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This thesis presents several new percussion instruments that explore the ideas of
musical networks; playing, recording, and developing musical material; continuous
control over rhythm and timbre; pressure sensing; and electronic / acoustic hybrids.
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their audio streams and delaying them to match each player’s next phrase.

Thesis Supervisor: Tod Machover
Title: Professor of Music and Media

2



New Expressive Percussion Instruments

by

Roberto Mario Aimi

Thesis Readers:

Thesis Reader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Joseph A. Paradiso

Principal Research Scientist
MIT Media Laboratory

Thesis Reader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Hiroshi Ishii

Associate Professor of Media Arts and Sciences
MIT Media Laboratory

3



Acknowledgments

Thanks to:

Tod Machover

Gili Weinberg

Kevin Jennings

Peter Colao

Tristan Jehan

Michael Lew

Matt Wright

Mary Farbood

Emily Cooper

Bruno, Clair, and Marco Aimi

The whole Toy Symphony team

Special thanks to my readers, Joe Paradiso and Hiroshi Ishii.

4



Contents

1 Introduction 11

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.1 Prehistory of percussion instruments . . . . . . . . . . . . . . 13

1.1.2 A more recent example: Development of the modern drum set 14

1.1.3 Electronic percussion . . . . . . . . . . . . . . . . . . . . . . . 15

1.1.4 What’s missing . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Motivations / Approach . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Early Work 20

2.1 Echo Drum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Pressure Tambourine . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Drum Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Kaossfly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Beatbugs 28

3.1 First generation Beatbugs . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 First generation Beatbugs meet a large toy company . . . . . 33

3.2 Beatbugs: concert version . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 Design decisions . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.2 Beatbug physical construction 3-3 . . . . . . . . . . . . . . . . 39

3.2.3 The Beatbug system . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 System function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.1 Free-play mode . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5



3.3.2 Drum-circle mode . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.3 Snake mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Beatbugs as part of Toy Symphony . . . . . . . . . . . . . . . . . . . 45

3.4.1 Preliminary workshops . . . . . . . . . . . . . . . . . . . . . . 47

3.4.2 Toy Symphony Beatbug workshops and performances . . . . . 48

3.5 Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Remote Drum Network 57

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.1 Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.2 How have people tried to solve the latency problem? . . . . . 58

4.2 General approach/implementation . . . . . . . . . . . . . . . . . . . . 61

4.2.1 Using delay to synchronize . . . . . . . . . . . . . . . . . . . . 61

4.2.2 Getting audio into and out of otudp . . . . . . . . . . . . . . . 62

4.2.3 A first attempt . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.4 A solution: packetindex∼ as a way to get at buffer∼ . . . . . . 64

4.3 A two-player implementation . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.1 How synchronization works . . . . . . . . . . . . . . . . . . . 65

4.3.2 Maximum network latency . . . . . . . . . . . . . . . . . . . . 65

4.3.3 Dealing with tempo, bpm changes . . . . . . . . . . . . . . . . 66

4.4 Multiple players . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.1 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.2 Multiple player model . . . . . . . . . . . . . . . . . . . . . . 67

4.4.3 Client and server implementation . . . . . . . . . . . . . . . . 68

4.5 Testing at MIT and between MIT and MLE . . . . . . . . . . . . . . 69

4.5.1 General observations . . . . . . . . . . . . . . . . . . . . . . . 69

5 Conclusion 72

6 Future work 74

6.1 Beatbugs: toward a robust installation and future applications . . . . 74

6



6.1.1 Materials and fabrication issues . . . . . . . . . . . . . . . . . 74

6.1.2 Future application development . . . . . . . . . . . . . . . . . 75

6.2 Reducing the bandwidth requirements of the Remote Drum Network 76

6.3 Acoustic/electric hybrids . . . . . . . . . . . . . . . . . . . . . . . . . 77

A Beatbug circuit schematics 80

7



List of Figures

1-1 PAiA Programmable Drum Set . . . . . . . . . . . . . . . . . . . . . 15

1-2 DrumKat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1-3 Buchla’s Marimba Lumina and Thunder . . . . . . . . . . . . . . . . 16

2-1 Using a voice coil to drive a drum head . . . . . . . . . . . . . . . . . 20

2-2 Echo drum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2-3 Underside of the drumhead with ground electrode . . . . . . . . . . . 22

2-4 Underside of the drumhead with sensing electrode and plastic beam.

Also in cross section . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2-5 Simple PIC circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2-6 MIDI output vs. force . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2-7 Drum Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2-8 Kaossfly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2-9 Fireflies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3-1 The first generation Beatbugs . . . . . . . . . . . . . . . . . . . . . . 30

3-2 First generation system schematic . . . . . . . . . . . . . . . . . . . . 31

3-3 Beatbugs (Concert version) . . . . . . . . . . . . . . . . . . . . . . . 34

3-4 A typical eight-beat rhythmic motif (from Nerve) . . . . . . . . . . . 34

3-5 Bend sensor antenna diagram . . . . . . . . . . . . . . . . . . . . . . 37

3-6 Three Beatbug antenna designs . . . . . . . . . . . . . . . . . . . . . 37

3-7 Development of the Beatbug shell . . . . . . . . . . . . . . . . . . . . 38

3-8 Models of the original base design (top) and the slimmer base (bottom) 38

3-9 An open Beatbug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

8



3-10 Beatbug rack schematic . . . . . . . . . . . . . . . . . . . . . . . . . 41

3-11 Child playing a Beatbug in a workshop at the Media Lab . . . . . . . 47

3-12 A Beatbug player showing a child how to play a Beatbug after a Demo

concert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3-13 Beatbugs on Blue Peter . . . . . . . . . . . . . . . . . . . . . . . . . 52

4-1 A simple 8-beat phrase . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4-2 Audio packet with header . . . . . . . . . . . . . . . . . . . . . . . . 62

4-3 Inputs and outputs of Max objects packetbuild∼ and packetindex∼ . . 64

4-4 Two player model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4-5 Remote Drum Network star topology . . . . . . . . . . . . . . . . . . 67

4-6 Server synchronizing two clients . . . . . . . . . . . . . . . . . . . . . 67

A-1 Beatbug circuit layout . . . . . . . . . . . . . . . . . . . . . . . . . . 80

A-2 The Beatbug circuit schematic . . . . . . . . . . . . . . . . . . . . . . 81

9



List of Tables

1.1 Chronology for early instrumental development . . . . . . . . . . . . 13

2.1 Pins b1 and b2 measuring capacitance . . . . . . . . . . . . . . . . . 24

10



Chapter 1

Introduction

Throughout history, musical instruments have changed to reflect new technology. This

is no less true for percussion instruments, which have always been an expression of

available materials and building techniques. Since the development of electronics,

many people have applied the new technology to percussion by modifying old percus-

sion instruments and creating new ones, but most of these efforts have failed to take

advantage of the unique possibilities of electronics and computation.

This thesis explores the potential for electronic percussion instruments to do things

that traditional instruments can not. The concepts of musical networks; recording,

playback, and variation of musical material; continuous control of timbre and rhythm;

pressure sensing; and electronic-acoustic hybrids are developed through a series of new

percussion instruments. Two projects, the Beatbugs, and the Remote Drum Network

are presented in detail.

The Beatbugs are a network of eight hand-held instruments that are designed to

let children play simple rhythmic motifs and to send those motifs to other players

who can choose to develop them further or to create their own motifs. The system

of motif and variation can be used to create and perform larger-scale collaborative

compositions. The Beatbugs were jointly developed by myself and another MIT Media

Lab researcher, Gili Weinberg as one part of Tod Machover’s Toy Symphony project,

which is briefly described in section 3.4.

The Remote Drum Network is a system that lets people play drums together
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over the internet, even in high latency situations in which true real-time playing

and collaboration would be impossible. The system uses variable delays to align the

player’s musical phrases.

1.1 Background

There are some aspects of traditional percussion instruments that make them differ-

ent from other instruments. Because of the quick attack of percussion sounds, they

lend themselves well to rhythmic playing, and it is easy for an audience to correlate

the playing gestures to the resulting sound. Although the physical materials and

construction of all acoustic instruments are closely related to how they sound, percus-

sion instruments are unique in that the playing impulse is transferred directly to the

resonator (often comprising the entire instrument) rather than through a complex

driving system such as a vibrating string or reed. Because of this, the shape and

material of the resonator has significant influence over the sound of the instrument

[30].

The development of percussion parallels the development of human culture, dating

back to prehistoric times, and remaining with us until the present [2]. As percussion

technologies developed, new instruments have been added to the palette of possible

sounds, but few instruments disappeared completely. Though some were relegated

to ceremonial roles in isolated communities, other early percussion instruments have

thrived for centuries and are still in use. The single-headed frame drum, first ap-

pearing in Babalyonian reliefs dating to 2000 BCE, is used today in the form of the

tambourine, Irish bodhran, and the Brazilian pandeiro, among many others [22]. A

thorough history of percussion is far beyond the scope of this thesis, but I would like

to highlight the possible origins of percussion, and to discuss a more modern example

of the development of the drum set to give a context for the brief history of electronic

percussion that follows.
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1.1.1 Prehistory of percussion instruments

Humans are apparently unique among primates in our ability to perceive and create

rhythmic meter. The ability to entrain our movements to an external timekeeper,

such as a metronome or drum, enables us to play music and dance in groups, and the

ability most likely evolved in parallel with the cultural development of group dance

and music rituals [6].

Percussion instruments are believed to be among the earliest musical instruments.

The first instances of percussion were probably not instruments at all, but hand claps,

stamping on the ground, or hitting the body [25, 30]. Any object can be struck or

scraped, and percussion (the act of hitting things) was necessary both to fashion tools

and to hunt game. The process of striking flint with a wood or bone baton to create

a sharp edge is in itself rhythmic. Some theorize that such objects, though designed

for utilitarian purposes, were among the first objects used to make music [2].

Percussion music developed from Idiophones Aerophones Membrano-
phones

Chordophones

–Early Stratum–
rattles
rubbed shell
scraper
stamped pit

bull-roarer
ribbon weed
flute without
holes

–Middle Stratum–
slit-drum
stamping
tube

flute with
holes
trumpet
shell trumpet

drum ground-harp
ground-zither
musical bow

–Late Stratum–
rubbed wood
basketry rat-
tle
xylophone
jaw’s harp

nose flute
cross flute
transverse
trumpet

friction-
drum
drum stick

Table 1.1: Chronology for early instrumental develop-
ment

purely utilitarian roles to more cer-

emonial uses in groups, and the

range of percussion instruments grew

from the paleolithic rattles, scrap-

ers, rubbed shells and stamped pits

to include the membrane drums,

xlyophones, mouth harps, and clap-

pers found in late neolithic archae-

ological sites (shown in table 1.1,

adapted from [33]) [25]. Prehistoric man made use of the materials around him. Early

percussion instruments have been found that were made from wood, hides, bone, clay,

and stone, generally representing the array of available materials at the time [2].

13



1.1.2 A more recent example: Development of the modern

drum set

Skipping ahead several thousand years (and through almost all of recorded history),

one of the most recent and successful innovations in percussion has been the develop-

ment of the modern drum set. By the late 1800s, marching bands were being replaced

by smaller ensembles that performed exclusively indoors. One drummer had to play

the role of many, and some drummers developed a technique of using sticks to play

the bass drum, snare, and a small Turkish cymbal mounted on the bass drum simul-

taneously. Others played the bass drum with a foot, freeing their hands to play the

cymbal and snare. Various pedal systems had been developed that allowed the player

to hit the bass drum and a cymbal simultaneously, but in 1909, Chicago drummer

William Ludwig patented what would become the typical bass drum pedal design. By

the 1920s, the bass drum pedal became a standard part of the drum set, which also

included a Turkish cymbal, Chinese cymbal, woodblock, cowbell, and Chinese tom

toms [28, 5].

Through the 1920s and 30s, a broad range of new instruments were added to the

percussionist’s arsenal, but only a few stayed into the 40s: the Chinese tom tom

evolved into the high and floor toms that we now know, and Turkish cymbals became

more common, largely displacing the Chinese cymbals. The low boy (resembling a low

hi-hat) was added to emphasize the prominent backbeat of Chicago style Dixieland

jazz, but quickly evolved into the more versatile hi-hat [5].

