstruct the acoustical behavior of the instruments by
simulating their mechanical properties. They retain the natural expressive-
ness of the acoustic instrument and may sound very good, but they are usu-
ally CPU intensive and are very limited in the range of sounds they can gener-
ate with one model. Each one requires a lot of knowledge on the actual acous-
tics and physics of the instrument [Smith, 1992, Rodet and Vergez, 1996]. In
the end, the mathematical approximations are such that it becomes difficult
to distinguish for instance a beginner violin from a Stradivarius. The Yamaha
VL1 is a good example of commercial physical modeling synthesizer.

1.2.2 Sampling

Sampling (or wavetable synthesis) in some ways contrasts with physical mod-
eling. The basic principle is to record and store large databases of waveforms
[Massie, 1998]. It is able to provide high sound accuracy, but offers very
little flexibility and expressive freedom. It has been predominant in modern
commercial synthesizers (e.g. Korg M1). There are a few reasons for its
popularity: sampling requires not much more than the acoustic instrument,
a player, and a recording device. As digital archiving has become very cheap,
many libraries of sounds are easily available. Finally, the technique is very
well suited to keyboards that have very few controls, i.e., note on/off, pitch,
and velocity.

1.2.3 Abstract modeling

Abstract modeling attempts to provide musically useful parameters in
an abstract formula. This large group of synthesis techniques (e.g.
FM [Chowning, 1973], granular [Roads, 1995], waveshaping [Risset, 1969,
Arfib, 1979, LeBrun, 1979], scanned [Verplank et al., 2000]) is not derived
from any physical laws but arbitrarily aims to reconstruct complex dynamic
spectra. Sometimes computationally cheap, these are in any case good at
creating new sounds. A good example of successful commercial synthesizer

CHAPTER 1. BACKGROUND AND CONCEPT 19

that implements FM synthesis is the Yamaha DX7.

1.2.4 Spectral modeling

Widely accepted as a very powerful sound synthesis technique, Spec-
tral modeling (or additive synthesis) attempts to describe the sound as
it is perceived by the ear. Like sampling, it only relies on the orig-
inal sound recording. Unlike physical modeling, it does not depend
on the physical properties of the instrument but yet remains flexible
and sounds natural [Makhoul, 1975, Lansky and Steiglitz, 1981, Serra, 1989,
Serra and Smith, 1990, Depalle et al., 1994].

In most pitched instruments (e.g., violin, trumpet, or piano) the sound
signal is almost entirely described with a finite number of sinusoidal func-
tions (i.e. harmonic partials) [Chaudhary, 2001]. However, there is also a
noisy component left (e.g., loud in flute, saxophone, or pipe organ) that is
usually better described stochastically with colored noise [Goodwin, 1996].
Moreover, the sound quality is scalable and depends on the number of os-
cillators being used. Unlike most methods, it allows spectrally-based effects
such as sound morphing.

Conceptually appealing, the main difficulty remains in musically mani-
pulating its high dimentionality of control parameters. This thesis presents
a solution to dynamically and expressively control additive synthesis. The
method is also not computationally expensive and appears to be an efficient
tool for compressing an audio stream (see section 3.5).

1.3 Hyperinstruments

This thesis was first motivated by the need to develop a novel synthesis
technique for the new generation of hyperviolin, an augmented instrument
from the Hyperinstruments group at the Media Lab.

We define hyperinstrument [Machover, 1991, Machover, 1992] as an ex-

CHAPTER 1. BACKGROUND AND CONCEPT 20

tended more-or-less traditional instrument. It takes musical performance
data (audio and gestures) in some form, processes and interprets it through
analysis software, and generates a musical result. The whole chain of
events preferably happens in real-time so it can be used during a perfor-
mance. It is considered “virtual” since its meaning and functionality is en-
tirely reconfigurable in software at any time. It can either feature a totally
new interface that is accessible to the novice, such as the “Sensor Chair,”
[Paradiso and Gershenfeld, 1997] the “Singing Tree” [Oliver, 1997], or the
“Melody Easel” from the Brain Opera [Paradiso, 1999] or it can make use of
already existing musical interfaces such as the series of hyperstrings.

Conceptually, a major difficulty with digitally enhanced instru-
ments comes from the choice of mappings between inputs and outputs
[Sparacino, 2001]. Indeed, there is no “true” mapping between a gesture
and a synthesized result: with most traditional instruments, the sound out-
put is generated from a non-linear interconnection of complex gesture inputs
[Schoner, 2000]. However, some intuitive mappings are sometimes fairly good
approximations, e.g., bow pressure as volume.

Schoner in [Schoner et al., 1998] models the sound output of a violin from
the gesture data captured on a muted instrument. In this digital version
of the violin, a network was previously trained to learn the mapping from
physical gesture input to audio parameters. During synthesis, the network
generates appropriate audio, given new input. The gesture input (bow posi-
tion, bow pressure, finger position etc.) is measured with a complex sensing
hardware setup.

My approach differs from Schoner’s in many ways: the input is an acoustic
audio stream instead of measured gestures. The system allows for modeling
of any timbre, only from recordings, and does not require any additional
hardware. It also allows arbitrary timbre control and sound morphing from
a single sound source. Thus, I believe there is a strong artistic value to this
technique.

Obviously, in the case of the violin, the interface is such that it applies
more to sound models of string instruments, but also works well with voices,
brass, or other non-discretely pitched instruments. There would not be any-
thing wrong with synthesizing a piano sound from a violin input, but the

CHAPTER 1. BACKGROUND AND CONCEPT 21

Figure 1.1: Our controller: a five string Jensen electric violin.

result would not sound anything like a piano. In fact, we can see it as a
hybrid sound (see section 3.2) in between a violin — the controller — and a
piano — the sound model.

The development of expanded instruments was started by Tod Machover
at the Media Lab in 1986 to “convey complex musical experiences in a simple
and direct way.” They were designed to allow the performer’s normal playing
technique and interpretive skills to shape and control computer extensions
of the instrument, thus combining the warmth and “personality” of human
performance with the precision and clarity of digital technology.

Previous examples of these instruments include the hyperkeyboard and
hyperpercussion that were used for the opera VALIS3, the hypercello, hy-
perviola, and hyperviolin, of the Hyperstring Trilogy4, and have been used
by some of the world’s foremost musicians such as Yo-Yo Ma. A combina-
tion of gesture measurements via sensors (e.g., wrist angle, bow position),
sound measurements (e.g., pitch tracking, timbre analysis [Hong, 1992]), and
score follower were used to monitor and eventually “understand” nuances of
the musical performance, so that the musician’s interpretation and feeling

3By composer Tod Machover (1986-87, revised 1988), Bridge Records: BCD 9007
4Begin Again Again..., Song of Penance, and Forever and Ever, by composer Tod

Machover (1991-93)

CHAPTER 1. BACKGROUND AND CONCEPT 22

could lead to an enhanced and expanded performance — usually by generat-
ing extra layers of MIDI orchestration, controlling sound effects, or shaping
triggered sound samples.

The new hyperviolin is an attempt to extend the violin possibilities in a
more subtle, yet musical manner. It is an expert performance instrument that
drives multi-channel audio analysis software and embedded wireless hardware
technology. It aims to give extra power and finesse to a virtuosic violinist. It
allows for quick, intuitive, and creative artistic results. This thesis describes
the analysis/synthesis technique that was specifically developed and applied
to the hyperviolin instrument. Although its “interface” is identical to a
standard violin (see figure 1.15), the sound output is different, and creatively
controllable. The new hyperviolin is designed to respond more closely and
intuitively to the player’s music and to be fully autonomous, allowing for
improvisation.

1.4 A Transparent Controller

Figure 1.2 shows a traditional synthesis system where the musical gesture is
captured from a MIDI interface, analyzed and interpreted before synthesis
[Sapir, 2000]. The haptic feedback is different from that of a real instrument
and the auditory feedback may not necessarily correlate intuitively with the
haptic feedback. As appropriate gesture sensing and interpretation is in the
case of most instruments very difficult [Paradiso, 1997], few digital versions
of acoustic instruments are available today that come close to matching the
virtuosic capabilities of the originals.

Since the valuable musical information is contained in the sound that
the audience — and player — perceives, our system aims to control sound
synthesis from the music produced rather than the input gesture on the
physical instrument. We hope to overcome the hard problems of gesture
interpretation and of simulating the physics of a complex vibrating acoustic
system (see Physical Modeling).

5Photography reproduction coordially authorized by Eric Jensen.

CHAPTER 1. BACKGROUND AND CONCEPT 23

Musical
Gesture

SoundAnalysis Synthesis

Computer System
Haptic Feedback

Auditory Feedback

Figure 1.2: A traditional digital synthesis system. Controller instruments are specially
designed MIDI devices. The computer system converts musical gestures into synthesized
sounds.

Figure 1.3 shows our synthesis system. It applies to arbitrary acoustic
instruments and there is no gesture sensing and interpretation. The haptic
feedback feels natural to the musician. Sound 2 features the same perceptual
characteristics as sound 1, thus the auditory feedback is meaningful and
correlates well with the haptic feedback.

Musical
Gesture

Sound 2Analysis Synthesis

Haptic Feedback

Auditory Feedback

Computer System

Sound 1

Figure 1.3: Our synthesis system. Controllers are arbitrary acoustic or electric instru-
ments. The computer system converts the sound from the controller instrument into a
synthesized sound with identical perceptual qualities.

Both systems can either run in real time or be processed offline for post-
production. In the traditional system, the musician needs to adapt to a new
haptic and auditory feedback mechanism at recording. At post-production,
any change in the computer system (e.g. a new sound selection) may not
reflect the musician’s exact musical intent anymore. In our system, the mu-
sician does not need to adapt to a new feedback mechanism, and whatever
the modifications in the computer system, the musical intent is preserved.

CHAPTER 1. BACKGROUND AND CONCEPT 24

We can see our system as a transparent analysis/synthesis layer in be-
tween the instrument sound output and the musician’s ear. That layer is
implemented on a computer system that takes in the audio stream coming
from an acoustic — possibly muted — instrument, and puts out a second
audio stream with identical musical content but with a different timbre. This
computer system is the “hyper” of the professional category of hyperinstru-
ments that we are interested in, such as the hyperviolin (see section 1.3).

From the original audio stream, we pull out perceptually relevant features
that the player controls. These are for instance continuous pitch, loudness,
and brightness6.

“Sound” considered as either a physical or a perceptual phenomenon are
not the same concept. Auditory perceptions and physically measurable prop-
erties of the sound wave need to be correlated significantly. Hence, physical
attributes such as frequency and amplitude are kept distinct from perceptual
correlates such as pitch and loudness [Sethares, 1998].

• Pitch is the perceptual correlate of the frequency of a periodic waveform.

• Loudness is the perceptual correlate of the amplitude.

• Brightness is the perceptual correlate of the spectral centroid.

We choose to model what is in a musical sound and that is not the per-
ceptual features mentioned above: we call it timbre model.

Almost no work has been done on perceptually-controlled sound syn-
thesis. The field of sound and music perception is fairly new and is still
not very well understood [Cook, 2001]. Works from Max Mathews, Jean-
claude Risset, Barry Vercoe, David Wessel, or more recently Eric Scheirer
[Scheirer, 2000], show that there is a need for smart algorithms capable of
emulating, predicting and characterizing the real sound world into digital
machines.

Simulating with algorithms that describe real-world non-linear dynamic
systems is a difficult task of great interest to the Artificial Intelligence com-

6violinists increase brightness of their sound by bowing closer to the bridge.

CHAPTER 1. BACKGROUND AND CONCEPT 25

munity. Such algorithms are needed for the system we present here. Al-
though the required computing power is important, it is finally manageable
on today’s desktop computers.

1.5 Previous Work

While interactive and electronic music has become more accesible and
popular in the last decade [Rowe, 1992, Rowe, 2001, Winkler, 1998,
Boulanger, 2000, Dodge and Jerse, 1997, Miranda, 1998, Roads, 1995], there
is still little research on augmented acoustic instruments (see section 1.3 Hy-
perinstruments), and even less on specifically designed synthesis techniques
for non-discretely pitched instruments.

Camille Goudeseune [Goudeseune, 1999, Goudeseune et al., 2001] uses an
electric violin as a gesture-input device. He measures the violin position and
orientation using a SpacePad motion tracker and the relative position of bow
and violin with magnetic sensors. These are used for spatialization of the
sound output. He also measures pitch and loudness of the instrument to con-
trol various synthesis models that include FM synthesis, the physical model
of a clarinet, a high-dimensional interpolation of four different instruments,
simulating an orchestra, a “Hammond organ” additive synthesis model and a
singing voice using the vocal model CHANT from IRCAM (see sectionWhat
is Timbre?).

Dan Trueman [Trueman, 1999] has also explored various ways of
expanding the violin possibilities. He mixes sound spatialization
techniques, using spherical speakers (SenSAs), sensor-speaker arrays
(BoSSA) [Trueman and Cook, 1999], and various synthesis techniques
[Trueman et al., 2000]. He especially developed PeRColate, a collection of
synthesis, signal processing and image processing externals for Max/MSP
based on the Synthesis Toolkit (STK) by Perry Cook (Princeton) and Gary
Scavone (Stanford CCRMA) [Cook and Scavone, 2001].

Similar interesting work by cellist Chris Chafe, keyboard player Richard
Teitelbaum, jazz trumpetist Dexter Morrill, reeds and piano player Anthony
Braxton or jazz trombone player George Lewis should also be mentioned.

CHAPTER 1. BACKGROUND AND CONCEPT 26

In particular, George Lewis’ approach is to augment the music in an im-
provisatory manner. For example, he uses a pitch-to-MIDI converter that
feeds a probabilistic software algorithm designed to improvise with him. His
system is driven from the audio and does not use pre-composed sequences.

Significant work was done on Analysis/Transformation/Synthesis of
sound using a sinusoidal decomposition. It was started with the
LPC approach (see section 1.1) of Makhoul [Makhoul, 1975] and Lansky
[Lansky and Steiglitz, 1981], then was refined by Serra who separated peri-
odic from non-periodic signals. Serra has developed a set of techniques and
software implementations for the analysis, transformation and synthesis of
musical sounds entitled Spectral Modeling Synthesis [Serra and Smith, 1990].
SMS aims to get general and musically meaningful sound representations
based on analysis, from which musical parameters might be manipulated
while maintaining high quality sound. The techniques are used for synthesis,
processing and coding applications and other music related problems such as
sound source separation, musical acoustics, music perception, or performance
analysis.

Ever since the invention of neural networks, there have been research
efforts to model the complexity of musical signals and of human musical
action by means of artificial neural networks (ANNs). Connectionist tools
have been applied to musical problems such as harmonizing a melody line
and recognizing and classifying instrument families from sound. However,
connectionist approaches to musical synthesis are uncommon.

Métois introduces the synthesis technique Psymbesis, for Pitch Syn-
chronous Embedding Synthesis [Métois, 1996]. He defines a vector of percep-
tual control parameters including pitch, loudness, noisiness and brightness.
He clusters this data in a control space and assigns periods of sound to each
cluster. Each cluster period (cycle) is resampled with respect to a reference
pitch and is characterized by the statistical mean and variance of each sam-
ple. For synthesis, the chosen period is represented in a low-dimensional
lag-space rotating around a closed curve. Depending on the sample variance
of the output, samples are slowly pulled back to the mean values ensuring
that the transition between different cycles happens smoothly. The periods
are re-sampled at the desired pitch and adjusted for the desired loudness.
In the end, the synthesis engine is a sort of generalized wavetable where the

CHAPTER 1. BACKGROUND AND CONCEPT 27

“index” of the table is dynamically adjusted in a lag space instead of being
forced by an external counter. Our system also uses perceptual controls as
input and a statistical approach for modeling the data, but differs in the
characterization of the sound and the synthesis technique. We characterize
the sound in the spectrum domain rather than the time domain and syn-
thesize the sound using additive synthesis. Métois has experimented with
cello and voice models. Only 10 seconds of sound recordings were used to
train a model (typically a sequence of a few notes) and the system was not
implemented in real time.

Wessel et al. presented a synthesis model which inspired our approach
[Wessel et al., 1998]. A database of recorded sounds is analyzed and param-
eterized with respect to pitch, loudness, and brightness and is decomposed
into spectral frames consisting of frequencies and amplitudes. The perceptual
parameters serve as inputs to a feed-forward network, whereas the spectral
parameters serve as outputs. The network is trained to represent and predict
a specific instrument (examples with wind instruments and the singing voice
were shown). At synthesis, a new set of inputs are given to the network that
outputs the corresponding spectral parameters. The sound result is gener-
ated using additive synthesis. The framework is tested with an ANN using
one hidden layer and independently with a memory-based network. It was
found that the ANN model is more compact and provides smoother output,
while the memory-based models are more flexible — easier to modify and
easier to use in a creative context [Wessel et al., 1998]. Limited sound data
was used for training (typically a 10-second musical phrase or a few glis-
sandi). In the case of cross-synthesis between two instruments for instance,
the same phrase was played with both instruments. Given a recorded se-
quence of perceptual inputs, the system could synthesize in real time but
was not implemented to be flexible and used with a new real-time input.
Our system uses a different modeling technique, comparable to Métois’s and
is implemented to be flexible and easy to use in a real musical context (see
Max/MSP Implementation and Applications).

Schoner et al. used Cluster-Weighted Modeling (see section Cluster-
Weighted Modeling) to predict a spectral sound representation given physical
input to the instrument [Schoner et al., 1998]. While the target data was sim-
ilar to the data used in [Wessel et al., 1998], the feature vector consisted of
actual physical movements of the violin player. Special recording hardware

CHAPTER 1. BACKGROUND AND CONCEPT 28

was needed to create the set of training data and to replay the model. The
model was successfully applied in the case of violin-family instruments. Spe-
cial violin/cello bows and fingerboards were built to track the player motion,
and these input devices were used to synthesize sound from player action.

This thesis combines the efficiency of Cluster-Weighted Modeling with
spectral synthesis and the idea of a perceptual control as feature vector. The
following chapter introduces this new technique for modeling and control-
ling timbre. It describes an expressive sound synthesis engine driven only
by continuously changing perceptual parameters, i.e., pitch, loudness, and
brightness, extracted in the audio signal of an acoustic instrument.

Chapter 2

Perceptual Synthesis Engine

This chapter is about the functionality of the Perceptual Synthesis Engine.
First, the analysis, modeling, prediction, and synthesis steps are described,
then a novel approach for noise synthesis. The Cluster-Weighted Modeling
algorithm that was developed by Bernd Schoner and Neil Gershenfeld at the
Media Lab is reviewed. Finally, the full system, real-time implementation in
the Max/MSP environment is presented.

2.1 Timbre Analysis and Modeling

Underlying this approach to timbre modeling are two fundamental assump-
tions:

1. It is assumed that the timbre of a musical signal is characterized by
the instantaneous power spectrum of its sound output.

2. It is assumed that any given monophonic sound is fully described by
the perceptual parameters pitch, loudness, and brightness and by the
timbre of the instrument.

CHAPTER 2. PERCEPTUAL SYNTHESIS ENGINE 30

Based on these assumptions we can conclude that a unique spectral rep-
resentation of a sound can be inferred given perceptual sound data and a
timbre model. In this approach, both perceptual and spectral representa-
tions are estimated from recorded data. Then, the latter given the former is
predicted.

A monophonic musical signal is represented in the spectral domain. The
sound recording is analyzed frame by frame using a short-term Fourier trans-
form (STFT) with overlapping frames of typically 24 ms at intervals of 12 ms.
Longer windows (e.g. 2048–4096 points at 44.1KHz) and large zero-padded
FFTs may be used as latency is not an issue here.

A spectral peak-picking algorithm combined with instantaneous frequency
estimation (see next paragraph) tracks the partial peaks from one anal-
ysis frame to the next, resulting in L (= 10 to 40) sinusoidal functions.
The number of stored harmonics L usually determines the sound quality
and model complexity. Since pitch is considered an input to the system,
not an output, the spectral vector contains 2L − 1 components ordered as
[A0,M1, A1,M2, A2, . . . ,ML−1, AL−1] where Ai is the logarithmic magnitude
of the i-th harmonic and Mi is a multiplier of the fundamental frequency F0,
i.e. pitch. F0 relates to the frequency Fi of the i-th harmonic (Mi = Fi/F0).

For pitch tracking I first perform a rough estimation using the Cepstrum
transformation [Noll, 1967] or an autocorrelation method [Rabiner, 1970] and
then operate on the harmonic peaks of the STFT. An N -point FFT dis-
cretizes the spectrum into N/2 useful bins of resolution Fs/N Hz, where Fs

is the Nyquist frequency. The peaks of the spectrum and the bins they fall
into are identified. The ambiguity associated with the extraction of a bin
versus a peak frequency may be much bigger than a semitone, especially
in the lower range of the spectrum. Therefore, the instantaneous frequency
estimation of the bins of highest energy is used to obtain a much higher
resolution with little extra computation [Métois, 1996].

CHAPTER 2. PERCEPTUAL SYNTHESIS ENGINE 31

The non-windowed discrete Fourier transform of the signal s(n) for bin k
is:

X(k) =
N−1∑
n=0

s(n)e−jwnk (2.1)

with

w =
2π

N
k = 0, 1, . . . , N − 1

The estimate for bin k’s instantaneous frequency is:

Finst(k) = Fs

(
k

N
+

1

2π
Arg

[
A

B

])
(2.2)

where

A = X(k)− 1

2
[X(k − 1) +X(k + 1)]

B = X(k)− 1

2

[
ejwX(k − 1) + e−jwX(k + 1)

]

The full derivation for this expression can be find in the Appendix A,
page 62.