By the mid-1940s, the jazz drum kit became standard, and was used in a wide

variety of musical styles. The classic drum kit consists of a pedal-operated bass drum

with attached toms and suspended ride and crash cymbals, a hi-hat operated with

another foot pedal, a floor tom, and a convertible snare drum with a disengageable

snare [28].

Since then, drum set designers have incorporated modern materials, such as syn-

thetic drum heads, and used new materials for drum shells such as metal, fiberglass,

and acrylic. Drummers have incorporated traditional percussion instruments from

14



around the world. More recently, chain drive and double bass drum pedals, rototoms,

and octobans have been added to expand the possible rhythmic and timbral palette

further. Electronic drum pads and triggers have been integrated into many players’

drum sets, and purely electronic sets have been marketed as drum set replacements

[28, 5].

1.1.3 Electronic percussion

Although some electronic percussion instruments existed before 1960, notably Leon

Theremin’s Keyboard Electronic Timpani (1932) [14], modern efforts to incorporate

electronics into percussion instruments began in the late 1960s as modular synthe-

sizers became more common. Musicians and engineers began experimenting with at-

taching transducers to pads that they could hit. By plugging the resulting waveform

into a modular synthesizer, they could use the trigger output to gate a synthesizer

sound [10].

In 1973, Moog introduced what was possibly the first com-

Figure 1-1: PAiA Pro-
grammable Drum Set

mercial percussion controller. The Moog Percussion Controller

Model 1130 was a drum with a sensor in the drum head that

could drive the Moog modular synthesizer [23]. The PAiA

Programmable Drum Set, released in 1975, was one of the

first self-contained electronic drum devices (Figure 1-1). Its

sounds were made by sending impulses into almost-oscillating filters to make them

ring. Also credited with being the first programmable drum machine, it featured

touch pads that responded to skin capacitance. A modification was available to

approximate velocity-sensitive pads by measuring changes in skin capacitance and

resistance, taking advantage of the fact that the skin’s complex impedance is approx-

imately proportional to finger pressure on the pad [16].
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With the development of MIDI in 1983, a new set of per-

Figure 1-2: DrumKat

cussion controllers became available that could be plugged

into any synthesizer module, making them truly generic con-

trollers. Simmons, DrumKat, and Roland offered a variety of

drum controllers modeled after drum kits, marimbas, and in

some odd multi-pad arrangements like the Roland Octopad and DrumKat’s epony-

mous DrumKat [45]. Generic drum trigger boxes that could accept a range of triggers,

usually including a built-in set of drum samples, include the Yamaha TMX, and the

Alesis DM series. Moving against the trend of making the controllers, trigger units,

and sound sources more generic and interchangeable, Roland’s V-drums, first intro-

duced in 1997, re-introduced the idea of specialized pads for a particular trigger unit

and sound source. The V-drums can measure velocity and stick position, and dual-

trigger pads can detect rimshots and cymbal chokes [32].

Some percussion controllers have ventured further from

Figure 1-3: Buchla’s
Marimba Lumina and
Thunder

traditional drum designs. Don Buchla has made several per-

cussion interfaces that depart substantially from simple emu-

lation of drum kits. Buchla’s Thunder is a drum intended to

be played using fingers, and it can track the position of the

depression made by the finger using a clever optical system

on the back of its reflective mylar drum head [27, 23]. The

position and velocity information can be mapped to any MIDI

control, opening up a range of sounds and mappings not previously possible. Buchla’s

Marimba Lumina (Figure 1-3) is a marimba-like controller that can sense which mal-

lets struck it, as well as where on the bars it was hit, enabling different mallets to

be mapped to different timbres [39]. The Mathews/Boie radio drum used capacitive

sensing to track the 3D position of transmitter batons close to the playing surface [4].

Another innovative percussion instrument is the Korg WaveDrum which, unfor-

tunately, was only sold for one year. The WaveDrum is notable in that it used the

acoustic sound of the drum head to drive a synthesis algorithm, similar to the way

in which the Korg G5 Synth Bass Processor uses the bass sound to drive its synth.
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This blend of acoustic and electronic sound was very compelling, and by all accounts,

highly responsive to subtle changes in playing [31].

Other important work includes Laurie Anderson’s drum suit, which made drum

triggers wearable [13], and Tod Machover’s piece, Towards the center, which explored

ideas of musical interdependence and autonomy by using a computer system to dynam-

ically transform and remap the musical input from a keyboard and mallet controller,

sometime combining the two to form a “double instrument,” where control over dif-

ferent aspects of a complex musical output is split between the two performers [21].

Tina Blaine and Tim Perkis’ Jam-O-Drum combined conventional drum triggers with

projected graphics in a tabletop installation that encouraged group improvisation [3].

The Rhythm Tree, part of the ”Brain Opera” project by the MIT Media Lab, is

possibly the world’s largest electronic percussion instrument, consisting of over 300

multi-zone and velocity-sensitive drum pads, each with an individual LED to provide

visual feedback [24].

1.1.4 What’s missing

With a few notable exceptions (including some mentioned above), what has not been

well explored is whether technology can do more than replace or enhance traditional

percussion instruments, but enable new ways of playing music that were not possible

before.

In fact, electronic percussion instruments have the potential to do things that

traditional instruments cannot. The instrument can record exactly what has been

played, and it can modify, repeat, and develop recorded phrases. If connected in a

network, it can send sound or control information to another instrument. Using such

a network, people can play music together over a large distance or in the same room.

One can take advantage of these strengths to make instruments that let people play

music in new ways. Specifically, we can make instruments that blend the responsive-

ness, tactility, and intuitive playing style of traditional percussion with the networked

collaboration, transformation of rhythmic patterns, and timbre manipulation possible

using electronic instruments.
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With these enhanced potentials come some associated risks. The interface can

become so abstracted from the sound it makes that the player no longer feels in

control. The ability to modify musical patterns after they have been played has

no physical analog in traditional instruments, so it can be difficult to make these

interactions seem intuitive.

1.2 Motivations / Approach

Given these potentials and challenges, I see my work as being guided by three general

questions. Can the ability to modify, store, analyze, and reproduce the performance

information enhance the musical experience? What are the creative implications of

connecting instruments in a network? Most importantly, how can the physical inter-

face best reflect the potentials of electronic instruments while maintaining the rich

yet clear musical mappings and intuitive playing style found in acoustic instruments?

Out of these general concepts and other constraints, some specific design goals can

be applied to my two primary projects, Beatbugs and Remote Drum Network.

The goal for Beatbugs was to create an instrument for children and professional

musicians that encourages creating and sharing of rhythmic motifs. It needed to

provide feedback so that the player could understand what he or she was doing, and

the sound needed to be of high quality for a concert audience. Since all players were

together in the same space and could hear each other, network interactions needed

to reinforce the connections between players without interfering with their normal

connections as an ensemble, and those interactions had to be conveyed clearly to

both the players and an audience. The interface needed to be simple enough to learn

and understand in a week-long workshop, but rich enough to allow for expressive

playing.

For the Remote Drum Network, the goal was to develop a system that allows

people to play drums together in real time over long distances . Since the players

were not in the same physical location, the network interactions needed to provide the

entire musical connection between players while tolerating latencies associated with
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communicating over a large distance. Rather than designing a new interface, my aim

was to make the interface as minimal as possible to keep the player’s focus on playing

acoustic drums and listening to the other players.

The Beatbugs and the Remote Drum Network were informed by and based on

several musical devices that I made over the past two years. Kaossfly, Echo Drum,

Pressure Tambourine, and Drum Network were early sketches made to investigate the

issues of electronic percussion. Together, they provide the foundation for the later

projects and for future work.
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Chapter 2

Early Work

When I first came to the Media Lab, I was interested in exploring acoustic sound,

and how it could be combined with electronics and computation to make new hybrid

instruments. Much of this interest was an outgrowth of my frustration with synthe-

sizers and how difficult it is to control and manipulate their sound. I though that by

coupling synthetic sound to a physical surface, I might be able to gain a degree of

acoustic control over that sound. Through experimenting with different transducers,

I became interested in using the head of a drum as a speaker while still letting it

function acoustically, with the hope that it might provide a good way to integrate

electronic sound into an acoustic instrument. This led to several drum projects, but

also got me thinking about percussion in general, and about how people play music

together. What follows is an account of a few early sketches that explore some of

the ideas that became the core of the Beatbug and Remote Drum Network projects

which will be described in the next two chapters.

To drive the drum head, I tested a va-

Support truss

Drum head

Magnet

Voice coil

Figure 2-1: Using a voice coil to drive a drum
head

riety of transducers, but two approaches

proved most successful. One method (fig-

ure 2-1) was to remove a speaker’s cone,

spider, and basket, leaving the magnet

and a loose voice coil. By attaching the

coil to the drum head and the magnet to a truss under the head, the drum head
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could replace the cone and spider as a surface that both moves air to make a sound

and keeps the voice coil aligned in the magnet’s groove. Although this gave the most

output and best bass response, some drawbacks of this design were that each drum

needed a truss to support the magnet and it was difficult to align the voice coil so that

it moved freely and didn’t scrape against the magnet. A second, simpler approach

was to use the driver from a flat panel speaker, based on a design by NXT [19]. The

NXT driver is essentially a conventional speaker without the cone and basket, leav-

ing only a voice coil, spider, and magnet. I attached the voice coil directly to the

underside of the drum head and left the magnet free in the air. The inertia of the

magnet was enough to give the voice coil something to push against. Although the

NXT transducer could be mounted in locations that the spiderless design could not,

it had less bass response and lower overall output than the first approach. With two

adequate methods for turning a drum head into a speaker, it was time to think about

musical applications.

2.1 Echo Drum

As a first test of the drum transducer, I made a drum

Figure 2-2: Echo drum

that could repeat what was played on it by emitting the

delayed sound from the drum head (figure 2-2). The

Echo Drum consisted of a conventional MIDI drum trig-

ger (Pintech RS-5) [17] and an NXT driver mounted

under the head of a children’s djembe [18], connected

to an Apple Macintosh running a simple MIDI delay

line written in Cycling 74’s Max environment [9]. Hitting the drum would cause a

delayed click to be played back through the drum head, and the resonance of the

drum head and cavity made the click sound more like another drum hit. Setting the

delay to 200 ms, the drum would echo anything played on it, but unlike a conventional

echo unit, the echo was subject to the same control (by muting, pressing, letting it

ring) as a player would have over acoustic drum hits. When the trigger threshold
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was turned up high enough, the undamped drum would repeat echos by retriggering

from its own output. Putting a hand flat on the drum head could completely mute

the echos. This control over the echo made it feel inviting to play. The sense that

the drum responded to hand pressure after it was hit was consistent with the way a

drum can normally be muted, so it did not require any new playing techniques. One

drawback of this design is that the delay effect was fixed, and there was no way to

directly influence the electronic sound. The overall timbre was still that of a drum.

2.2 Pressure Tambourine

Through working on the Echo Drum, I became in-

Figure 2-3: Underside of the
drumhead with ground elec-
trode

Figure 2-4: Underside of the
drumhead with sensing elec-
trode and plastic beam. Also in
cross section

terested in having more control over the audio being

played through the drum. I wanted to keep the gesture

of pushing on the head to mute the echos, but I thought

it would be interesting if the player could sustain a note

by pushing harder on the head. The challenge was to

sense pressure on the drumhead while still maintaining

its acoustic and physical properties so it could still be

played like a conventional drum. Since the drum head

was under tension, pressure on the head caused more

displacement of the head, so it seemed reasonable to

sense head displacement as an indirect measurement

of pressure.

One way to measure displacement is to put an elec-

trode plate on the object being measured, and fix an-

other parallel plate to some reference point. The two

electrodes form a capacitor with the air serving as a

dielectric. When the plates move closer to each other,

the capacitance between the plates increases [12]. By

timing how long it takes to charge or discharge the capacitor through a large resistor,

one can measure the capacitance. The closer the plates are to each other (and the
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harder the player is pressing on the drum), the larger the capacitance and the longer

it takes to charge or discharge.