Given the spectral decomposition we can easily extract pitch as the fre-
quency of the fundamental component. The author is aware that this is an
approximation that may not necessarily be accurate for all instruments but
it meets the requirements of our study and application. Furthermore, in-
stantaneous loudness is extracted from the total spectral energy. The power-
spectrum bins are previously weighted by coefficients based on the Fletcher-
Munson curves in order to simulate the ear frequency response. The output
is in dB. The spectral centroid of the signal is used as an estimator for the
brightness of the sound [Wessel, 1979]. In a second pass through the data,
estimation errors are detected and eliminated. Frames are considered bad if
no pitch could be detected or if it is outside a reasonable range, in which
case the frame data is simply dropped. The peaks of the spectrum are used
as an harmonic representation of the audio signal and as target data for our
predictive model.

CHAPTER 2. PERCEPTUAL SYNTHESIS ENGINE 32

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

Frequencies

Lo
g

A
m

pl
itu

de
s

Analysis - Peak Picking

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-10

-8

-6

-4

-2

0

2

Frequencies

Lo
g

A
m

pl
itu

de
s

Analysis - Peak Picking

Figure 2.1: Spectrum of a singing voice (left) and the Stradivarius violin (right) — 24
ms frame of data. The stars indicate the harmonic peaks of the spectrum as found by the
peak tracking algorithm.

To summarize, in this section we have seen a technique to parameterize
and model an arbitrary acoustic instrument from the analysis of its recording.
The data analysis step provides us with unordered vector-valued data points.
Each data point consists of a three-dimensional input vector describing pitch,
loudness, and brightness, and a 20 to 80-dimensional output vector containing
frequency and amplitude values of 10 to 40 harmonic partials. This data is
used to train a feed-forward input-output network to predict frequencies and
amplitudes (see figure 2.3 - top and section Cluster-Weighted Modeling). We
have, in some ways, reduced a complex timbre description to a black box:
the timbre model. It has generated itself from training1 without making any
particular assumption on the structure of the sound or the instrument to
begin with.

1There is no simple and general mathematical description of an arbitrary timbre for an
acoustic instrument, so a training-based approach seems reasonable to the author.

CHAPTER 2. PERCEPTUAL SYNTHESIS ENGINE 33

400

450

500

550

600
Pitch, Loudness, and Brightness

F
re

qu
en

cy
 in

 H
z

-6

-4

-2

0

2

lo
g(

A
m

pl
itu

de
)

0 1 2 3 4 5 6
1200

1400

1600

1800

F
re

qu
en

cy
 in

 H
z

Time (Seconds)

Figure 2.2: Typical perceptual-feature curves for a female singing voice.

2.2 Timbre Prediction and Synthesis

Timbre prediction and audio-driven synthesis are based on a new stream of
audio input data. This time, the perceptual control features are extracted
in real time from the audio stream. They are used as input to the nonlinear
predictor function which outputs a vector of spectral data in real time —
10 to 40 sinusoids depending on what level of sound quality is desired (see
figure 2.3 - bottom).

The specific model consists of three input parameters (pitch, loudness,
and brightness), and 2L (= 20 to 80) output parameters. In the case of
cross-synthesis, the perceptual control features are extracted and carefully
rescaled to fall into a window of dynamic range, which is kept consistent
across different instruments. This procedure does not apply to pitch but is
important for the loudness and brightness parameters. The input vector is
used with the predictor function on a frame by frame basis, generating an
output vector at intervals of about 12 ms. If the model is based on L sinu-

CHAPTER 2. PERCEPTUAL SYNTHESIS ENGINE 34

Perceptual
Features
Analysis

Spectral
Details
Analysis

Cluster-
Weighted
Modeling

0 20 40 60 80 100 120 140 160
460

480

500

520

540
Pitch

0 20 40 60 80 100 120 140 160
-1

-0.5

0

0.5

1
Loudness

0 20 40 60 80 100 120 140 160
1200

1300

1400

1500

1600
Brightness

Time in Frames

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-8

-6

-4

-2

0

2

4

Fre�uencies

L
o
g
 �m

��it
u
d
e
s

�na��sis - Pea� Pic�ing

 Sound 1
 Timbre 1
Perc. features 1

3 components

2L -1 components

L peaks

Real-time
Perceptual
Features
Analysis

 Sound 2
 Timbre 2
Perc. features 2

0 20 40 60 80 100 120 140 160
460

480

500

520

540
Pitch

0 20 40 60 80 100 120 140 160
-1

-0.5

0

0.5

1
Loudness

0 20 40 60 80 100 120 140 160
1200

1300

1400

1500

1600
Brightness

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-8

-6

-4

-2

0

2

4

Fre�uencies

L
o
g
 �m

��it
u
d
e
s

�na��sis - Pea� Pic�ing

Time in Frames

Cluster-
Weighted
Modeling

Real-time
Additive
Synthesis

 Sound 3
 Timbre 1
Perc. features 2L peaks3 components

Figure 2.3: top: Timbre analysis and modeling using cluster-weighted modeling. bottom:
New analysis, prediction and synthesis of a new sound with modeled timbre. Ripples in
pitch represent vibrato and ripples in loudness represent tremolo.

soidal parameters, the predictor generates 2L−1 output values consisting of
[A0,M1, A1,M2, A2, . . . ,ML−1, AL−1] where Ai is the logarithmic magnitude
of the i-th harmonic and Mi is a multiplier of the fundamental frequency F0.

The output vector is used with an additive synthesis engine that mo-
dulates sinusoidal components and superimposes them in the time domain,
resulting in the deterministic component of the signal:

d(n) =
L∑

l=1

Al cos(ωln+ Φl) (2.3)

with

ωl = 2πMlF0

where n is a discrete time index and Al and Φl are amplitude and phase of
the partials l. This additive approach is computationally less efficient than
an inverse FFT, but much simpler to implement.

In the next section, a stochastic process will be combined with the deter-
ministic component d(n) of expression (2.3) to create a more accurate timbre

CHAPTER 2. PERCEPTUAL SYNTHESIS ENGINE 35

(see Noise Analysis/Synthesis). The full signal model s(n) then becomes:

s(n) = d(n) + r(n) (2.4)

where r(n) represents the residual noise component of the signal.

We observe that the timbre of any particular instrument or instrument
family is contained in the predictor model (see Cluster-Weighted Modeling),
whereas the musical intent is contained in the parameterization of the per-
ceptual control data. By mixing control data from one instrument with the
timbre model of a different instrument, the system allows a skilled player of
a non-discretely pitched instrument (e.g., violin, trombone, or voice) to play
the (previously modeled) timbre of any other pitched instrument without
having to learn this new instrument or controller (see Applications).

2.3 Noise Analysis/Synthesis

The sound quality of additive synthesis can be improved significantly by syn-
thesizing the residual nondeterministic components of the sound in addition
to the deterministic harmonic components [Serra, 1997, Rodet, 1997]. The
noise components are particularly important at the onsets of notes (see figure
2.4), which often is the most characteristic element of the timbre of a musical
instrument. While the harmonic structure is usually described as a sum of
sinusoidal functions, the residue (commonly called noise) can be modeled in
several different ways [Goodwin, 1996]. Here I present a novel approach to
noise modeling by means of a polynomial expansion, more generally known
as linear least squares.

In general, the noise characteristics of a signal are captured in the shape
of the power-spectrum of its non-harmonic components. Figure 2.5 shows
examples of noise spectra for the singing voice and the clarinet. The residue
is obtained by subtracting the power-spectrum of the deterministic signal
d(n) from the power spectrum of the original signal s(n) as described in
expression (2.4). I extract this residual spectrum for each time frame (e.g.,
frames of 24 ms at a rate of about 12 ms) and approximate the spectral
function (in a logarithmic scale) by using polynomial basis functions fk.

CHAPTER 2. PERCEPTUAL SYNTHESIS ENGINE 36

0 5000 10000 15000 20000
6

7

8

9

10

11

12

13

14

Frequency
N

or
m

al
iz

ed
 L

og
(A

m
pl

itu
de

)

7

8

9

10

11

12

13

14

N
or

m
al

iz
ed

 L
og

(A
m

pl
itu

de
)

Polynomial Approximation

0 5000 10000 15000 20000
Frequency

6

Polynomial Approximation

Figure 2.4: Typical noise spectrum of the violin (24 ms FFT) approximated with a
polynomial function (25 basis functions) at the onset of a new note (top) and at decay
(bottom). Loudness and brightness are also displayed, respectively with a horizontal and
vertical line.

0 0.5 1 1.5 2

x 10
4

6

7

8

9

10

11

12

13

14

Frequency

N
or

m
al

iz
ed

 L
og

(A
m

pl
itu

de
)

Polynomial Approximation

0 0.5 1 1.5 2

x 10
4

6

7

8

9

10

11

12

13

14

Frequency

N
or

m
al

iz
ed

 L
og

(A
m

pl
itu

de
)

Polynomial Approximation

Figure 2.5: Typical noise spectrum of the singing voice (left) and the clarinet (right) with
a 24 ms FFT, approximated with a polynomial function (25 basis functions). Loudness
and brightness are also displayed, respectively with a horizontal and vertical line.

CHAPTER 2. PERCEPTUAL SYNTHESIS ENGINE 37

The approximation is of the form:

y(ω) =
K∑

k=0

akfk(ω) (2.5)

where fk(ω) are the polynomial functions of ω up to a given polynomial order
K. ω is a vector that contains the frequencies of the spectrum.

Since the spectrum is a one-dimensional function, the number of basis
terms and coefficients equals the order of the polynomial K, plus one ad-
ditional term for the constant component a0. Up to 30 basis functions and
coefficients are used. The coefficients ai form the output vector of a predictor
model, which, in synthesis, interpolates between the coefficients of different
noise spectra. They are determined by means of a simple matrix inversion
generating the best solution in the least squares sense:

a = B−1 · c (2.6)

with

[B]ij = 〈fi(ω) · fj(ω)〉
[c]j = 〈y(ω) · fj(ω)〉

where 〈·〉 is the inner product.

The input vector of this second predictor consists of perceptual param-
eters and, in addition, a noise/signal ratio (noisiness) estimator and/or an
indicator for note onsets. The output vector contains the polynomial coeffi-
cients ai.

During synthesis, the predictor model generates polynomial coefficients,
which are used to reconstruct the noise spectrum for every frame (i.e., at a
rate of 12 ms). White noise is modulated with the reconstructed function in
the spectral domain. The colored noise spectrum is retransformed into the
time domain after scrambling the perceptually irrelevant phase information
using an inverse FFT. The method accurately reproduces the noise proper-
ties of natural sound and it is particularly successful with breath noise that
appears in the residue of instruments like the flute, saxophone, and trumpet.
The noise predictor is currently being combined with the additive synthesis
engine. The accuracy of the noise model depends on the number of basis
functions used and is easily scalable at synthesis. Computational speed is

CHAPTER 2. PERCEPTUAL SYNTHESIS ENGINE 38

generally not an issue when executed on a state of the art PC or Macintosh
computer.

This parameterization of sound is comparable to Serra’s Deterministic
plus Stochastic Decomposition [Serra, 1989] implemented in Spectral Modeling
Synthesis (SMS) [Serra and Smith, 1990]. However, our system removes the
temporal axis to dynamically control musical features by inputing new pitch,
loudness, brightness, and noisiness envelope functions in real time.

2.4 Cluster-Weighted Modeling

The nonlinear mapping from the feature vector onto the harmonic tar-
get vector is approximated using the general inference framework, Cluster-
Weighted Modeling. CWM was first introduced by Neil Gershenfeld
in [Gershenfeld, 1999] and was fully developped by Bernd Schoner in
[Schoner, 2000]. This section reviews the functionalities of CWM that fulfill
our needs.

CWM is a probabilistic modeling algorithm that is based on density es-
timation around Gaussian kernels. Unlike Artificial Neural Networks, it is
flexible and easy to understand and has a transparent network architecture.

2.4.1 Model Architecture

The descriptive power and algorithmic beauty of graphical probabilistic net-
works is widely appreciated in the machine-learning community. Unfortu-
nately, the generality and flexibility of these networks are matched by their
difficulty of use. Unless the architectures are constrained appropriately and
are tailored for particular applications, they are of little use in a practical
modeling situation. Gaussian mixture models, a subclass of graphical models,
resolve some of these deficiencies. For the Perceptual Synthesis Engine ap-
plication I use CWM, a Gaussian mixture architecture that combines model
flexibility with fast model design and ease of use.

CHAPTER 2. PERCEPTUAL SYNTHESIS ENGINE 39

CWM is a framework for supervised learning based on probability density
estimation of a joint set of input feature and output target data. It is similar
to mixture-of-experts type architectures [Jordan and Jacobs, 1994] and can
be interpreted as a flexible and transparent technique to approximate an ar-
bitrary function. However, its usage goes beyond the function fitting aspect,
because the framework is designed to include local models that allow for the
integrations of arbitrary modeling techniques within the global architecture.
CWM describes local data features with simple polynomial models, but uses
a fully nonlinear weighting mechanism to build overall powerful nonlinear
models. Hence CWM combines the efficient estimation algorithm of gen-
eralized linear models with the expressive power of fully nonlinear network
architecture (see figure 2.6).

−6 −4 −2 0 2 4 6 8 10 12

Gaussian distributions

piecewise linear functions

smooth predictor

 x

p(
x)

 /
 f

(x
)

Figure 2.6: One dimensional function approximation with locally linear models weighted
by Gaussian kernels.

This technique typically starts with a set of discrete or real-valued input
features x and corresponding discrete or real-valued target vectors y. x con-
sists of measured sensor data, discrete classifiers, or processed features (this
application). It is composed of independent observations or of time-delayed
values of an embedded time series. y may be the scalar-valued sample of
a time series, a classifying label, or independent target vector (this appli-
cation). Consider the joint input-output set {yn,xn}N

n=1, and the goal is
to infer the joint density p(y,x), which is the most general, compact, and
statistically sufficient description of the data set.

p(x,y) is expanded in a sum over clusters ck. Each cluster contains an

CHAPTER 2. PERCEPTUAL SYNTHESIS ENGINE 40

input distribution, a local model, and an output distribution.

p(y,x) =
K∑

k=1

p(y,x, ck) (2.7)

=
K∑

k=1

p(y|x, ck) p(x|ck) p(ck)

The input distribution is parameterized as an unconditioned Gaussian and
defines the domain of influence of a cluster.

p(x|ck) = |P−1
k |1/2

(2π)D/2
e−(x−mk)T ·P−1

k
·(x−mk)/2 (2.8)

where Pk is the cluster-weighted covariance matrix in the feature space.

Given a continuous valued output vector y, the output distribution is
taken to be:

p(y|x, ck) =
|P−1

k,y|1/2

(2π)Dy/2
e−(y−f(x,ak))T ·P−1

k,y
·(y−f(x,ak))/2 (2.9)

where the mean value of the Gaussian distribution is replaced by the function
f(x, ak) with unknown parameters ak. In both (2.8) and (2.9) the off-diagonal
terms of the covariance matrices can be dropped if needed.

Expression (2.9) is easily understood considering the conditional forecast
of y given x:

〈y|x〉 =
∫

y p(y|x) dy (2.10)

=

∑K
k=1 f(x, ak) p(x|ck) p(ck)∑K

k=1 p(x|ck) p(ck)

Expression (2.10) is used as our predictor function. We observe that the
predicted y is a superposition of the local functions, where the weight of each
contribution depends on the posterior probability that an input point was
generated by a particular cluster. The denominator assures that the sum
over the weights of all contributions equals unity.

Figures 2.7 and 2.8 depict two types of data analysis in a two-dimensional
space (pitch and loudness) for a short segment of audio (figure 2.7) and a full

CHAPTER 2. PERCEPTUAL SYNTHESIS ENGINE 41

-1.5 -1 -0.5 0 0.5 1 1.5 2

-3

-2

-1

0

1

2

Normalized Pitch

N
or

m
al

iz
ed

 L
ou

dn
es

s

Cluster Allocation

-1.5 -1 -0.5 0 0.5 1 1.5 2

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Normalized Pitch

N
or

m
al

iz
ed

 L
ou

dn
es

s

Cluster Allocation

Figure 2.7: Selected data and cluster allocation. The vertical and horizontal lines
represent the weight and variances of each cluster. Left: Example with the female singing
voice data: 1047 points (as sung in figure 2.2) and 15 clusters in a two-dimensional input
space. Right: Example with 4622 Stradivarius data points and 15 clusters (6 notes).

model (figure 2.8). The female singing voice and the Stradivarius violin cases
are compared. While the first case shows non-structured clouds of points,
the second case shows clear patterns — vertical narrow clouds displaying
notes played by the violinist. While the singer mostly sung free melodies,
the violinist recording was more closely directed. Note the singer tendency
to sing quieter at lower pitch and louder at higher pitch.

2.4.2 Model Estimation

The model parameters are found in an iterative search which uses two estima-
tors combined in a joint update: CWM uses the expectation-maximization
algorithm (EM) to find the parameters of the Gaussian kernels and fit the
local model parameters by an inversion of the local covariance matrix.

The EM algorithm has been widely used as an efficient training algorithm
for probabilistic networks [Dempster et al., 1977]. Given some experimental
data, EM assumes that there is a set of known states (the observed data)
and a set of hidden states, characterizing the model. If the hidden states

CHAPTER 2. PERCEPTUAL SYNTHESIS ENGINE 42

Figure 2.8: Full model data and cluster allocation. The vertical and horizontal lines
represent the weight and variances of each cluster. Left: Example with the female singing
voice data: 89950 points and 10 clusters in a two-dimensional input space. Right: Example
with 19823 Stradivarius data points and 15 clusters.

were known, model estimation would be easy, because we would only need to
maximize a parameterized distribution. Yet, since we do not know the hidden
states we need an iterative search for a solution that satisfies the constraints
on the hidden states and maximizes the likelihood of the known states. The
EM algorithm converges to a maximum of the likelihood of the observed
data, reachable from the initial conditions. Unlike conventional kernel-based
techniques, CWM requires only one hyper-parameter to be fixed beforehand,
the number of Gaussian kernelsK. Other parameters of the model are results
of the estimation process rather than an inputs to the training algorithm. K
is determined by cross-validation on left-out data or in a boot-strapping
approach.

A detailed description of the search updates is available in
[Schoner et al., 1998] and [Gershenfeld et al., 1999].

In this application, the only 3 parameters we deal with are:

1. Number of clusters.

2. Number of iterations of the EM algorithm (see section 2.4.2).

3. Polynomial order of the local model used by the cluster.

CHAPTER 2. PERCEPTUAL SYNTHESIS ENGINE 43

2.5 Max/MSP Implementation

The analysis, prediction, and synthesis system has been completely imple-
mented in the Max/MSP environment [Puckette, 1988, Zicarelli, 1998] and
runs in real time. The new library of Max objects2 includes the following
utility functions:

1. CWM-model infers a CWM model from training data. The function
reads in multi-dimensional feature and target data from two indepen-
dent data files. It then optimizes the coefficients of the probabilistic
network to best fit the nonlinear function that maps the input vector
to the output vector. After convergence, the object creates a third
text file that contains the model data including a description of the
specific architecture, i.e., the dimensionality of the problem and the
coefficients of the network. The object takes the arguments myMod-
elName, numberOfClusters, NumberOfIterations of the EM algorithm,
and polynomialOrder of the local model used by the cluster. The object
is generic and can be used to model other nonlinear systems.

2. CWM-predict reads in the text file containing the model data at start-
up. Given a list containing the elements of the feature vector, the object
continuously predicts output lists, which in our application contain a
spectral parameterization of the predicted sound. The object takes
only one argument: myModelName. The two CWM objects are based
on Bernd Schoner’s original C implementation.

3. analyzer∼ estimates the following series of perceptual features: pitch,
loudness, brightness, noisiness, onsets, and Bark scale decomposition.
The user chooses the type of window (Rectangular, Bartlett, Welch,
Hanning, Hamming, or Blackman), the window size N (default: 1024
points), the percentage of window overlap (default: 50%), and the FFT
size (default: 1024 points). Pitch and onset estimations are based on
the MSP extension fiddle∼ [Puckette and Apel, 1998]. Loudness is
estimated by weighting the frequency bins k of the power spectrum by

2All Max/MSP objects described here are available for download from the author’s web
site: http://www.media.mit.edu/∼tristan

CHAPTER 2. PERCEPTUAL SYNTHESIS ENGINE 44

the coefficients Wk(ak) obtained from the interpolation of the Fletcher-
Munson curves:

loudness =

N
2

+1∑
k=2

(
Wk(ak) · |ak|2

)
(2.11)

where ak is the linear amplitude of frequency bin k up to bin N/2 + 1.
N/2 + 1 corresponds to the frequency Fs/2. Note that the lowest bin
is discarded to avoid unwanted bias from the DC component.

The spectral centroid of a frame [Wessel, 1979] measures brightness:

centroid =

∑N
2

+1

k=2 fk · ak∑N
2

+1

k=2 ak

(2.12)

where fk is the frequency in Hz of frequency bin k.