I fitted a tambourine with a drum trigger and an NXT driver, as in the Echo

Drum, and added electrodes to measure pressure. A Max patch received the trigger

and sensor data and drove the Reason [26] software synthesizer and effects. The sound

coming out of Reason was routed back through the drum. I mapped displacement

of the drum head to delay time, giving the player some control over pitch, since the

pitch of sound already in a delay line increases or decreases with changing delay time.

To sense displacement of the drum head, I made a 2” x 2” square ground electrode

on the underside of the drum using adhesive copper tape (figure 2-3), and ran a thin

strip of the tape to the edge of the drum where it connected to the measurement

circuit. I added a plastic beam to hold the sensor electrode, to which I affixed a 2” x

2” square of copper tape connected via a copper strip to the edge of the drum. The

sensor electrode was on the side of the plastic beam facing the drumhead (figure 2-4).

The beam was mounted so that the two electrodes were about 7 mm apart when the

drumhead was at rest.

I used a simple two-pin PIC circuit to measure ca-

Figure 2-5: Simple PIC circuit

pacitance between the electrodes (figure 2-5). Pin b2

(35) goes to the sensor electrode on the plastic beam,

and a 3MΩ resistor connects pins b2 (35) and b1 (36).

The electrode on the drumhead was connected to the

circuit ground. I chose the PIC 16F877 because I orig-

inally thought I would need to use analog inputs, but

digital inputs work fine for this application. The PIC

16F84 would have been adequate, and a lot smaller.

The role of the PIC was to measure how long it took to charge and discharge the

capacitor, and to report that result via MIDI to the computer. Starting with both

pins b1 (pin 35 in figure 2-5) and b2 (pin 34 in figure 2-5) set low, pin b2 gets set as

an input. Pin b1 gets set high, and the PIC starts counting until pin b2 reads high.

Next, the process is inverted: pin b2 is set to output and set high, and then set back
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to an input. Pin b1 is set low, and the PIC counts until pin b2 also reads low (see

table 2.1). The raw measurement is of low resolution, between two and three bits.

To increase resolution, the measurement process is repeated 1000 times, and all the

counts are added up to one number (usually between 18000 and 36000). The PIC

converts that number to two 7-bit bytes and sends it out the serial port as a 14-Bit

MIDI pitch bend. On the computer, a Max patch scales the 14 bit number back down

to a range of 0-127, which can easily be mapped onto MIDI controllers.

The sensor output had some dead spots in the
step b1 b2

1 output 0 output 0

2 output 1 input

3 wait until b2 reads 1

4 output 1 output 1

5 output 0 input

6 wait until b2 reads 0

7 repeat

Table 2.1: Pins b1 and b2 mea-
suring capacitance

travel of the head. By putting weights on a 2” diam-

eter disk, I was able to plot the sensor output versus

the applied force (figure 2-6). The stair-step pattern

is probably due to the relatively low resolution of the

counter, and because there isn’t enough noise to let

the averaging process increase the effective resolution.

One way to increase resolution would be to pulse pin

b1 so that the capacitor charges more slowly, allow-

ing more times through the testing loop before pin b2

flips. A faster clock-speed chip would also help.

The overall musical result was that hitting the drum
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Figure 2-6: MIDI output vs.
force

produced an echo that came back from the drum it-

self. By pushing on the drumhead, the player could

shorten the delay time and create a sustained drone

sound. Since changing the delay time also changed the

pitch of sound in the delay line, the faster the head

was pushed, the greater the change in pitch, so players

could get a glissando effect. Although the changing

pitch effect was not originally intended, after hearing

it in preliminary tests, I was able to enhance the effect by changing the range of

possible delay times.
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2.3 Drum Network

Inspired by Gili Weinberg’s work on musical networks

Figure 2-7: Drum Network

[42], I became curious as to whether the drum sensing

and transducer work could be applied toward group

playing. Working with Gili, I developed a system by

which two drums could be connected to each other (fig-

ure 2-7). As with most of our work together, my con-

tribution was primarily the physical system of drums,

sensing, and triggers, while Gili worked on mapping the triggers and controls to sound.

I attached drum triggers to two drums which I connected to a computer running Max.

As was the case for the tambourine, the audio was routed back through the drums,

but this time the output of one drum could be sent to the other. One drum was the

same djembe used in the Echo Drum project, another was an Irish bodhran outfitted

with a pressure sensor of the same design as the one used in the Pressure Tambourine.

We decided to use a simple echo model where whatever was played on the bodhran

was delayed and sent to the djembe one measure later, and likewise from the djembe

to the bodhran. Additionally, pressing on the head of the bodhran could control the

pitch of the echo, allowing for a more interdependent manner of playing.

The djembe used the NXT driver, but the bodhran lent itself well to the spiderless

driver because it already had wooden cross pieces under the drum which could be

used to support the magnet. I removed the basket, spider, and woofer, leaving only

the magnet and the voice coil. I attached the magnet to the cross pieces under

the drum, and glued the coil tube to the underside of the head in an arrangement

similar to figure 2-1. With careful alignment, the coil and the magnet didn’t touch,

allowing the drum head to ring normally. Although the big magnet made the drum

substantially heavier, it was able to produce significant bass and loud overall output,

especially since the bodhran had such a large head. The ground electrode for sensing

pressure was mounted under the bodhran head, and slightly offset from the center of

the drum to make room for the magnet. The sensing electrode was mounted on an
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arm attached to the crosspieces under the drum.

Although both players were working together to create a musical phrase, the

rhythmic and melodic roles were distinct enough from each other that the players

didn’t step on each other’s toes. Unfortunately, although the musical roles were clear,

and it was easy to play, it proved quite challenging to play well. The biggest problems

were confusion between the direct acoustic sound of hitting the drum and the echoed

sound, and it was easy to get into a musical rut of playing against your own echo

rather than with the other person. This had the strange property of encouraging

obvious and rather boring rhythmic phrases without any larger-scale structure. It

was also hard to reproduce consistent pressure on the drum head, making control of

the pitch quite difficult.

2.4 Kaossfly

In parallel to the drum projects, but in the purely elec-

Figure 2-8: Kaossfly

Figure 2-9: Fireflies

tronic realm, I wanted to experiment with more accu-

rate continuous controllers to modify rhythmic sound.

The Kaossfly (figure 2-8) was a variation on work by

Gili Weinberg called the musical Fireflies shown in fig-

ure 2-9 [41]. Since the Kaossfly is so closely based on

the Fireflies, it is worth briefly describing how the Fire-

flies work.

Fireflies were hand-held wireless instruments that

could communicate using infrared beacons. A player

could enter a simple sequence of accented and unac-

cented notes using two buttons. The sequence would

play back in a loop and a second layer could be added

in a new timbre. When two Fireflies were in range,

they synchronized tempos to play together. By pressing one of the buttons while the

Fireflies were pointed toward each other, they could trade the timbre associated with

that button, for example, the hi-hat sound of Firefly 1 would be exchanged with the
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snare drum sound of Firefly 2. When the Fireflies lost sight of each other, they would

keep their new timbres.

Although the patterns that one could enter were constrained to simple accented

sequences without regard to timing or how hard the buttons were hit, in user testing,

children recognized that they had created the loops, and felt ownership of them. The

role of the network was minor, limited to synchronization and timbre trading, but it

didn’t impede playing, and the interactions were clear.

One thing that was missing from the Fireflies was any continuous control that

could make the monotonous general MIDI sounds more expressive. The Kaossfly was

an attempt to address this deficiency. The Kaossfly was essentially a Firefly with a

much better speaker housed in a new enclosure that also held the parts of an effects

processor (a Korg Kaoss pad, hence the name Kaossfly) with a touch pad mounted

on the outside of the enclosure. The small buttons of the Firefly were replaced by

switches with large flaps that could be slapped or tapped, making the interface feel

more percussive, even though they were still simple intermittent switches.

Adding an effects processor and touch pad allowed players to apply an effect to

the simple Firefly pattern and to control different effect parameters such as filter

cutoff and resonance. Delay with variable rate and feedback was one of the most

successful effects since, at the extremes, it became a sound of its own, rather than

just a transformation of the Firefly sound.

Still, some features were missing from both the Firefly and the Kaossfly. Players

could only create simple sequences of loud and soft sounds; velocity and rhythm

information was ignored. The Firefly / Kaossfly network required direct line of sight

to work together, meaning that only pairs of players could interact. The interaction

between players was also discrete—once the timbres were traded, the interaction was

over until someone wanted to trade timbres again. The Kaossfly was also too big and

heavy to be held comfortably, and worked better as a tabletop instrument.

The Beatbugs, which will be presented in the following chapter, attempt to address

all of these issues, while scaling up the network to eight nodes, substantially improving

the quality of the sound, and making the physical instruments robust enough to be

used in workshops and on stage.
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Chapter 3

Beatbugs

The Beatbugs are a network of bug-shaped percussion instruments that are designed

to encourage a group of people to play music together. In their final version, the

Beatbugs were played by eight children in workshops, open houses, and concerts.

The general idea behind the Beatbugs is that players would be able to enter rhythmic

patterns, manipulate and develop them, and collaborate with other players to perform

and create music. The process of developing physical and software prototypes helped

shape our ideas about how an application could best embody that concept.

The Beatbug project was a collaboration with Gili Weinberg. In general, I was

responsible for the physical instruments, microcontroller programming, and develop-

ment of the system. Gili was responsible for the Max software, he created the sounds,

and he composed a piece for Beatbugs that was performed as part of Toy Symphony

[38]. However, it was a true collaboration—we discussed practically every major

design choice, and the physical system and the software were made to work together.

Much of the direction of the Beatbug project was guided by Gili’s interest in mu-

sical interdependence between players, which he has studied extensively and explored

through building many instruments [41, 44, 42]. Multiplayer musical interdependence

refers to the way musical systems can redistribute musical control between players.

A simple example would be a two-player system where one player controlled pitch,

while the other controlled rhythm (as in the Drum Network). A more complicated ex-

ample would be Gili’s composition, Squeezadelic for the Table of Squeezables, where
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five pressure-sensitive balls control the timbre and rhythmic stability of individual

accompaniment parts while collectively controlling the timbre and scale of a sixth

“melody” ball [44]. Interdependence between musical instruments can heighten the

natural connection between players in a group, but it can also make it more difficult

for players to understand what they are controlling.

The other critical collaborator on the Beatbug project was Kevin Jennings, a

music educator and researcher at Trinity college and Media Lab Europe in Dublin,

Ireland. Although Kevin joined the project late, he was instrumental in developing the

pedagogical workshops and gave us invaluable guidance in development of the various

Beatbug applications and modes. Kevin also ran all of the preliminary workshops and

the bulk of the Beatbug workshops and rehearsals associated with the Toy Symphony

performances in Dublin.

Some of the initial design goals of the Beatbugs were first expressed in a set of

instruments called Simple Things. The Simple Things, created by MIT Media Lab

researcher Josh Strickon, were hand-held devices capable of simple on-board synthesis

that could be networked via infrared. Audience members at the 1999 Sens*bles

symposium [35] used the Simple Things and a network of Sega Dreamcast game

systems to “grab notes” played by an electric cello and manipulate them [47]. The

Simple Things were an important influence on the form of the Beatbugs, while the

Beatbug interface and musical function were inspired by the Fireflies and the Kaossfly.

This chapter will describe both the “first generation” Beatbugs, which were early

working prototypes of the Beatbug system, developed in September 2000, and the

“concert version” Beatbugs which have been used in concerts and workshops since

October, 2001.

3.1 First generation Beatbugs

Having some specific constraints on the project helped focus development. Several

goals were present from the outset. Based on people’s positive impressions of the

Simple Thing, we wanted a hand-held music toy to be part of the Toy Symphony
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project. The role of Beatbugs in that project will be described in section 3.4. From

our experience with the Kaossfly, we also knew that we wanted more continuous

control over the sound, and the instrument needed to be smaller if kids were going to

hold it. If the toy were going to be featured in a concert with orchestras, it needed to

have good sound. Based on preliminary tests of the Fireflies and Kaossfly with kids,

we learned that one of the things they liked most about those instruments was that

they were creating the music from scratch rather than just shaping preexisting music.

Even though those toys only stored patterns of accented and unaccented notes, not

rhythm or velocity, the children still recognized the stored pattern as their own. 3-1

In order to achieve these goals, we modified both

Figure 3-1: The first generation
Beatbugs

the controller interface (figure 3-1) and the musical

application. Physically, the first generation Beatbugs

were a pair of baseball-sized, egg-shaped controllers.

To provide a better tactile interface, the two buttons

of the Firefly were replaced with two PZT piezo discs

that responded to being hit rather than being pressed.

Continuous control was added in the form of two resis-

tive bend sensor “antennas” [11]. To make it easier for other Beatbug players to hear

the sound, the speaker was moved from the top of the instrument to the front, facing

away from the player. The whole Beatbug was dipped in a blue rubberized coating to

make it more inviting to hold and hit the sensors. The system and application could

support two Beatbugs.3-2

The application for the first generation Beatbugs consisted of an entry phase

similar to that of the Fireflies, in which accented and unaccented notes were entered

in a sequence, and a new real-time manipulation phase in which the sequences could be

played at different speeds, volumes, and timbres, while new sounds could be triggered.

In this phase, hitting the piezo pads triggered new drum sounds that could be played

over the looped sequence. Unlike the first application, these new sounds did not

create another looping layer; rather, they allowed players to play along with the loop

in real time, letting the instrument be played longer, and providing a contrast to
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the highly metronomic loops. By bending the two antennas, the player could change

speed, volume, and timbre parameters of the looped sequence.

The left antenna provided discrete control of two tempi (normal and double speed)

and continuous control of the cutoff of a resonant bandpass filter. The right antenna

provided continuous control of reverb mix, volume, and the resonance of the same

bandpass filter.

Since each antenna was independent and both could be controlled simultaneously,

the player had access to any combination of the two timbre parameters. The looping

sequence could be stopped at any time by pressing a stop button, and a new pattern

could be entered. In the multi-player mode, the antennas of one Beatbug could

control the sound of another Beatbug, while each player could still play his or her

own real-time sounds over the pattern. By providing continuous control over the other

player’s sound, we increased the musical interdependence between players, allowing

more interpersonal interaction than was possible with the Fireflies’ discrete “timbre

trade” (described on page 26).

Knowing that we would need good

Figure 3-2: First generation system schematic

quality sound for a performance, we de-

cided to produce the sound remotely on

a synthesizer, and then send it back to

be played through the Beatbug’s speaker.

This arrangement made for a fairly com-

plicated system, shown in figure 3-2. The

Beatbugs were tethered to a patch box

by DB-9 cables which carried two drum

trigger signals, MIDI, speaker-level au-

dio, and power on five pairs of conduc-

tors. Each Beatbug contained a PIC mi-

crocontroller which measured the bend sensor positions and stop button state, and

sent them as MIDI data to a MIDI interface. The drum triggers were connected to a

Yamaha TMX MIDI drum module (also connected to the MIDI interface). Gili Wein-
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berg wrote the application in Max which ran on an Apple ibook. The application

read the MIDI drum trigger and sensor data and triggered the Beatbug sounds (also

designed by Gili) on a Clavia Nord Rack virtual analog synthesizer. Two-channel

output from the Nord went to a Cambridge Soundworks PCWorks woofer and two-

channel amp, where it was amplified and sent via the patch box to the speakers in

the Beatbugs.

There were some advantages to the first generation Beatbug in comparison to

the Firefly or Kaossfly. The physical interface was easier to hold and hit, and the

piezos made hitting the Beatbug a richer tactile feeling. The bend sensor antennas

were inviting to play, and had good resolution; adding continuous control over timbre

made the resulting sound more dynamic and interesting. The general topology of

having sound synthesis occur remotely, and sending the audio back to the Beatbugs

allowed for high quality sounds, but also made it clear clear which Beatbug was

associated with which sound.

There were still some problems. Since the bend sensors were covered in the same

blue rubberized material that coated the whole Beatbug, they had some hysteresis

problems, and were slow to spring back to a neutral position. Our original idea

was to have a Beatbug stop playing a loop when a player hit both piezo disks at

once. This turned out to be too confusing and difficult to convey to new players, so

I added a “stop” button on the back of the Beatbug. Since the stop button was an

afterthought, it didn’t blend well with the rest of the case design, and seemed out of

place in the application. Some other problems were that the Beatbugs didn’t give any

visual feedback to reinforce what was happening musically, and that they determined

accents by reading whether the player hit the left or right piezo, limiting players to a

binary choice of accented or unaccented notes rather than measuring the velocity of

their hits. Similarly, it was frustrating for some players that the system only recorded

the sequence of hits, not the rhythm. The interdependence between the Beatbugs was

limited to having one Beatbug’s antennas control another Beatbug’s sound, and it

wasn’t clear how that kind of interaction could scale to accept more players.
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3.1.1 First generation Beatbugs meet a large toy company

After seeing a demonstration of the first generation Beatbugs, a toy company became

interested in commercializing them. Gili and I met with their engineers and designers

to develop a prototype and to see if kids liked it. Throughout the development of the

Beatbugs, we had been thinking about how they could be made into toys, but kept

our designs oriented toward the specific requirements of workshops and performances.

My original expectation was that the toy designers and engineers would use the

Beatbugs to inspire a new design that was better-suited to be sold as a toy. Instead,

they tested our existing and unmodified two-Beatbug system directly against other

music-oriented toys.

Children were introduced to several commercially available toys and also shown

our prototype Beatbugs paired with a non-working model of the toy company’s Beat-

bug design. One child accurately described it as looking like a ”frog wearing sneakers

and you hit it in the lungs.” The children were then asked to choose which toy they

would want to buy from among all of the toys, including the Beatbugs. The Beatbugs

proved less popular than several of the toys, including Bop-it Extreme, Simon, and

the Christina Aguilera MusicClip. Based on the results of the test, the toy company

decided to abandon further development of the Beatbugs.

What was most surprising to me was not that the test focused on whether the

children would want to buy the toy, but that it did not test whether the toys were

enjoyable to play. Meeting with the designers and engineers, it was clear that the cost

and marketing constraints that are present in the toy industry place severe limits on

what can be done. Music chips that are cheap enough to be used in toys typically

store four-bit ADPCM ( Adaptive Differential Pulse Code Modulation) audio at very

low sample rates, which can yield intelligible speech, but very low fidelity music. It

might not be a problem for a toy: the most popular toys in the test all had very low

quality audio, and none of the children mentioned it as a flaw.

The designers had several proposals for improving the Beatbugs as toys. They felt

that the bulk of the Beatbug functionality needed to be in its “stand-alone” mode,
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since it is unlikely that other children already own Beatbugs. They also disliked the

idea of a musical network and suggested that songs could be traded on small flash

cards, and they wanted to add a genre switch to make it play in a rap, country, rock,

or classical music idiom. I knew that the Beatbug design would need to change to

become a good toy, but I did not anticipate the degree of the disconnect between my

own goals for the design and the goals of the toy designers.

As discouraging as this episode was, I still believe that the ideas behind the

Beatbugs could be used in a toy. By more thoroughly understanding what can be

achieved using minimal hardware and by understanding the toy market better, we

could develop a toy that is inexpensive and immediately appealing, but still offers

musical depth.

Secure in the knowledge that the Beatbugs were not going to become the next

Pokemon, we returned our attention to developing a new Beatbug design for work-

shops and concerts.

3.2 Beatbugs: concert version

For the concert version of the Beatbugs (figure 3-

Figure 3-3: Beatbugs (Concert version)

3), we tried to address the deficiencies of the

first generation by changing the physical design

of the controller, the design of the overall system

of hardware and software, and the musical appli-

cation with the goal that the Beatbugs could be

used in workshops, open houses, and concerts.

One key idea was that we wanted to allow4

4
¿ ¿ ¿ ¿ ¿ ¿ Œ ¿ ¿ ¿ ¿ ¿ ¿

Figure 3-4: A typical eight-beat rhyth-
mic motif (from Nerve)

players to enter simple looping rhythmic motifs

(figure 3-4) and to develop each other’s motifs

sequentially, rather than simultaneously. If two

players were to control parameters of the same motif, it could be difficult for each of

them to identify their own contribution. We decided that a better approach would be
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to pass the entire motif to another player, so that only one player could manipulate

it at a time. By choosing to either replace a motif with a new one, or to develop it

further, players can control both the low-level rhythmic content and the high-level

trajectory of the music, while maintaining a coherent interaction.

Gili developed several prototype applications based on passing motives between

larger groups of players. To enable this kind of group playing, we needed to have a

system that could support many more Beatbugs. Through playing the instruments

ourselves and having kids and adults test them, we arrived at three main modes of

operation, which will be discussed in section 3.3.

The physical instrument also needed to be designed in a more easily manufac-

turable and robust way, and there were several aspects of the interface that needed

to be changed to work with the new applications. The process of redesigning the

Beatbug system went through many iterations, and at each step, the physical design

was informed by the software, and vice versa.

3.2.1 Design decisions

What follows is a brief description of some of the design decisions that occurred

between the making of the first generation Beatbug and the concert version (described

in detail in section 3.2.2). After making the first generation Beatbug, we considered a

broad range of designs, from thumb piano interfaces to something resembling a video

game controller. The Bug / egg shape of the first Beatbug was chosen mostly at

random, but after building many models in different shapes, I decided to return to

the basic look of the first generation. I wanted the Beatbug to look like it could have

a personality to make its musical behaviors seem more autonomous even though they

were being controlled by a central system.

I thought about having the speaker face upward at the player, but decided that it

was important to be able to point the sound at the other players in order to emphasize

the sharing aspect of the application. It also made the speaker look more like a mouth,

which caused the Beatbug to appear more anthropomorphic.

We decided that an interface with one piezo that could respond to how hard it was
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hit would be simpler than the two-piezo system used in the first generation. Rather

than having the player hit the piezos with his or her thumbs, we moved the piezo

to the top, so that the Beatbug could be hit more like a drum. We also considered

having the antennas be used as rhythmic input devices by plucking them like the

tines of a thumb piano, but opted for the drum metaphor because it had a bigger

playing gesture that would be more visible to an audience and to other players.

I briefly considered making the Beatbugs wireless, which would have avoided the

inevitable tangle of cables, but abandoned the idea because of a number of issues. The

quality of sound that we could make on board was limited to wavetable synthesizers

found in PC sound cards, prohibiting any continuous control over timbre. Sending

control signals wirelessly would have been possible, but sending audio back to the

Beatbugs would have needed either a potentially bulky and expensive real-time digital

system such as 802.11 to stream audio back to the Beatbugs as in Adam Smith’s WAI-

Knot instrument [36], or small radio receivers (tuned to eight different frequencies) in

each Beatbug, which would be at the mercy of the local RF environment. To make a

system robust enough to tour, I decided to use cables instead of making it wireless.

It was important that each Beatbug be interchangeable so that if one broke during

a concert or workshop, another could be substituted in its place. MIDI was a good

protocol to use because many multi-port interfaces are available, removing the need to

run the Beatbugs on a bus, which would have required a unique ID for each Beatbug.

In the end, I also decided to keep the general system topology of the first generation

Beatbugs in which a computer running Max was responsible for all of the behavior,

musical mappings, and sensor calibration while the role of the Beatbug processor was

limited to sending uncalibrated control information and receiving messages to change

lighting. We decided to use a software synthesizer and multi-channel audio interface

because we found that we could create equally good sounds without needing a bank

of external synthesizers. As in the first generation, audio from the computer was sent

back to be played from each Beatbug’s speaker. The downside to this approach is

that the Bugs can not make any sound away from the central system.
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I experimented with a variety of multi-segment LED and

paint
acrylic tape
bend sensor
acrylic tape
spring steel

top

bottom

bend
sensors

spring steel

Figure 3-5: Bend sensor
antenna diagram

vacuum-fluorescent displays, with the thought that the appli-

cation could be more of a self-contained game. We abandoned

this approach because we wanted to emphasize making music

as a group, and because we wanted to keep the player’s atten-

tion on each other rather than on their own instrument. Ulti-

mately, I decided instead to use LEDs to light the whole top of

the Beatbug, which would be visible to the other players and

the audience, and not just the one player. White LEDs could

be flashed to indicate which Bug was playing, while LED clus-

ters could smoothly change their color from green to yellow

to red. The computer had complete control over turning on

and off the white LEDs and controlled the brightness and the color of the clusters.