The Spectral Flatness Measure (SFM) determines if the actual frame is
more noise-like or tone-like. It is defined as the ratio of the geometric
to the arithmetic mean of the energy per critical band Eb, expressed in
dB:

SFMdB = 10 log 10



(∏bt

b=1Eb

) 1
bt

1
bt

∑bt
b=1Eb


 (2.13)

where bt is the total number of critical bands on the signal.

In analyzer∼, the spectrum is first decomposed into a Bark scale,
which gives 25 bands at 44.1 KHz (see below).

The SFM value is used to calculate the noisiness or “tonality factor”
[Johnston, 1988] as follows:

α = min
(

SFMdB

SFMdBmax
, 1
)

(2.14)

with SFMdBmax = −60dB. The closer α is to zero, the noisier the frame
is.

The Bark scale is an auditory filter bank [Smith and Abel, 1999] with
the number of bands depending on the sampling rate: 25 bands at 44.1

CHAPTER 2. PERCEPTUAL SYNTHESIS ENGINE 45

KHz. It is estimated from the FFT using the approximation function
[Sporer and Brandenburg, 1995]:

b = 13 tan−1

(
0.76 ∗ f
1000

)
+ 3.5 tan−1



(
f

7500

)2

 (2.15)

where f is the frequency in Hertz and b is the mapped frequency in
Barks.

analyzer∼ and other FFT-based objects enumerated below use a
specifically audio-optimized real-FFT3. As phase is irrelevant in our ap-
plication, we can perform the FFT twice as fast by considering only the
real components of the FFT. We exploit the symmetry of the transform
and split the audio data set in half. One data set takes the even-indexed
numbers and the other the odd-indexed numbers, thereby forming two
real arrays of half the size. The second real array is treated as a complex
array [Press et al., 1992].

An optional phase argument delays the initial FFT. Several objects
may run together without having to compute all parallel FFTs simul-
taneously since their occurrences are unsynchronized. The object was
measured to use only 2% of CPU load on a 500 MHz Macintosh G4
with a 4096-point FFT overlapping by 85% (update rate is 12 ms). The
analyzer∼ help file is displayed in figure A.1, page 65.

4. Externals which extract each of the described perceptual parameters
individually are also available: pitch∼, loudness∼, brightness∼,
noisiness∼, and bark∼.

5. The MSP extension sinusoids∼ written by Freed is used for real-time
additive synthesis in the time domain [Freed and Jehan, 1999]. This
object takes a list of frequencies and amplitudes and outputs the time-
domain sum of their associated sinusoidal functions as described in
equation 2.3.

The full implementation requires modest amounts of computing resources.
A timbre-prediction model (i.e., the file loaded by CWM-predict and that

3Originally written at CNMAT by Adrian Freed, this efficient FFT was first ported to
MSP by the author as a new external called ffft∼ standing for Fast-FFT.

CHAPTER 2. PERCEPTUAL SYNTHESIS ENGINE 46

contains the full model data) needs as little as a few tens of kilobytes of text
in storage. For combined real-time timbre prediction and synthesis using
three perceptual input features and thirty sinusoidal output components,
less than 15% of CPU time on a 500MHz Macintosh G4 is required.

Whereas the real-time synthesis is fast, the offline modeling step is com-
putationally intensive. Depending on the complexity of the model, up to a
few hours of computation at 100% CPU load are needed for optimization of
the model parameters. For example, the singing voice data showed in figure
2.8 - left represents the full pitch range of the singer (i.e., a little more than
two octaves), and her full dynamic range, from pianissimo to fortissimo. 25
sinusoidal functions were used to synthesize the sound, and results were con-
vincing. 89950 frames were analyzed. With 10 clusters, 15 iterations, and a
linear local model, the training took about three hours of computation.

Chapter 3

Applications

There are many possible applications for the Perceptual Synthesis Engine.
This chapter presents some general ones — i.e., timbre synthesis, cross-
synthesis, morphing, pitch shifting and compression — as well as the ones
that first motivated this research — Toy Symphony and the Bach Chaconne.

3.1 Timbre synthesis

Several timbre models were created including models of a male and a female
singing voice, a Stradivarius violin, and woodwind instruments. Up to 20
minutes of sound data covering a range of possibilities for each instrument
were recorded, i.e., various pitches, dynamics, and playing styles. For in-
stance, I instructed the musicians to play long glissandi, various volumes,
sharp and soft attacks, vibratos, etc. Since the room acoustics affect the
timbre of the instruments considerably, the recording room was kept as dry
as possible and the microphone was placed carefully. In the case of the violin,
I used a directional Neumann microphone located about three feet above the
violinist’s head. I also used the McGill University Master Sample library for
woodwind instruments.

Up to 100,000 data points (time frames) were used for each timbre model.

CHAPTER 3. APPLICATIONS 48

Typically, I have chosen from a few to up to twenty clusters to describe a
more-or-less complex model: ten seemed to give reasonable results in most
cases (e.g. voice model). Twenty iterations seem to give sufficient conver-
gence. It is usually dependent on the number of clusters used: the more
clusters there are, the more iterations are needed. Finally, it was discovered
that a polynomial order of one (linear model) is best for local descriptions.

We are able to control timbre synthesis dynamically. The technique al-
lows for continuous changes in articulation and musical phrasing, and for
highly responsive sound output. The output sound does not suffer from un-
desired artifacts due to sample interpolation (i.e., smooth transition from
one sample to another), sample looping (in order to maintain sustain), and
pitch shift (see section Pitch shifting). The sound quality scales nicely with
the number of sinusoidal and polynomial basis functions. The number of
harmonics used ranged from a few to up to 40 in different experiments. In
[Chaudhary, 2001], Chaudhary has experimented with scalability. He demon-
strates that harmonic sounds were often perceived as almost identical to the
original when synthesized with hundreds or sometimes as little as 10 partials.
For instance he shows that the suling — an indian flute — can be synthe-
sized with only 10 partials and still sounds close to the original. He based
the scheduler in his programming environment on that principle in order to
save unnecessary computation.

Figure (3.1 - left) shows the reproduction of the first seven harmonics
predicted by a violin model based on violin input. The plain line represents
the spectrum extracted from recorded data and the dashed line represents
the predicted data. The predicted signal is close to indistinguishable from
the original.

Figure (3.2 - left) shows the reproduction of the first seven harmonics
predicted by a full female singing voice model based on a new female singing
voice input. The predicted signal matches the original closely even though
the input data was not part of the training data.

CHAPTER 3. APPLICATIONS 49

−1

3

output signals: amplitudes of harmonic 0 − 6

−1

3

−1

3

−1

3

−1

3

−1

3

1 2 3 4 5

−1

3

time/s

400

500

600
input signals: pitch/loudness/brightness

0

0.5

0

0.5

−1

3

output signals: amplitudes of harmonic 0 − 6

−1

3

−1

3

−1

3

−1

3

−1

3

1 2 3 4 5

−1

3

time/s

400

500

600
input signals: pitch/loudness/brightness

0

0.5

0

0.5

Figure 3.1: left: Violin-control input driving a violin model. The bottom figure repre-
sents the three perceptual inputs and the top figure represents the first seven harmonics
extracted from the recorded signal (plain line) and predicted using the model (dashed
line) - fundamental at the top, sixth harmonic at the bottom. Right: Violin-control input
driving a female singing voice model. The bottom figure represents the three perceptual
inputs and the top figure represents the first seven harmonics extracted from the recorded
signal (plain line) and predicted using the voice model (dashed line). Ripples are due to
vibrato and tremelo as showed by the pitch and loudness curves.

CHAPTER 3. APPLICATIONS 50

0

2

4

Morphing: Log(Amplitude) of Harmonic 0-6

-2

0

2

4

-2

0

2

4

-5

0

5

-6
-4
-2

0
2
4

-4

-2

0

2

0 1 2 3 4 5 6

-4

-2

0

2

Time (Seconds)

0

2

4

Voice to voice: Log(Amplitude) of Harmonic 0-6

H
ar

m
 0

-2

0

2

4

H
ar

m
 1

-2

0

2

4

H
ar

m
 2

-5

0

5

H
ar

m
 3

-6
-4
-2

0
2
4

H
ar

m
 4

-4

-2

0

2

H
ar

m
 5

0 1 2 3 4 5 6

-4

-2

0

2

Time (Seconds)

H
ar

m
 6

0

2

4

Voice to violin: Log(Amplitude) of Harmonic 0-6

-2

0

2

4

-2

0

2

4

-5

0

5

-6
-4
-2

0
2
4

-4

-2

0

2

0 1 2 3 4 5 6

-4

-2

0

2

Time (Seconds)

Figure 3.2: Three prediction results, each using the three perceptual inputs from the
female singing voice of figure 2.2. Each figure represents the first seven harmonics extracted
from the recorded signal (plain line) and predicted signal using the model (dashed line) -
fundamental at the top, sixth harmonic at the bottom. Left: The input drives a full female
singing voice model. Right: The input drives a full Stradivarius violin model. Middle: The
input drives a linear morphing between the two models (from voice to violin).

3.2 Cross-synthesis

Instead of driving an instrument model with control data generated on the
same instrument, controls and timbre models from different instruments can
be mixed. For example, a singer controls the model of a Stradivarius violin
or alternatively, the audio signal generated on an electric violin controls the
model of a female singing voice. The resulting sound output imitates the
timbre of the violin in the first case and the singing voice in the second case,
while it follows the musical intentions and control encoded in the perceptual

CHAPTER 3. APPLICATIONS 51

control signal.

As was pointed out earlier, loudness and brightness functions of the source
are rescaled to fall into the loudness and brightness range of the target model.
However, in order to really sound like the original, the controller instrument
needs to imitate the articulation and vibrato of the original target. The pitch
range accessible to the source instrument is essentially limited to the pitch
range of the recorded target instrument.

Figure (3.2 - right) shows an example of cross-synthesis between a female
singing voice controller and a violin model. Comparing this figure to figure
(3.2 - left), we observe that the predicted harmonics differ significantly from
the measured harmonics of the voice. This indicates that violin and singing-
voice timbres are highly distinguishable although the two sounds have the
same relative values of pitch, loudness, and brightness. Figure (3.1 - right)
shows the opposite example of cross-synthesis between a violin controller
and a female singing voice model. This time the violin input is turned into
a singing voice.

In order to extend the output pitch range, we can interpolate between
different voice models, for instance the model of a female and a male voice.
The interpolation (see next section) is strictly done in the frequency domain,
which assures that the resulting sound is artifact-free and does not sound like
two cross-faded voices. A good example of spectral morphing application can
be find in [Depalle et al., 1994].