This gave us some flexibility to find lighting schemes that best illustrated what was

happening musically even as the musical application was still being developed.

Having determined the basic system topol-

A B C

Figure 3-6: Three Beatbug antenna de-
signs

ogy and interface, there was still some design

work left to do on the antennas and the Beat-

bug shell. The first generation Beatbug anten-

nas suffered from hysteresis problems and had

a tendency to kink, damaging the bend sensor.

To solve these problems, I laminated the bend

sensor to a spring steel substrate (figure 3-5).

The antennas went through three main design iterations. The first set of antennas,

shown in figure 3-6a were short and wide. We found that they were too hard for

younger players to bend, and that they were hard to play with one hand. The sec-

ond antenna design (figure 3-6b) was thinner and more parallel. Although they were

easier to bend, they were too far apart to be bent by children with short fingers. I

redesigned the antennas in more of a V shape (figure 3-6c), so that they were close

together at the Beatbug body (where shorter fingers can reach them) and further
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apart at the ends for players with longer fingers.

The design of the Beatbug shell also went through

Figure 3-7: Development of the
Beatbug shell

several iterations, some of which are shown in figure

3-7. Figure 3-7a shows a clay model that the first

3D computer models were based on. The top is a

piece of clear plastic from a toy easter egg, which

saved my having to sculpt the top half. Our first

computer models were drawn in Rhino, a 3D CAD

program. Rather than importing our model into their

system, the manufacturer [8] made their own model

from scratch based on the clay model. The computer

model was machined from a block of high density

foam (figure 3-7b), which gave us a chance to test

the feel of the Beatbug before printing an STL (stereo

lithography) model. Urethane was poured over the STL to make a flexible mold that

would be used to cast the Beatbug parts. The first parts were cast in a quick-set

acrylic and painted grey to give them a better finish (figure 3-7c). We also had some

cast in clear acrylic, shown in figure 3-7d. Since the STL model still had a stairstep-

like finish, tiny grooves were transferred to the mold and cast in the clear acrylic,

making it appear cloudy.

Using the clear and the grey shells, we assembled

Figure 3-8: Models of the original
base design (top) and the slimmer
base (bottom)

the Beatbugs to be tested in preliminary workshops

with kids. Holes were drilled in the grey Beatbugs to

make the LEDs visible to the players. Based on these

workshops (described in more detail in section 3.4.1),

we discovered that the bottom half of the Beatbugs

were too big for people with small hands to hold. An-

other model was made that had a narrower base to

accommodate smaller hands (shown in high density

foam in figure 3-7e and compared to the wider design in figure 3-8). This time, the
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new STL model was sanded and smoothed to remove the grooves. This resulted in

a clear Beatbug (figure 3-7f). Although it was nice to see the circuit board inside of

the Beatbug, the shell did not scatter the light of the LEDs, making them hard to see

off axis, and glaringly bright on axis. We had a very light coat of white paint applied

to the underside of the top to scatter the light (figure 3-7g). I tried different colors

for the bottom half of the Beatbug. Metallic Silver, shown in figure 3-7g tended to

highlight surface imperfections on the inside of the shell. Metallic Blue (3-7h) was

the final choice for the Beatbug bottom.

3.2.2 Beatbug physical construction 3-3

The final Beatbug design maintains the overall bug /

Figure 3-9: An open Beatbug

egg shape of the first generation, but is slightly larger

and has a sculpted bottom half to make it more com-

fortable to hold (figure 3-3). The Beatbug shell is made

of a top and bottom half of clear cast acrylic, made

for us by a fabricator [8] based on our physical and

3-D models. The bottom half was painted with a blue

metallic paint on the inside (visible from the outside)

and houses the speaker and the PC board. The re-

gion of the bottom half that covers the speaker has

an array of small holes to let the sound out. The top

half, which holds the antennas and the piezo trigger,

received a very light layer of white paint on the inside to diffuse the light from white

LEDs mounted on the PC board. The antennas were laser cut from 0.010” thick

spring steel to which we laminated 2” Flexpoint bend sensors [11]. The antennas

were then coated with blue metallic paint to match the color of the bottom half of

the Bugs. Cable strain relief was provided by a custom rubber boot.

The PC board (seen in figure 3-9) in the Beatbug holds a PIC 16F876 microcon-

troller that reads the bend sensors, controls LEDs, and communicates with the central

system via tail-like cables that carry MIDI, trigger, audio, and power. The antennas,
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trigger, and speaker connect to the PC board via a Molex header for easier assembly.

To give visual feedback to the players and the audience, LEDs highlight both the

discrete hits and continuous manipulations. White LEDs are arranged in a circle

around the perimeter of the board to light the top of the Beatbug. The PIC also uses

pulse-width modulation to control the brightness of three green and red-orange LED

clusters, which can give additional feedback to the player by glowing green, yellow,

or red.

Bend sensor information is read by the PIC’s 10-bit analog-to-digital converters,

averaged over 256 measurements, and encoded as 14-bit pitch bends (all calibration

occurs on the computer). The white LEDs are controlled by note-on and note-off mes-

sages, and the green and red-orange clusters are controlled by pitch-bend messages.

3.2.3 The Beatbug system

Software and application

While the Beatbug processor is responsible for operating the sensors and LEDs, a

central computer system controls the actual musical interactions and behaviors. The

application represents a significant departure from the application used in the first

generation Beatbug. Players can play rhythms with different velocities, and send

their motifs to other players to be developed further. This kind of sequential in-

terdependence avoids some of the confusion that can occur when multiple players

are simultaneously manipulating different parameters of the same music—it is clear

that each player is the only person manipulating the sounds of his or her Bug. The

application will be described in more detail under the subsections for each mode.

The “brain” of the system was written in Cycling 74’s Max environment by Gili

Weinberg and Gautam Jayaraman. By controlling all of the Beatbugs’ behavior from

the computer, we were able to quickly experiment with a much broader range of

interactions than would have been possible if we had reprogrammed the Beatbugs

each time we wanted to change a behavior. Similarly, all sound synthesis also occurs

on the central computer system and plays through each corresponding Beatbug’s

speaker. (For performances or large-scale workshops, we supplement the direct sound
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from the Bugs with a 2 or 8-channel PA). For the software synthesizer, we chose

Propellerhead’s Reason, which gave us a broad palette of timbres and effects with

continuous control over many parameters of the sound. Gili also designed each of the

sounds and timbre mappings used by the Beatbugs.

The rack 3-10

Eight Beatbugs can be plugged into one

MOTU 2408
Audio interface

D.I.

Beatbug Patch Bay

PA-8 8-channel
Amplifier

Speaker in

Unitor(2x)
MIDI Interface

MIDI in/out

Alesis
DM5

MIDI out

Trigger out

Yamaha 03d
Mixer

To house mixing

To 2ch workshop PA

console (8ch)

USB

Audiowire (to PCI-324 card in Mac)

Macintosh
(MAX, Reason)

Figure 3-10: Beatbug rack schematic

central rack, shown in figure 3-10. The

rack consists mostly of standard, off-the-

shelf equipment including an Apple Mac-

intosh G4, a Mark of the Unicorn 2408

audio interface, two Emagic Unitor MIDI

interfaces, a Lectrosonics PA-8 8-channel

amplifier, an Alesis DM-5 Drum trigger

unit, and a Yamaha 03d Mixer. The only

non-standard device is a custom patch

box, which provides power to the Beat-

bugs and converts each Bug’s 10-pin Neu-

trik Minicon connector to MIDI in, MIDI

out, trigger, and audio in. The entire sys-

tem, including the mixer, and the com-

puter, fits in a single Mixer rack.

The eight channels of Reason audio

coming from the Macintosh’s 2408 Au-

dio interface connect to the 03d mixer

via a bank of direct inject boxes that can split the audio to connect directly to the

mixing board in a concert hall. All eight channels are mixed down to stereo for the

workshop P.A. system, but the unmixed audio comes back out the four bus sends and

four aux sends of the mixer into the Lectrosonics PA-8, which amplifies the sound to

drive the speakers in the Beatbugs (connecting through the patch box).
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When a Beatbug is hit, the analog signal from the piezo drum trigger is sent to

the Alesis DM5, which outputs a MIDI note to the Macintosh via one of the Unitor

Midi interfaces. The note’s velocity is proportional to how hard the Beatbug was hit,

and each Beatbug triggers a different note. This lets the Max patch also know which

Beatbug was hit. Bending the antennas causes the PIC in the Beatbug to output a

14 bit MIDI pitch bend message through the patch box to the Unitor. This message

is scaled down to 7 bits by a simple Max patch that automatically calibrates the

Beatbug antennas. Sending a high-resolution, uncalibrated signal to the computer

makes it easier to compensate for any changes in bend sensor output over time, and

lets the antennas be easily replaceable.

3.3 System function

The Beatbug system lets players participate in the process of making and performing

music in a variety of ways. Based on the results of preliminary workshops (described

in section 3.4.1), three different interaction modes were developed, each one offering

successively more sophisticated control of the musical output. The modes, called

“Free-Play,” “Drum-Circle,” and “Snake,” are introduced to children during work-

shops and open houses.

3.3.1 Free-play mode

This mode is designed to introduce the players to the Beatbugs. Each Beatbug works

like a regular drum: hitting it makes a sound, and hitting it harder makes the sound

louder and changes the timbre. All eight players can experiment, hitting the Bugs

freely to familiarize themselves with the Bugs’ response and sound (each Beatbug

has a different timbre). They can also use this mode to practice playing rhythmic

motifs which will be used in the other modes. The bend sensor antennas are not

typically used in this mode, but they are still active, meaning that a good player

could simultaneously manipulate timbre while hitting the Beatbug. In fact, Gili has

gotten quite good at playing them in this mode. Although the Beatbug was designed
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to be hit on the top, the entire shell is actually sensitive, letting a player manipulate

the antennas with one hand while hitting the underside of the Beatbug with the other.

3.3.2 Drum-circle mode

Drum circle mode presents a more complex musical and social interaction and requires

a session leader who, in addition to playing a Beatbug, also conducts and manages

the group. The leader starts the session by generating a metronome beat (based

on the tempo of the first four hits, or by choosing from a predefined setup.) While

the metronome is playing back, the leader can enter a rhythmic pattern, drumming

the Beatbug for a predefined number of measures (usually two 4/4 bars) after which

the system automatically plays back the quantized recorded pattern in a loop. The

quantization algorithm nudges the notes towards the closest quarter note, eighth note

or quarter note triplet. When the entered pattern is played back (causing the white

LEDs to flicker off as each note is played), the leader can manipulate the pattern by

bending the two antennas (causing a proportional color change in the multicolor LED

clusters).

The left antenna is used to transform the timbre through a predefined combina-

tion of filters, low frequency oscillators, frequency modulators, noise generators, and

envelope parameters using Propellerhead’s Reason Subtractor synthesizer [26]. Each

Beatbug had its own distinct timbre and timbre transformation, letting players get

used to controlling a particular sound. The right antenna adds rhythmic ornamenta-

tion to the pattern by controlling the level and feedback of a delay line. Every twelve

measures, players are assigned delays of different rhythmic values including quarter

notes, eighth notes, sixteenth notes, and triplets. We chose to use delay for the rhyth-

mic manipulation since we believe that it lets players transform the pattern in a way

that is still recognizable as having developed from the original pattern. Changing the

pattern’s individual notes might have made the motif sound too different from the

original, obscuring the “motif-and-variation” aspect of the interaction.

When the leader feels that his variation is ready, he can hit his Beatbug again,

which randomly activates another Beatbug in the network. The chosen Bug lights
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up and its player can add a complementary rhythmic motif, which is looped and

quantized in the same way. The new player can then manipulate his or her pattern,

controlling different timbre and rhythmic parameters. As the session progresses, more

and more players are randomly chosen to add their personal patterns to the drum

circle and to add their own manipulations. The most recent Bug always plays louder

than the others in order to highlight the new motif. After all the Bug players have

entered their patterns, the system waits for a simultaneous hit by all eight players

(conducted by the session leader) which brings all eight motifs up to the same level.