3.3 Morphing

The timbre modeling approach enables morphing between different core tim-
bres. Because the structure parameterization is kept equal across different
sounds, we can interpolate between parameterizations and models. In the
application discussed above, the electric violin controls either the sound of a
modeled Stradivarius violin or the sound of a female singing voice. We can
choose to synthesize any timbre “in between” by running two predictions
simultaneously and creating two spectral frames, one representing a violin
spectrum and the other one representing a voice spectrum. A morphing

CHAPTER 3. APPLICATIONS 52

parameter α that weights the two spectra (0 < α < 1) is introduced:

Ci(n) = C1i(n) · α + C2i(n) · (1− α) (3.1)

where C1i and C2i are the output components i of model 1 and 2, and Ci

are the resulting components i of the morphed spectrum for time frame n.

α is specified offline or is changed dynamically. It can be controlled in
several different ways:

1. The timbre1 is chosen by the set of perceptual inputs. In that case the
resulting sound is a complex structured varying timbre that evolves
with the feature vector pitch, loudness, and brightness. Each core
timbre can be represented by a zone in a 3D space defined by pitch,
loudness and brightness. The zones can possibly overlap (morphing
zones).

2. The timbre is chosen by additional physical controllers or sensors. One
can define an hyperspace with each axis being represented by a physical
gesture on a particular controller, e.g., pressure, displacement, rotation,
etc. For example we can use a MIDI controller such as a volume pedal
or a pressure-sensitive touch pad (e.g. MTC Express2) to modify the
contribution of each timbre in real time. The timbre is then being
controlled independently from the music played — unless sensors are
embedded on the bow itself.

3. The timbre is music dependent. One may want to analyse the score,
or some high level parameters in the music being played, e.g., density
of notes, length of notes, type of attack, beat, rhythm, etc., and decide
on the timbre from these.

Figure (3.2 - middle) shows an example of linear morphing between a
female singing voice and a Stradivarius violin, using a voice input. The

1When there are multiple models running simultaneously, one can define the current
timbre as the morphing between the core models. That is, there is an infinite number of
combinations: e.g., 30% violin, 20% female voice and 50% trumpet is the description of a
new timbre that would not sound exactly like any other core timbre.

2A mouse-pad sized multi-touch pressure-sensitive controller from Tactex Controls inc.

CHAPTER 3. APPLICATIONS 53

signal at first matches the predicted voice signal of example (3.2 - left) and
in the end matches the predicted violin predicted signal of example (3.2 -
right).

A Max patch displaying a simple morphing between two models is dis-
played in the Appendix, figure A.3 page 67.

3.4 Pitch shifting

Efficient and novel pitch-shifting applications are possible. Since the acoustic
instrument is synthesized with pitch as a real-time control input, it is possible
to change that control value and synthesize the new sound at a different
pitch. For example, given an instrument and its model (e.g. a trombone),
the instrument being played could be re-synthesized in real time at a new
pitch — in which case, changing the pitch value only requires a floating
multiplication: newPitch = inputP itch ∗ floatV alue. Thus, the advantage
being the small amount of extra computation this manipulation demands:
we do not need to process the sound output with a real-time pitch-shifting
algorithm such as the one described in [Lent, 1989]. We are mostly limited
by the pitch range of the original instrument. For example, if the target
pitch value goes beyond the model limits, the system can extrapolate but
may result in some unpredictable and undesirable sound output, i.e., some
partials may become much louder than others, loosing the timbral quality of
the original instrument. Kept in the limits, there is no additional artifact,
even with a strong pitch shift like you can expect with traditional audio pitch
shifters. Being synthesized from scratch, the pitch shifted instrument sounds
more like the real instrument playing at a different pitch rather than a pitch
shifted sound. A Max patch allowing for pitch shifting is displayed in the
Appendix, figure A.2 page 66.

CHAPTER 3. APPLICATIONS 54

3.5 Compression

The proposed methodology of timbre modeling and synthesis can be used for
efficient audio compression and transmission.

Since the amount of input data for the sound model is very small, i.e.,
three 32-bit floating-point3 numbers at 86Hz (about 1 Kb/sec), the con-
trol parameters can easily be sent over the internet in real time. Re-
mote real-time synthesis over an ethernet network was performed success-
fully by transmitting the control data with OpenSound Control4 (OSC)
[Wright and Freed, 1997].

The system handles missing data robustly because the client synthesizes
the audio signal from scratch. Missing frames can easily be replaced by
previously received information. The client continuously generates the time
domain signal based on the data that was last received properly. Hence,
there are no audible artifacts.

Figure (3.3 - left) shows the analysis server Max patch that was used to
analyze a streaming electric violin signal and to send the resulting control
data over the network. Figure (3.3 - right) shows the synthesis client Max
patch that was used to receive the control data and to synthesize a female
singing voice.

We have also experimented with having a five-string polyphonic electric
violin control different sound models on each string. Such a system allows
the musician to play double-stops with a different sound for each note. Such
a complex set-up can either be handled on one machine or shared by several
machines. Figure 3.4 shows how we could easily share the analysis process
and the synthesis between two different 500MHz Macintosh G4 computers.
Experiments show that there was no loss of data after a few minutes of
transmission and no audible delay when computers shared the same local
network.

3Another implementation of the system could possibly use integers instead.
4Earlier experiments of OSC and additive synthesis with a different system (The Ma-

trix) were done between the MediaLabEurope in Dublin and MIT. They showed surprising
low delays (about 0.5 sec) and little loss [Overholt, 2001].

CHAPTER 3. APPLICATIONS 55

Figure 3.3: left: Max analysis server patch. Right: Max synthesis client patch.

3.6 Toy Symphony and the Bach Chaconne

The Perceptual Synthesis Engine described in this thesis, has been especially
developed for the hyperviolin, a soloist instrument to be performed by violin-
ist Joshua Bell in the Toy Symphony5 project. More details on the project
can be found on the following web site: http://www.toysymphony.net

3.6.1 Classical piece

In Toy Symphony, Joshua Bell will first perform a 15 minute solo-violin piece
from the classical repertoire: the Bach Chaconne. This piece, that was often
transcribed for other instruments, features several sections and “moods.”
For its “hyperized” version, Josh will play the original score, but will benefit
from several synthesis techniques, including the one described in this thesis.
He will be able to choose between several timbre models, and morphing
transitions between them. The Jensen violin (see figure 1.1) is multichannel,

5Toy Symphony is a three-year project (1999-2002) that brings together children, vir-
tuosic soloists, composers, and symphony orchestras around the world to radically alter
how children are introduced to music, as well as to redefine the relationship between
professional musicians and young people.

CHAPTER 3. APPLICATIONS 56

Figure 3.4: OSC implementation for the 5-string violin. Top: Max analysis server patch.
Bottom: Max synthesis client patch.

so one or more models will be assigned on each string.

In that piece, we will use a combination of the three controlling op-
tions enumerated in the Morphing section (see section 3.3). For in-
stance, by wearing wireless expressive footwear6 [Paradiso et al., 2000b,
Paradiso et al., 2000a] enhanced with many embedded sensors (e.g., contin-
uous/dynamic pressure, 3D direction, 3D acceleration, height, 2D location,
etc.), the player will be able to continuously manipulate the timbre that he is
playing. Several experiments have already shown that the shoes have great
potential as a high-level musical-parameter controller. For example, given a
set of core models, the direction the foot is pointed out may determine the
current chosen model or morph between the two adjacent models.

6more commonly called “sensor shoes” “musical shoes” or “dancing shoes”

CHAPTER 3. APPLICATIONS 57

The piece will be divided in musical sections that will correspond to
independent complex presets of models available, additional sound effects
(e.g., reverb, delay, etc.) and control rules. Josh will walk along a path,
which, visually, will represent the piece timeline. A new step on stage is more
likely to be detected via pressure sensors along that path. At any time in the
piece, a combination of sensor values coming from the shoes will result in a
sound configuration pulled out from the virtual timbre space available in the
current preset. The possible sound results might go from a choir of voices
in a cathedral, to a more intimate flute sound in a small room. As every
models can morph between each other, we therefore avoid any unwanted
abrupt transitions between sounds and preset changes. While allowing for
much creativity in its interpretation, the piece preserves its whole entity and
does not sound like a juxtaposition of unrelated and disconnected sections.

3.6.2 Original piece

The hyperviolin will finally be a part of an original piece from composer Tod
Machover, titled Toy Symphony7 that involves a full symphony orchestra and
children playing specially designed “smart” musical toys [Weinberg, 1999,
Weinberg et al., 2000].

For that piece, the basic principle will be similar to the one described in
the previous section, but will feature an other dimension: a layer of interac-
tion with the other players, and more particularly with the children. Josh
will be free to walk on stage and musically interact with a chosen child or
group of children playing “shapers8.” The child will be able to subtly mod-
ify the timbral characteristics of Josh’s music without altering his musical
intention.

7Première is in February 2002 in Berlin with the “Deutsches Symphonie-Orchester
Berlin” conducted by Kent Nagano.

8Simple musical interface that allows to shape a timbre or manipulate a musical piece.

CHAPTER 3. APPLICATIONS 58

3.7 Discussion

Our approach preserves the perceptual parameters of the audio signal and
only transforms the spectral content of the musical message. The response
sounds surprisingly close to the target instrument while preserving the mu-
sical intents of the player. From the musician’s perspective, the playability
of the instrument is preserved and the instrument behaves intuitively and
predictably.

In the case of cross-synthesis, i.e., the control features of the played instru-
ment are used as inputs for the model of a different instrument, the resulting
timbre may not always sound exactly as expected. The perceptual control of
one instrument family may look very different from that of another family.
In particular the attack characteristics of an instrument vary strongly across
different instruments and the loudness curve of instrument A may have a
much sharper attack at the onset of new notes than instrument B. For in-
stance, a modeled guitar sound generated from the stroke of a violin does not
have the very characteristic sharp attack and long logarithmic release, but
rather a slow attack, flat sustain, and shorter release, more characteristic of
a violin envelope. This limitation is not necessarily a problem because musi-
cians usually agree that the expressivity of controls is more important than
the reproduction of specific wave forms. In other words, the violin-guitar
controller may not behave exactly like a guitar but it provides the violinist
with an expressive tool that expands his/her artistic space. When designing
new computer instruments and controllers, we should respect the familiarity
and closeness of the skilled musician with his or her instrument, even though
he or she can adapt to a new controller or feedback mechanism.

The correlation between analysis and prediction and synthesis that I use
in this thesis and have described in the section Timbre Analysis and Model-
ing, is a one-to-one instantaneous mapping, i.e., one x-dimension-point input
gives a one y-dimension-point output. However music, or audio in general,
is time-dependent. I believe it is important to take into account the analysis
history in order to better predict the current synthesis. In other words, we
want to refer to the path that analysis took rather than the current state
of the analysis. We want to model the dynamic changes of the analysis —
Is the pitch going up or down? Is the loudness static or changing? Is it a

CHAPTER 3. APPLICATIONS 59

vibrato or a more dramatic change? Some experiments were done using past
analysis data to better describe the current state of the spectrum. Typi-
cally, multiple points were added at the modeling step, i.e., the input vector
became [P0, L0, B0, P−1, L−1, B−1, . . . , P−N , L−N , B−N] where Pj, Lj , and Bj

represent pitch, loudness, and brightness of sample j and where N is the
number of past analysis samples that we consider. The same description for
the output vector was used: [A0,M1, A1,M2, A2, . . . ,ML−1, AL−1] where Ai

is the logarithmic magnitude of the i-th harmonic and Mi is a multiplier of
the fundamental frequency F0. Number of samples from 2 to 15 have been
experimented with. No significant improvement have been found yet but
further experiments need to be conducted.

The author would like to mention that in the case of instrument models
such as the violin, where there is more than one possible way of playing
a given note, no distinctions were done between these different cases. For
example, a G on a particular string, may not sound exactly the same as that
identical G on a different string. A choice could have been systematically
made between the two in order to be consistent. We rather end up with an
approximated G somewhere in between these two.

Conclusions and Future Work

This thesis described a perceptually meaningful acoustic timbre synthesizer
for non-discretely pitched acoustic instruments such as the violin. The tim-
bre is modeled based on the spectral analysis of natural sound recordings
using the probabilistic inference framework Cluster-Weighted Modeling. The
timbre and sound synthesizer is controlled by the perceptual features pitch,
loudness, and brightness, which are extracted from an arbitrary monophonic
input audio stream. The predictor model outputs the most likely set of
spectral parameters that are used in an additive synthesis approach to gen-
erate a new audio stream. The real-time system is implemented efficiently
in Max/MSP on a Macintosh platform.

A noise model that is based on a polynomial expansion of the noise spec-
trum enables a more accurate model and representation of genuinely noisy
instruments such as the flute or the shakuhachi.

Future work will include more algorithms that extract better and new
perceptual features. A greater variety of instruments such as trombone and
flute will be modeled and the noise model will be completely integrated into
the application, using noisiness as a new perceptual input descriptor. Finally,
a fully working system (see section Toy Symphony and the Bach Chaconne)
will be presented as part of a major artistic performance with virtuoso vio-
linist Joshua Bell. The system will be fully autonomous and controlled by
the musician like a novel instrument.

Extensive experiments will be done with the idea of observing the dy-
namic path rather than the instantaneous state of the analysis (see Discus-
sion). I will for instance explore the Hidden Markov Model technique (HMM)

CHAPTER 3. APPLICATIONS 61

as well as others to model the dynamics of the analysis.

The author is particularly interested in the analysis of sound and mu-
sic, and in exploring the many possible musical applications of a learning
approach. Observing, characterizing and measuring what we perceive in a
waveform, should give us all the useful information about our musical expe-
rience.

Appendix A

Instantaneous Frequency Approximation

Let’s consider the discrete Fourier transform (DFT) of the sampled signal
s(n) for bin k and for a rectangular window of samples starting at time m:

Xm(k) =
N−1∑
n=0

s(n+m)e−jwnk (A.1)

with

w =
2π

N
k = 0, 1, . . . , N − 1

The equivalent DFT of the sampled signal s(n) weighted by a Hanning
window is:

Ym(k) =
N−1∑
n=0

s(n +m)h(n)e−jwnk (A.2)

with

h(n) = 1− cos(wn)

Given its polar form:

Ym(k) = αm(k)e
jβm(k) (A.3)

the instantaneous frequency associated with the k-th bin is expressed as:

Finst(k) =
Fs

2π
[βm(k)− βm−1(k)] (A.4)

APPENDIX A 63

=
Fs

2π
Arg

[
Ym(k)

Ym−1(k)

]

This expression implies the computation of two FFTs, one at time m
and the other shifted by one sample, at time m − 1. However, a simple
approximation enables us to estimate the instantaneous frequency from a
single FFT.

A first observation gives us:

Xm(k)− 1

2
[Xm(k − 1) +Xm(k + 1)] (A.5)

=
N−1∑
n=0

s(n+m)

(
1− ejwn + e−jwn

2

)
e−jwnk

=
N−1∑
n=0

s(n+m) (1− cos(wn)) e−jwnk

= Ym(k)

Another one leads to an approximation relatingXm(k) toXm(k−1). This
approximation holds because of the absence of any special window applied
to s(n) prior to the FFT:

Xm(k − 1) =
N−1∑
n=0

s(n +m− 1)e−jwnk (A.6)

= e−jwk

(
N−1∑
n=0

s(n+m)e−jwnk

)

� e−jwkXm(k)

Combining these two observations allows us to express both Ym(k) and
Ym−1(k) — implying two FFTs — in terms of Xm(k), Xm(k−1), and Xm(k+
1) — only one non-windowed FFT — as follows:

Ym(k) = Xm(k)− 1

2
[Xm(k − 1) +Xm(k + 1)] and (A.7)

Ym−1(k) = e−jwk
(
Xm(k)− 1

2

[
ejwXm(k − 1) + e−jwXm(k + 1)

])

APPENDIX A 64

Substituting these into expression (A.3) finally leads us to the following
estimate of bin k’s instantaneous frequency:

Finst(k) = Fs

(
k

N
+

1

2π
Arg

[
A

B

])
(A.8)

where

A = Xm(k)− 1

2
[Xm(k − 1) +Xm(k + 1)]

B = Xm(k)− 1

2

[
ejwXm(k − 1) + e−jwXm(k + 1)

]

APPENDIX A 65

Figure A.1: analyzer∼ help file.

APPENDIX A 66

Figure A.2: Simple Perceptual Synthesis Engine Max patch with arbitrary input. The
three sliders on the left allow one to modify the analyzed parameters before synthesis,
for pitch shifting for instance. The list of floats on the right displays the frequencies and
amplitudes of each harmonic. This model outputed 20 sinusoidal functions.

APPENDIX A 67

Figure A.3: Simple Morphing Max patch between two models. The input is an arbitrary
sound. The values of loudness and brightness are rescaled to fall into the target model
range (in “filteranalysis”). The slider on the right morphs between model 1 and model
2. The interpolation between the two lists of synthesis parameters is done in the patch
“morphing.”

Bibliography

[Arfib, 1979] Arfib, D. (1979). Digital synthesis of complex spectra by means
of multiplication of non-linear distorted sine waves. Journal of the Audio
Engineering Society, pages 757–779.

[Boulanger, 2000] Boulanger, R. C. (2000). The Csound Book: Perspectives
in Software Synthesis, Sound Design, Signal Processing, and Programming.
MIT Press.

[Bregman, 1990] Bregman, A. (1990). Auditory Scene Analysis: The Per-
ceptual Organization of Sound. MIT Press.

[Casey, 1998] Casey, M. A. (1998). Auditory Group Theory with Applications
to Statistical Basis Methods for Structured Audio. PhD thesis, MIT Media
Laboratory.

[Chaudhary, 2001] Chaudhary, A. S. (2001). Perceptual Scheduling in Real-
time Music and Audio Applications. PhD thesis, Department of Computer
Science, University of California at Berkeley.

[Chowning, 1973] Chowning, J. (1973). The synthesis of complex audio spec-
tra by means of frequency modulation. Journal of the Audio Engineering
Society, 21(7):526–534.

[Cook, 2001] Cook, P. R. (2001). Music, Cognition, and Computerized
Sound: An Introduction To Psychoacoustics. MIT Press.

[Cook and Scavone, 2001] Cook, P. R. and Scavone, G. P. (2001). The syn-
thesis toolkit (stk). http://ccrma-www.stanford.edu/software/stk/.

68

BIBLIOGRAPHY 69

[Dempster et al., 1977] Dempster, A., Laird, N., and Rubin, D. (1977). Max-
imum Likelihood From Incomplete Data via the EM Algorithm. J. R.
Statist. Soc. B, 39:1–38.

[Depalle et al., 1994] Depalle, P., Garcia, G., and Rodet, X. (1994). A virtual
castrato (!?). In Proceedings International Computer Music Conference,
Aarhus, Denmark.

[Dodge and Jerse, 1997] Dodge, C. and Jerse, T. A. (1997). Computer Mu-
sic: Synthesis, Composition, and Performance. Schirmer Books.

[Dolson, 1986] Dolson, M. (1986). The phase vocoder: a tutorial. Computer
Music Journal, 10(4):14–27.

[Farbood, 2001] Farbood, M. (2001). Hyperscore: A new approach to inter-
active, computer-generated music. Master’s thesis, MIT Media Laboratory.

[Freed and Jehan, 1999] Freed, A. and Jehan, T. (1999). CNMATMax/MSP
externals available at http://www.cnmat.berkeley.edu/max/.

[Gershenfeld, 1999] Gershenfeld, N. (1999). The Nature of Mathematical
Modeling. Cambridge University Press, New York.

[Gershenfeld et al., 1999] Gershenfeld, N. A., Schoner, B., and Métois, E.
(1999). Cluster-weighted modeling for time series analysis. Nature,
379:329–332.

[Goodwin, 1996] Goodwin, M. (1996). Residual modeling in music analy-
sis/synthesis. In Proceedings of ICASSP, volume 2, pages 1005–1008.

[Goudeseune, 1999] Goudeseune, C. (1999). A violin controller
for real-time audio synthesis. Technical report, Integrated Sys-
tems Laboratory, University of Illinois at Urbana-Champaign.
http://zx81.ncsa.uiuc.edu/camilleg/eviolin.html.

[Goudeseune et al., 2001] Goudeseune, C., Garnett, G., and TimothyJohn-
son (2001). Resonant processing of instrumental sound controlled by spa-
tial position. In Proceedings of CHI, Seatle. AMC Press.

[Grey, 1978] Grey, J. (1978). Timbre discrimination in musical patterns.
Journal of the Acoustical Society of America, 64:467–472.

BIBLIOGRAPHY 70

[Hancock, 1973] Hancock, H. (1973). Headhunters. Columbia/Legacy
Records.

[Handel, 1989] Handel, S. (1989). LISTENING: An Introduction to the Per-
ception of Auditory Events. MIT Press, Cambridge, Massachusetts.

[Hong, 1992] Hong, A. C. (1992). Non-linear analysis of cello pitch and
timbre. Master’s thesis, MIT Media Laboratory.

[Jensen, 1999] Jensen, K. (1999). Timbre Models of Musical Sounds. PhD
thesis, Department of Computer Science, University of Copenhagen.

[Johnston, 1988] Johnston, J. D. (1988). Transform coding of audio signals
using perceptual noise criteria. IEEE on Selected Areas in Communica-
tions, 6:314–323.

[Jordan and Jacobs, 1994] Jordan, M. and Jacobs, R. (1994). Hierarchical
mixtures of experts and the EM algorithm. Neural Computation, 6:181–
214.