Players are encouraged to create musical dialogs of call and response with each other,

and they can continue to manipulate their patterns until the next simultaneous hit,

conducted by the leader, which ends the music.

3.3.3 Snake mode

Snake mode, the most complex of the Beatbug interactions, forms the foundation for

the piece performed in the concerts. Here, players can explore the musical network by

creating motifs, sharing their motifs with others, and by reshaping the motifs of their

peers. In this mode, after the first player enters the first motif, both the motif and

the timbre associated with the first Bug are automatically sent to a different random

Bug. which immediately begins playing back the received loop. The receiving player

can decide whether to develop the motif further (by manipulating the timbre and

rhythmic antennas) or to keep it (by entering and sending a new motif to the group).

The function of the timbre and rhythm antennas are the same as in Drum-circle mode.

If a player decides that the received motif is ready and does not need further

manipulation, he can enter a new pattern (in his Bug’s default timbre). In this case,

he keeps the received (transformed) pattern in his Bug at a soft background level,

while his new pattern is sent to another random player, who becomes the new “head

of snake.” If the receiving player decides that the motif is not ready he can further

manipulate it and hit his Bug to send his transformation to the next random Bug.

Each time a pattern is manipulated by a new player, the antennas control different

aspects of the timbre; for example, one player might control cutoff of a filter, while
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the next controls resonance. The transformations are recorded and layered in each

cycle until the pattern is considered complete and a new pattern is entered. Each

player faces the same two options (develop the pattern, or create your own) when

receiving a motif until all the players have entered their patterns (and have stored a

quiet pattern in their Beatbug) The system then randomly groups different numbers

of players in twos, fours, and all eight, highlighting the way the different patterns

sound against each other.

We found that having the system randomly choose who a motif was sent to en-

courages the players who were not playing at that moment to pay attention to where

the motif went, since it was a surprise and there was always a chance that they could

receive it. In contrast, for Nerve (described in section 3.4), we decided instead to

predetermine the order of which motifs were sent to which players. We felt that it

would be easier for the players to rehearse if the general sequence of the piece was

the same each time.

We found the sequence of modes to be important. By slowly building the complex-

ity of the interaction, workshop leaders were able to focus the group on learning the

new functionality of each mode. Free-play mode introduces the sounds of the Beat-

bugs and how to play simple rhythms on them. Drum circle mode introduces looping

and using the antennas to manipulate timbre and rhythmic ornamentation. Snake

mode adds the ability to send loops to another player and introduces the system’s

role in providing an underlying musical structure.

3.4 Beatbugs as part of Toy Symphony

The Beatbugs were developed as part of Tod Machover’s Toy Symphony project. Toy

Symphony brings together orchestras, children, musical toys (such as the Beatbugs)

and a Violin Soloist playing a new “Hyperviolin” [48] in a series of concerts to “bridge

the gap between professional musicians and children, as well as between audience and

performers.”[38] The children playing and singing in each concert are from the host

city. Toy Symphony has been performed in Berlin, Dublin, and Glasgow, with other
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performances expected in the United States and Japan. In the full Toy Symphony

concert, the Beatbugs are featured twice, once in Gili Weinberg’s piece Nerve, and

once in Tod Machover’s piece Chorale.

Nerve

The short piece Nerve was composed by Gili Weinberg as one particular manifestation

of the Beatbug network [43]. Written for six children and two adult musicians playing

Beatbugs, the piece follows the general parameters outlined in Snake mode. A player

hits a Beatbug to start a constant bass pulse and then taps out a simple rhythmic

motif. The motif is sent randomly to another player, who either reshapes the timbre

and adds rhythmic ornamentation before sending the motif to another random player,

or keeps it and plays a new motif, which is also sent at random to another player.

Polyphony grows as each player eventually enters a new motif until all eight Beat-

bugs are playing in the background. Although the motifs and play order are pre-

composed, the players are free to manipulate the antennas in any way they choose.

The piece ends in a Finale section in which the computer randomly groups different

numbers of players for improvised solo sections. First in twos, then in fours, and finally

with all eight, the original patterns are juxtaposed against each other, culminating in

all of the patterns being played together.

Chorale

Tod Machover’s composition, Chorale is a much larger piece of music that makes use

of the whole orchestra, the Hyperviolin, a children’s chorus, and music toys, including

the Beatbugs. In Chorale, the Beatbugs usually operate similarly to Free-play mode,

where each Beatbug hit triggers a sound. In some sections, an echo of the Beatbug

sounds is gated by a keyboard player, while in other sections, the antennas are used

to control the mix of several tracks of audio. Gili programmed some modes while I

was responsible for the others and for integrating them into one master patch driven

by keyboard triggers.
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3.4.1 Preliminary workshops

We held preliminary workshops with nine and ten-year-

Figure 3-11: Child playing a
Beatbug in a workshop at the
Media Lab

olds at the MIT Media Lab and at Media Lab Eu-

rope (MLE). The workshops were designed by Kevin

Jennings, Gili Weinberg, and myself. Kevin was also

the workshop leader. Over the course of these work-

shops, we developed the three main Beatbug modes,

described in section 3.3, which were designed to help

the workshop leader gradually introduce the features

of the Beatbugs. These first workshops also helped us refine the application and the

design of the Toy Symphony workshops which would precede each concert. The MLE

workshop was much longer (almost three months). In total, thirty-six children were

selected by a local children’s center [1] to participate in the MLE workshops, in sets

of eight at a time. The children in the Dublin workshop generally had more musical

background than the children at MIT.

After getting a chance to experiment with the Beatbugs in Free-play mode and

to hear their different sounds, children were invited to create short (four-beat) rhyth-

mic motifs, first by clapping and then by hitting the Beatbugs. When all children

were comfortable at this level, motif length and tempo were increased. Relationships

between timbre and rhythm were highlighted to guide the children to create motifs

that were appropriate to a particular timbre. The children were then introduced to

Drum-circle and Snake modes. One surprise was that most of the children preferred

to keep playing the same motif throughout the workshop rather than making a new

one.

Children were encouraged to listen carefully to their own motifs and those of

others in the group to develop an awareness of what elements exist in their sound

environment. Listening skills, such as the ability to hear and perceive a single voice in

a multi-part texture, were practiced by manipulating the antennae and directing the

child’s attention to the part of the texture that was changing. To maintain coherence,
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the child who was “head of the snake” at any given time was encouraged to act as

a conductor and indicate who should manipulate antennae by pointing the Bug at

another child. Although initially self-conscious, the children quickly embraced this

idea and were willing to take responsibility not just for their own musical part but

also for giving direction to their peers in performance [43].

Seeing how kids played with the Beatbugs in a workshop situation, we learned

several things:

• It was important to start with simple clapping exercises to get a sense for how
much experience the group had with rhythm and to allow children to focus on
the rhythmic patterns without being distracted by the technology.

• We quickly found that it was critical to give the workshop leader control over
which Bugs were active. At the MIT workshop, one kid in particular kept hitting
his Bug despite our efforts to get him to stop and listen to what the other kids
were playing.

• The Beatbug cables needed to be longer so that the kids could be arranged in a
semicircle while maintaining enough slack so they could still move and gesture
with the Beatbugs.

• The bottom of the Beatbug was hard for kids with smaller hands to hold. I
redesigned the bottom half to make it narrower at the base.

• Children played the Beatbug antennas in two main ways, using two thumbs, or
using the first and second fingers of one hand. We decided that it was easier
for the children to move from hitting the Bug to manipulating the antennas if
they bent the antennas with their fingers.

• We discovered that the original antenna design that was robust enough for
months of lab demos was quite easy for kids to break, prompting a redesign.

These workshops provided a good opportunity for debugging and refining the appli-

cation well before the performances.

3.4.2 Toy Symphony Beatbug workshops and performances

To introduce the children to the instruments and to rehearse the music, each concert

was preceded by a week of workshops and rehearsals in the host city. Toy Symphony

has been performed in Berlin, Dublin, and Glasgow. As the situation in each city
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was quite different, I will describe what happened in the workshops and performances

city by city.

Toy Symphony Berlin

In Berlin, workshops were held in practice rooms adjoining the Sender Freies Berlin

(SFB) concert hall. We were lucky to have had the help of a class of music education

students from the Universität der Künste (UdK) Berlin, led by Constanze Rora, who

were interested in the Toy Symphony workshops. Two student teachers, Judith Hoch

and Sonja Fournes, helped with the Beatbug workshops.

We started the week with Gili leading the workshops, and having the music teach-

ers translate, but the teachers quickly understood both the system and our goals for

the performance, and took progressively more initiative until they were effectively

running much of the workshop. Our original plan was that the teachers would play

the Beatbugs with the children for the first half of the week, and then they would

be replaced by two percussionists from the orchestra who would play in the last re-

hearsals and in the concert. We found that the childen had become accustomed to

following the cues from one of the teachers, so we decided to have one teacher and

one percussionist run the rest of the rehearsals and perform with the children in the

concert.

The children were encouraged to develop a system of gestures to indicate if the

“head of the snake” wanted accompaniment from the Beatbugs who had already cap-

tured quiet loops by entering their own motifs. The head would point his Beatbug at

another player while manipulating the antennas and then pull back, encouraging the

other player to move their antennas in response. By taking turns, the children also

avoided a common problem that had emerged in previous workshops where everyone

would manipulate their antennas all the time, making the background sound more

constant and without any significant changes over time.

Before the concert, the audience got a chance to try out the Beatbugs and other

music toys as well as traditional instruments from the orchestra in a two-hour open

house. The orchestra members did a great job helping kids play their orchestral
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instruments, and it was nice to see the new and traditional instruments presented

together. Gili developed a special Beatbug mode for the open house in which one

motif was repeatedly passed and manipulated, since entering motifs proved difficult

for some audience members.

Dublin

In Dublin, we had the advantage that the eight kids

Figure 3-12: A Beatbug player
showing a child how to play a
Beatbug after a Demo concert

who would play the Beatbugs in concert had been se-

lected from the thirty-six kids who participated in the

preliminary workshops at MLE, so they had months

of more free-form (non-rehearsal) experience with the

Beatbugs. Since they were already quite comfortable

with the instruments and application, the rehearsals

could focus on learning the motifs for Nerve and pre-

senting the piece on stage.

Workshops were held at The Ark, a children’s cul-

tural center in Dublin [1]. Unlike children’s museums

which house content that children come to see, The Ark is built around a workshop

model in which children come to participate in creative activities. This made The

Ark an almost ideal place to hold Toy Symphony workshops. In addition to the re-

hearsal workshops, there were several open houses which featured mini-workshops for

the general public, in which children got a chance to play the Beatbugs in Free-play,

Drum-circle, and Snake modes. There also were “Demo concerts”, in which the Beat-

bug players performed and introduced the three modes. After each Demo concert, the

children who had been rehearsing the Beatbugs showed children from the audience

how to play them, and let them try some of the different modes (figure 3-12).

Based on our experience in Berlin, we decided to have one workshop leader and

one percussionist play in the concert, so that the kids could perform with an adult

who had been involved in all of the rehearsals. As in Berlin, we introduced the idea

that the “head” of the snake could gesture to the other Beatbugs to indicate that
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he or she wanted accompaniment. Over the course of the workshops, these gestures

became more stylized and theatrical, and the children added a “wave” motion at the

end of the piece.

At the end of the week of rehearsals (and after months of more general Beatbug

workshops), I was surprised to find that the children wanted to keep playing the Bugs

and rehearsing the performance, and they insisted on doing a final run-through after

we (the adults) were tired and ready to quit for the day.

Two open houses were held in the concert hall lobby, one before the concert and

one during intermission. The open house before the concert was quite busy, but during

intermission the lobby was so packed with people that the open house application used

in Berlin didn’t work very well. Since people couldn’t see or hear that it was someone

else’s turn, they got confused when their Bug didn’t do anything. They didn’t listen

to each other. We changed the application back to Free-play mode, which at least

gave people feedback when they hit the Bugs, but didn’t convey how the Bugs worked

together. People were excited about playing the Bugs, but they didn’t gain any new

insight into how they had worked on stage.

The Dublin performance also marked the premiere of the second movement to Tod

Machover’s Toy Symphony piece, called Chorale, for orchestra, Hyperviolin, children’s

chorus, and music toys. The children’s chorus played the Beatbugs using a special

version of Free-play mode in which they could trigger percussive sounds and control

the mix of other sounds using the antennas.