[Lansky and Steiglitz, 1981] Lansky, P. and Steiglitz, K. (1981). Synthesis
of timbral families by warped linear prediction. In the IEEE ICASSP,
DAFX-6, Atlanta, Georgia.

[LeBrun, 1979] LeBrun, M. (1979). Digital waveshaping synthesis. Journal
of the Audio Engineering Society, pages 250–266.

[Lent, 1989] Lent, K. (1989). An efficient method for pitch shifting digitally
sampled sounds. Computer Music Journal, 13:65–71.

[Machover, 1991] Machover, T. (1991). Hyperinstruments: A composer’s
approach to the evolution of intelligent musical instruments. Cyberarts,
William Freeman.

[Machover, 1992] Machover, T. (1992). Hyperinstruments. a progress report
1987-1991. Technical report, MIT Media Laboratory.

[Makhoul, 1975] Makhoul, J. (1975). Linear prediction: A tutorial review.
Proceedings of the IEEE, 63(4).

BIBLIOGRAPHY 71

[Masri, 1996] Masri, P. (1996). Computer Modelling of Sound for Trans-
formation and Synthesis of Musical Signals. PhD thesis, Department of
Electrical Engineering, University of Bristol.

[Massie, 1998] Massie, D. C. (1998). Wavetable sampling synthesis. In
Kahrs, M. and Brandenburg, K., editors, Applications of Digital Signal
Processing to Audio and Acoustics, pages 311–341. Kluwer Academic Pub-
lishers.

[Mathews, 1969] Mathews, M. V. (1969). The Technology of Computer Mu-
sic. MIT Press, Cambridge, Massachusetts.

[Métois, 1996] Métois, E. (1996). Musical Sound Information. Musical Ges-
tures and Embedding Synthesis. PhD thesis, MIT Media Lab.

[Miranda, 1998] Miranda, E. R. (1998). Computer Sound Synthesis For The
Electronic Musician (Music Technology Series). Focal Press.

[Noll, 1967] Noll, A. M. (1967). Cepstrum pitch determination. Journal of
Acoustic Society of America, 41(2):293–309.

[Oliver, 1997] Oliver, W. D. (1997). The singing tree : A novel interactive
musical experience. Master’s thesis, MIT Media Laboratory.

[O’Modhrain, 2000] O’Modhrain, M. S. (2000). Playing by Feel: Incorpo-
rating Haptic Feedback into Computer-Based Musical Instruments. PhD
thesis, Stanford University.

[Overholt, 2001] Overholt, D. (2001). The MATRIX: A novel controller for
musical expression. In Proceedings of CHI, Seatle. AMC Press.

[Paradiso et al., 2000a] Paradiso, J., Hsiao, K., Benbasat, A. Y., and Tee-
garden, Z. (2000a). Design and implementation of expressive footwear.
IBM Systems Journal, 39(3 & 4):511–529.

[Paradiso et al., 2000b] Paradiso, J., Hsiao, K., and Benbassat, A. (2000b).
Interfacing the foot: Apparatus and applications. In Proceedings of the
ACM CHI Conference, Extended Abstracts, pages 175–176.

[Paradiso, 1997] Paradiso, J. A. (1997). Electronic music interfaces: New
ways to play. IEEE Spectrum Magazine, 34(12):18–30.

BIBLIOGRAPHY 72

[Paradiso, 1999] Paradiso, J. A. (1999). The brain opera technology: New
instruments and gestural sensors for musical interaction and performance.
Journal of New Music Research, 28(2):130–149.

[Paradiso and Gershenfeld, 1997] Paradiso, J. A. and Gershenfeld, N.
(1997). Musical applications of electric field sensing. Computer Music
Journal, 21(2):69–89.

[Portnoff, 1976] Portnoff, M. (1976). Implementation of the digital phase
vocoder using the fast fourier transform. IEEE Transactions on Acoustics,
Speech and Signal Processing, 24(3):243–248.

[Press et al., 1992] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and
Flannery, B. P. (1992). Numerical Recipes in C: The Art of Scientific
Computing. Cambridge University Press, New York, 2nd edition.

[Puckette, 1988] Puckette, M. (1988). The patcher. In Proceedings Interna-
tional Computer Music Conference, pages 420–429, Köln, Germany.

[Puckette and Apel, 1998] Puckette, M. and Apel, T. (1998). Real-time au-
dio analysis tools for Pd and MSP. In Proceedings International Computer
Music Conference, pages 109–112, Ann Arbor, Michigan.

[Rabiner, 1970] Rabiner, L. (1970). On the use of autocorrelation analysis
for pitch detection. In Proceedings of IEEE, volume 58, pages 707–712.

[Risset, 1969] Risset, J.-C. (1969). Catalog of computer-synthesized sound.
Bell Telephone Laboratories, Murray Hill.

[Risset and Mathews, 1981] Risset, J.-C. and Mathews, M. (1981). Analysis
of musical instrument tones. Physics Today, 22(2):23–40.

[Roads, 1995] Roads, C. (1995). The computer music tutorial. MIT Press.

[Rodet, 1997] Rodet, X. (1997). Musical sound signal analysis/synthesis:
Sinusoidal + residual and elementary waveform models. In IEEE Time-
Frequency and Time-Scale Workshop, Coventry, Great Britain.

[Rodet et al., 1984] Rodet, X., Potard, Y., and Barrière, J.-B. (1984). The
CHANT project: From the synthesis of the singing voice to synthesis in
general. Computer Music Journal, 8(3):15–31.

BIBLIOGRAPHY 73

[Rodet and Vergez, 1996] Rodet, X. and Vergez, C. (1996). Physical models
of trumpet-like instruments. detailed behavior and model improvements.
In Proceedings International Computer Music Conference, Hong Kong,
China.

[Rowe, 1992] Rowe, R. (1992). Interactive Music Systems. MIT Press.

[Rowe, 2001] Rowe, R. (2001). Machine Musicianship. MIT Press.

[Sapir, 2000] Sapir, S. (2000). Interactive digital audio environments: Ges-
ture as a musical parameter. In Proceedings of the COST G-6 Conference
on Digital Audio Effects (DAFX-00), Verona, Italy.

[Scheirer, 2000] Scheirer, E. (2000). Music Listening Systems. PhD thesis,
MIT Media Laboratory.

[Schoner, 2000] Schoner, B. (2000). Probabilistic Characterization and Syn-
thesis of Complex Driven Systems. PhD thesis, MIT Media Laboratory.

[Schoner et al., 1998] Schoner, B., Cooper, C., Douglas, C., and Gershenfeld,
N. (1998). Data-driven modeling and synthesis of acoustical instruments.
In Proceedings International Computer Music Conference, pages 66–73,
Ann Arbor, Michigan.

[Serra, 1989] Serra, X. (1989). A system for Sound Analy-
sis/Transformation/Synthesis Based on a Deterministic Plus Stochastic
Decomposition. PhD thesis, CCRMA, Department of Music, Stanford
University.

[Serra, 1997] Serra, X. (1997). Musical sound modeling with sinusoids plus
noise. In Musical Signal Processing. Swets & Zeitlinger.

[Serra and Smith, 1990] Serra, X. and Smith, J. O. (1990). Spectral model-
ing synthesis: A sound analysis/synthesis system based on a deterministic
plus stochastic decomposition. Computer Music Journal, 14(4):12–24.

[Sethares, 1998] Sethares, W. A. (1998). Tuning, Timbre, Spectrum, Scale.
Springer-Verlag, Berlin, Heidelberg, New York.

[Smith and Abel, 1999] Smith, J. and Abel, J. (1999). Bark and ERB bi-
linear transforms. IEEE Transactions on Speech and Audio Processing,
7(6):697–708.

BIBLIOGRAPHY 74

[Smith, 1992] Smith, J. O. (1992). Physical modeling using digital wave-
guides. Computer Music Journal, 6(4).

[Sparacino, 2001] Sparacino, F. (2001). Sto(ry)chastics: a bayesian network
architecture for combined user modeling, sensor fusion, and computational
storytelling for interactive spaces. PhD thesis, MIT Media Laboratory.

[Sporer and Brandenburg, 1995] Sporer, T. and Brandenburg, K. (1995).
Constraints of filter banks used for perceptual measurement. Journal of
the Audio Engineering Society, 43:107–115.

[Trueman, 1999] Trueman, D. (1999). Reinventing
the violin. Technical report, Princeton University.
http://silvertone.princeton.edu/~dan/rtv/.

[Trueman et al., 2000] Trueman, D., Bahn, C., and Cook, P. R. (2000). Al-
ternative voices for electronic sound. In Proceedings International Com-
puter Music Conference, Berlin.

[Trueman and Cook, 1999] Trueman, D. and Cook, P. R. (1999). BoSSA:
The Deconstructed Violin Reconstructed. In Proceedings International
Computer Music Conference, Beijing.

[Verma, 1999] Verma, T. S. (1999). A Perceptually Based Audio Signal Model
with Application to Scalable Audio Compression. PhD thesis, Department
of Electrical Engineering, Stanford University.

[Verplank et al., 2000] Verplank, B., Mathews, M., and Shaw, R. (2000).
Scanned synthesis. In Proceedings International Computer Music Confer-
ence, Berlin, Germany.

[Weinberg, 1999] Weinberg, G. (1999). Expressive digital musical instru-
ments for children. Master’s thesis, MIT Media Laboratory.

[Weinberg et al., 2000] Weinberg, G., Orth, M., and Russo, P. (2000). The
embroidered musical ball: A squeezable instrument for expressive perfor-
mance. In Proceedings of CHI, The Hague. AMC Press.

[Wessel et al., 1998] Wessel, D., Drame, C., and Wright, M. (1998). Re-
moving the time axis from spectral model analysis-based additive synthe-
sis: Neural networks versus memory-based machine learning. In Proceed-

BIBLIOGRAPHY 75

ings International Computer Music Conference, pages 62–65, Ann Arbor,
Michigan.

[Wessel, 1979] Wessel, D. L. (1979). Timbre space as a musical control struc-
ture. Computer Music Journal, 3(2):45–52. republished in Foundations of
Computer Music, Curtis Roads (Ed., MIT Press).

[Winkler, 1998] Winkler, T. (1998). Composing Interactive Music: Tech-
niques and Ideas Using Max. MIT press.

[Wright and Freed, 1997] Wright, M. and Freed, A. (1997). OpenSound con-
trol: A new protocol for communicating with sound synthesizers. In Pro-
ceedings International Computer Music Conference, pages 101–104, Thes-
saloniki, Greece.

[Zicarelli, 1998] Zicarelli, D. (1998). An extensible real-time signal process-
ing environment for Max. In Proceedings International Computer Music
Conference, pages 463–466, Ann Arbor, Michigan.