Glasgow

Although the children from Glasgow had much less musical background than the

children in either Dublin or Berlin, the rehearsals started strong. The week before

the concert workshops started, the Beatbug players were invited to perform a very

short (1.5 minute) version of Nerve on the BBC children’s television program, Blue

Peter (figure 3-13). Even though they had only two days of rehearsal before the show,

the children did very well and were excited to be on TV on a show they all watched.
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The Blue Peter performance left the children in a good position to begin rehearsals

of the full version of Nerve. Rehearsals were held at the Sacred Heart primary school

in Bridgeton, a working class suburb of Glasgow, for one hour each day during the

regular school schedule. Two musicians—a bass player and a trumpet player—from

the orchestra participated in all of the rehearsals, and also showed the children their

own instruments. Based on our experience in Berlin and Dublin, we decided that it

was more important that the adults playing Beatbugs be excited about working with

kids than that they be trained percussionists, and by requesting only percussionists,

we had been unnecessarily excluding other musicians who would have a good rapport

with kids.

Having heard of the playing gestures and the “wave”

Figure 3-13: Beatbugs on Blue
Peter

that the Dublin kids used, the Glasgow children pushed

these gestures to an extreme by holding the Beatbugs

as high and as low as they could. Gili and I were

concerned that it would be distracting to the audience,

but the musicians and kids insisted, and their intuition

was probably correct. It looked smaller on stage, and

it gave a nice visual climax to the piece.

What the Glasgow kids lacked in musical experience, they made up for in moti-

vation. The Blue Peter performance helped get them focused on learning the motifs,

and gave them a real head start when the rehearsals for Nerve began.

3.5 Outcomes

Over the Toy Symphony workshops and concerts, some problems presented them-

selves:

• The spring steel antennas turned out to be easy for the children to fatigue and
break.

• Insufficient strain relief made it easy to accidentally unplug the header from the
Beatbug circuit board by pulling hard on the cable.
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• The multicolor LED clusters were bright enough to be seen by the players, but
in the performances, it was hard for the audience to see them.

• Some audience members thought that there was a technological reason why the
head of the snake gestured to ask the other players for accompaniment, assuming
that there was some special wireless communication between Beatbugs, instead
of just visual communication between the players.

• Although having the speaker face forward made it easier for other players to
hear a Beatbug that was pointing toward them, it was harder for the players to
hear their own Beatbugs.

• Some timbres were hard to hear once all of the Beatbugs were playing, making
it difficult to tell what effect the antennas were having on the sounds.

In other ways, the Beatbugs were successful:

• Children and adults were able to understand even some of the most complicated
modes.

• Children enjoyed playing the Beatbugs and wanted to keep playing them even
after months of workshops

• Audiences seemed to understand the basic interaction between Beatbug players.

• The LEDs provided good visual feedback, and made the Beatbugs more inviting
to hit.

• The Beatbug shells were durable and resisted extreme abuse.

• Having a speaker next to each player in the concert to amplify the sound of
their Beatbug helped the audience localize the sounds from the players. This
varied from hall to hall, and there were some seats, particularly the balcony
area in the Dublin concert, where spatialization was lost because of bad room
acoustics and masking from a monaural overhead cluster of speakers.

Technical observations

Making a system robust enough to tour and withstand extreme use by kids is hard.

The plastic shells proved to be pretty unbreakable, but the antennas did break too

often, and it was possible to pull the cable header from its socket with a hard tug on

the cord. Gluing the rubber boot onto the cable should address this problem. The

antenna design is a bit more difficult to fix. The next antenna design is wider where

it meets the body of the Beatbug, which hopefully will avoid stress concentrations
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that can lead to fracture. Using a slightly softer spring steel as a substrate should

also help resist fractures, but it still needs to be hard enough to provide a good range

of elastic deformation so that it can spring back to the same position each time.

Through working on the Beatbugs, I gained a new respect for how useful MIDI or

similar protocols are. It made it much easier to use a remote computer to create the

sounds and behaviors, while letting the microcontroller code be as simple as possible.

On the other hand, it also reinforced how difficult it is to make good musical mappings

between the playing gestures and the resulting sound. Looking back at the first drum

project, the Echo Drum, there was something very intuitive and expressive about

playing it that was missing from the Beatbugs.

The general approach of putting the computer between the Beatbug input (trigger,

antennas) and the output (sound, LEDs) made it possible to continue development

through the workshops. We were able to make changes to the Beatbug behaviors as

new ideas emerged. It also made it easier to tailor different applications for disparate

situations such as Demos, open houses, and Demo concerts. Having the sound come

from each Beatbug also helpful in those situations because it made it easier to tell

which sound was coming from which Bug. In the concerts, the eight monitor speakers

gave similar localization cues, but the internal speakers were too small to be useful.

Musical and educational considerations

Nerve presented several conceptual challenges. The structure of the piece was in-

tended both to demonstrate the interactions to the audience and to highlight what

the system and the children were doing, but it also had to work as a piece of music in

its own right. We wanted to give the players a sense that the music they created was

their own, and that their gestures were meaningful, but we had the system control

things like tempo, quantization, who the patterns were passed to, and the general se-

quence of different modes. The players controlled the timing of key events by hitting

a Bug to pass the pattern to someone else, and by hitting the Bugs simultaneously

to trigger the different pairings at the end of the piece. Each significant event was

initiated by the players, not the system, but the order of those events was determined
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by the system.

Although one can think of Nerve as a particular manifestation of the Beatbug

system, the system itself was designed from the beginning with a performance in

mind. The roles of composer, instrument designer, and player are therefore somewhat

blurred. Nerve only specifies which particular motifs are played and their order, but

allows the players to improvise accents, timbre variation, and rhythmic ornamentation,

and to control the timing of major events. In comparison, Snake mode shares all of

the underlying rules of Nerve but also lets players create their own motifs, and chooses

which player a motif is passed to at random.

While musical success is difficult to measure objectively, Nerve was well received,

mostly due to the children’s performance and to Gili’s ability to create a dramatic

structure for the piece. A review of the Glasgow Toy Symphony performance reads,

“A Beatbug ensemble from Sacred Heart Primary gave a balletic performance of Gil

Weinbergs Nerve, throwing complex rhythmic surprises between one another like a

game of pass the parcel.” [40]

The Demo concerts in Dublin were more successful that I had expected. The

space at The Ark was the right size for the event—the concerts had an informal

open house atmosphere, but they were still performances, and their smaller, more

intimate nature made it easier to understand what was happening. They were a

good opportunity for the children to get used to performing, and it was a better

demonstration of the Beatbugs than one could get in a normal open house. Often

in open houses, there isn’t enough time to let people develop any skill at playing

Beatbugs, so they miss understanding what people who have practiced can do with

them, and there is a disconnect between what they see in the concert and what they

experience in the open house. At the end of the Demo concerts, audience members

could ask the children how to play the Beatbugs, and get a chance to try them, giving

them a chance to learn about the instrument directly from a player. Going forward

with Toy Symphony, it might be worthwhile to try the Demo concerts again.

While there is no doubt that the children developed their performing and listening

skills through their participation in workshops and performances, the specific contri-
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bution of the Beatbugs is less clear. One could argue that any intensive musical

exercise could produce similar results, regardless of the instrument. What makes the

Beatbugs different from other instruments is the way they can encourage group inter-

action and collaboration, but they still depend on a skilled workshop leader to guide

those interactions. Kevin Jenings describes his observations of the workshops:

In the course of the workshops there was clear development in the
children’s performance at all levels. Stability in entering rhythm patterns
against a pulse and also against a complex shifting texture, ability to
deal with syncopation, use of accent and shaping of motives all improved
considerably. Use of rhythmic and timbral manipulations became increas-
ingly subtle and pointed. Interpersonal interactions such as making eye
contact, looking, turning and pointing in order to facilitate musical events
became completely intuitive and contextualized. When participants were
asked about their learning experience in comparison to traditional music
classes, many pointed out concepts such as the communal music making
and peer-to-peer musical interaction that are rarely addressed in the early
stages of learning to play an instrument. Others talked about being more
aware of the other players in the group, listening to and following each
other. [43]

Although the conditions were quite different in each city, all three sets of Beatbug

players performed very well. I was particularly surprised and impressed by the chil-

dren from Glasgow, who had much less musical background than the children from

Berlin and Dublin, and who had a shorter workshop schedule (a fraction of the work-

shop time that the kids from Dublin had). They worked very hard, and having the

Blue Peter performance was a great motivator. I felt that their enthusiastic presen-

tation of Nerve in the Toy Symphony concert made it the best of the three Beatbug

performances.

This was the largest of the projects represented in this thesis and accounted for

the bulk of my work for the past two years. Development was pushed the farthest

by having real deadlines for performances, by showing it to people throughout the

development process, and by observing how they made music with it. Getting the

Beatbugs out of the lab and into concert halls and schools gave many more people

an opportunity to see and try the Beatbugs, and gave us a unique chance to see how

they work in the real world.
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Chapter 4

Remote Drum Network

4.1 Introduction

Although the Beatbug system focused on connecting players together in the same

space, it does not address the question of what happens when players in different

physical locations attempt to play together over a network such as the Internet. There

are currently few ways for people to play music together over large distances. One

of the biggest problems with playing music with other people over the Internet is

latency. Even though there are high bandwidth connections between many locations,

the latency is often too high to allow people to play music together in real time. If

there is too much lag, players can have difficulty staying synchronized. The Remote

Drum Network is a musical application for players in different locations that can

tolerate high latency.

4.1.1 Latency

One way to think about network latency is to consider how far apart two musicians

would have to be to experience the same latency due to the speed of sound in air, as

is shown in equation 4.1 [20].

separation = 344 m/s× latency (4.1)
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Ignoring stalls, the network latency between my computer at home and a computer

at the Media Lab is 6 milliseconds (ms) one way, which would correspond to ap-

proximately 2 meters. Adding another 10 ms for A/D and D/A buffering, the total

equivalent distance would be 5.5 meters, which is not an unreasonable distance for

performers in an ensemble.

Typical one-way network latency between a machine at the MIT Media Lab in the

United States and Media Lab Europe in Ireland is approximately 50 ms, though peak

latency can easily be double that. 50 ms is equivalent to two musicians standing 17

meters away from each other. Add the 10 ms A/D and D/A delay, and the equivalent

distance grows to almost 21 meters, which is much further apart than most musicians

play (both because of latency and physical constraints).

4.1.2 How have people tried to solve the latency problem?

Asynchronous systems

One approach to avoid latency problems is to send an entire piece of music to the

other person, let them overdub their parts, and send it back.

The Rez Rocket application, made by Rocket Networks [29], is one example of

an asynchronous system that lets people add or edit tracks in a piece of music, and

send the updated piece back to their collaborators. Rez Rocket works with several

digital audio and MIDI sequencing software packages including Protools and Digital

Performer. The song files are sent to a central server which can be accessed by

everyone working on a particular project when they request an update. Although it

goes a long way toward creating a distributed studio environment, it does not give

any sense of playing music in real time and improvising with other people. Each

musician in effect plays to a static backing track, with no feedback from the other

players until after the track has been recorded and copied to the server.

Phil Burk’s WebDrum uses a different technique in which multiple players control

a shared drum machine interface, and work together to edit a loop of music [7]. A

particular track can be “owned” and edited by only one person at a time to avoid
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conflicts that could occur if two people were attempting to manipulate the same

track simultaneously. Each user sees the same pattern as it is being edited, but

the metronomes on the client machines are not synchronized. If a player modifies a

pattern by adding a note, for example, and the command is delayed by the network,

the tracks stay synchronized and the new note is heard the next time through the

loop. WebDrum also features a chat facility to socialize and discuss musical strategy.

Although the actions of the other player occur in close to real time, the drum machine

interface forces players to input rhythms graphically rather than playing them, which

inhibits the more spontaneous gestural aspects of music such as dynamic, timbral,

and rhythmic variations.

Playback Synchronization : Nagano Olympics

Another approach to playing music from remote locations is to synchronize the various

audio streams by delaying them different amounts when they are played back. This

approach was used in the opening ceremony of the 1998 Olympic games in Nagano,

Japan. Ode to joy from Beethoven’s 9th Symphony was performed by 88 orchestra

members, 3,100 chorus singers, and eight soloists in seven locations spanning five

continents. Seji Ozawa conducted the Nagano Winter Orchestra and the Tokyo Opera

Singers at the Nagano Prefectural Cultural Hall. Audio from those ensembles and

video of his conducting was sent by satellite and ISDN to the remote choruses. The

choruses sang along, following Mr. Ozawa’s conducting. Audio from the choruses was

sent back to Nagano where it was buffered, and each stream was delayed to match

the stream with the greatest delay using a special device made by NHK called the

Time-Lag Adjuster. The original audio and video from Nagano was also synchronized

with the new material. Once synchronized, a stereo mix was sent, along with video,

to Minami sports park, where it was played back over loudspeakers and was joined

by a 2,000-voice choir in the stadium [34].

Although this technique works well in a situation where one person is in control,

the drawback of this approach is that the communication is only one-way. Mr. Ozawa

never got to hear how the remote choruses responded to his conducting, and he was
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unable to respond to them.

In the case of the Ode to joy, as with many kinds of music, it would be nearly

impossible to close the loop. Since tempo and harmony change between phrases, and

the phrases themselves are different lengths, hearing another player’s delayed phrase

would be confusing and out of place when heard at the same time as the next phrase.

But there are other kinds of music where it might work better.

Why a drum circle might work differently than Ode to joy

In a typical modern drum circle, the problems introduced by delayed feedback are

less apparent: the tempo is fixed or changes slowly, and one phrase tends to resemble

the next. Delaying a player’s sound by a full phrase might not be as confusing or

unmusical in the drum circle situation as it would be in Ode to joy.

A modern drum circle is typically a spontaneous, self-organized event in which

people gather to play drums. People tend to bring their own instruments, and often

sit in an circlular arrangement to see and hear each other better. Although there is

usually not an explicit leader, some players may take a leading role in establishing a

beat or in shaping the direction of the group. The purpose is purely recreational—

although professional percussionists may join in a drum circle, it is also accessible

to amateurs, and it is not intended to be a performance. There is no set repertoire;

rather, players engage in collective improvisation. Mickey Hart explains, “The drum

circle is not a professional ensemble . . . The ultimate goal is not precise rhythmic

articulation or perfection of patterned structure, but the ability to entrain and reach

the state of a group mind. It is built on cooperation in the groove, but with little

reference to any classic styles” [15].

The innate and uniquely human ability to entrain our gestures to an external beat

[6] is one part of what helps make drum circles so accessible to amateurs. The other

part is that, unlike playing a more complicated instrument like an oboe, nearly any

drumming technique can yield acceptable sound. Since the goal is not to master a

particular technique, players are free to experiment and use whatever playing gesture

they feel most comfortable with, while experienced players are still free to use more
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challenging and virtuosic techniques.

The drum circle presents an interesting model for group musical collaboration.

Because of its intrinsic repetition and slow tempo changes, I became interested in

seeing if the drum circle model could be adapted to work with remote players by

using phrase-length delays.

4.2 General approach/implementation

4.2.1 Using delay to synchronize

The core idea of the Remote Drum Network is a 44 ¿ ¿ ¿ ¿ ¿ ¿ ¿ ¿J ¿ ¿j
Figure 4-1: A simple 8-beat phrase

simple one: the system can tolerate significant

latency if the players are willing to hear each

other’s phrases one phrase late. For this technique to work, there has to be a narrow

definition of what a phrase is. In this case, a phrase is a short musical idea that

can be repeated and that contains a fixed number of beats chosen by the players. A

typical phrase could consist of two 4-beat measures (figure 4-1). An analogy could be

drawn to the musical form of a round, in which each phrase is intended to be heard

at the same time as the previous one.

Each player has a drum, a microphone (and mixer in some cases), speakers, and

a computer connected to the Internet. Everyone plays to a fixed tempo, and each

computer has its own metronome. Although the tempo of each computer’s metronome

is the same, the relative phase of each metronome is not—one could be ahead of or

lag behind another.

The basic approach is to send audio between the different computers encoded with

a time stamp that indicates what beat in the measure it was recorded on. Knowing

when it was recorded, the receiving machine can play the sound back at the correct

time, regardless of how long it took the packet to cross the network; for example, if

player A hits a drum on his beat 1, player B will hear a hit sometime later, on her

beat 1, and vice versa.

There are some potentially strange musical side effects of this arrangement. Since

61



each player hears a different combination of the other player’s delayed phrases, their

perception of the music can be quite different. If player A introduces a new musical

idea; for example, by starting to play triplets instead of quarter notes, player B will

not hear Player A’s triplets until some time later (based on the offset between players).

If player B responds immediately, Player A will not hear that response until two full

phrases have gone by. Similarly, one player could perceive that they are taking turns

playing alternate phrases, while the other player thinks that they are alternating

between playing together for eight beats, and resting for eight beats.

4.2.2 Getting audio into and out of otudp

I chose to implement the drum system in Max/MSP using Matt Wright’s otudp object

and other custom MSP objects [46].

The first challenge was to figure out how to send audio between the computers.

Matt Wright’s otudp object takes a pointer to a buffer location and buffer length, and

sends the contents of the buffer as a UDP packet. UDP is a connectionless protocol

that doesn’t acknowledge whether it received a packet or not, making it a good choice

for applications which stream a lot of data, but which can tolerate dropped packets.

Bandwidth is optimized since only data packets are sent [37].

Unfortunately, the buffers otudp uses

packet number
audio buffer length (samples)

beats per minute
beats per phrase

header audio

= one byte

Figure 4-2: Audio packet with header

are different from the buffers that Max

uses, so to get audio into otudp, one

would have to write a new Max object.

Adam Smith had written a Max object

called packetbuild∼ for his WAI-Knot

[36] project that put audio in a buffer

to be read by otudp. He also wrote another object called packetparse∼ that took

otudp buffers and played them back as audio. I modified Adam’s objects for my

drum application by adding a header to the packet and by having the object keep

track of the packet number, which it would reset on receiving a “bang” as a way of

encoding the location of beat 1. (Max uses “bangs” to trigger events; for example,
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the metronome object in Max outputs a bang on every beat.) I also modified his

receive object packetparse∼ to output a bang when it received a beat 1 and to output

tempo and beats per phrase in addition to audio to keep the computers synchronized.

The Remote Drum Network packet consists of a header, followed by the audio

(figure 4-2). The header contains the packet number (which gets reset on beat 1),

audio buffer length in samples, tempo (BPM), and number of beats per phrase. Each

datum in the header is encoded in two bytes for consistency, even though tempo

and beats per phrase wouldn’t typically exceed 256, or one byte. The remainder of

the packet contains audio. Although MSP represents audio internally using 24 bits,

packetbuild∼ scales each sample of audio down to two bytes, which still yields CD

quality sound. To limit the complexity of the system, I decided to leave the audio

uncompressed, though compression algorithms could be implemented in the future.

The packet manipulating objects could be easily recoded to accept longer headers if

more control data was needed to be sent between players.

With a timestamped audio infrastructure in place, I started to run some tests

between computers.

4.2.3 A first attempt

In my first implementation, The role of packetparse∼ was to receive incoming Drum

Network packets, route the encoded audio to an MSP audio output, and to indicate

when it received a packet with a packet number of zero, which would mean that the

audio in the packet had been recorded on the sending computer’s beat 1. Each time

packetparse∼ received a packet with a packet number of zero, it output a bang. The

bang caused Max to start recording the audio coming out of packetparse∼ into the

beginning of an MSP buffer (of sufficient size to hold an entire phrase worth of audio).

When the local metronome indicated beat 1, the buffer was played back. The overall

effect was supposed to be that a drum hit on beat 1 of the sending computer would

be played back on beat 1 of the receiving machine. Unfortunately, the timing of the

metronome was unreliable enough that there was significant artifact at the beginning

of each phrase, and often the first beat was not actually aligned with the start of the

buffer.
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This made it difficult to play with someone else, since the delay was constantly

shifting. Playing in sync was no guarantee that the other player would hear it properly

synchronized. Also, the system was unable to put out-of-order packets back in the

correct order if they got shuffled in transit. There needed to be a way to get the

received audio into a format that Max could access, one that could use the packet

number information to keep the beats lined up, rather than relying on the timing of

the metronome.

4.2.4 A solution: packetindex∼ as a way to get at buffer∼

A more successful approach was to take

Figure 4-3: Inputs and outputs of Max objects
packetbuild∼ and packetindex∼

advantage of the knowledge of which

packet contained beat 1, and to write

it directly to the beginning of a buffer∼

object, which can be played back by

Max using the index∼ object.

The packetindex∼ object (at the bot-

tom of figure 4-3) writes incoming pack-

ets into a buffer∼, indexed by their packet

number. This means that packet 4 goes

in its slot (4) even if it gets there be-

fore packet 3, avoiding discontinuity ar-

tifacts when packets are received out of

order. The other advantage of this approach is that if several packets are dropped,

audio from the same part of the previous phrase fills in the gaps. This can still

cause artifacts, but they are minimized, particularly with percussion signals that are

mostly silence punctuated by individual hits. Since the drum hits themselves are

more “noisy” than periodic, discontinuities are less apparent. Because hits in one

phrase resemble the hits in the next, hearing a leftover drum hit on beat 2 doesn’t

necessarily ruin the next phrase, even if a significant number of packets were lost.

Some artifacts remain: the number of packets in a phrase varies due to jitter in
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the timing of the metronome on the sending machine, and it is possible that some

leftover data can be played just before beat 1, causing a click.

Tristan Jehan generalized packetbuild∼ and packetindex∼ to be able to accept

different header lengths and to let the user specify the length of the header with

an optional argument, enabling the user to send more data. He also simplified the

code quite a bit. The updated objects are available at http://web.media.mit.edu/

~tristan/maxmsp.html.

4.3 A two-player implementation

4.3.1 How synchronization works

In the two-player implemen-

bb

L

1 1
Time

Player B

Beat 1

Time
b=buffer
L=network latency

1 1

b b

b

L LL' L'

Beat 1

Player A

Figure 4-4: Two player model

tation, each computer runs

an independent metronome.

Ideally, the two computers

are offset by half of a phrase

length, allowing the maxi-

mum buffer size on either machine (assuming symmetrical network latency, where

L = L′, as shown in figure 4-4). Audio is sent from player A to player B in packets

that are numbered starting with beat 1. Player B’s computer puts the packets in

order in a buffer, and delays playing it back until the corresponding beat occurs on

player B’s machine. If player B were to point her microphone at the speakers, player

A would hear his own echo one phrase after he played it, representing a round trip

delay of one phrase. The IP addresses and UDP ports of the two machines were hard-

coded into the Max patches. There was no system for allocating ports or identifying

clients.

4.3.2 Maximum network latency

The maximum network latency that the Remote Drum Network allows is a function

of the tempo and phrase length. For a simple two player system, assuming that the

two players are offset by exactly one half of a phrase length,
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maximum network latency(s) =
1

2

(
beats per phrase

beats per minute
× 60 s/min

)
− B (4.2)

where B is the combined buffering and A/D latencies (in seconds), typically around

15 ms using the Macintosh sound manager. If the tempo is 140 beats per minute and

there are 8 beats per phrase, the maximum allowable latency would be 1.7 seconds

(one way).

4.3.3 Dealing with tempo, bpm changes

In my first implementation, when the player on the server changed the tempo and

beats-per-measure settings (by moving sliders on the screen), the clients would be

updated as soon as they received the packets. This caused significant artifacts since

the audio already in the buffers was at the old tempo, so the ends of phrases would

be cut off, or random data would be played from the end of the buffer beyond the

phrase ending.

To address this problem, I had the receiving machine measure the offset between

its own beat 1 and when it receives a packet stamped as beat 1. The tempo and

beats per measure settings were then delayed by that amount, so if one player shifted

the tempo on beat three, the other player would hear the tempo change on his beat

three, without any extra audio artifacts.

One unexpected advantage of this approach is that MIDI note data could be sent

in the same manner, and be synchronized with the audio (quantized to the nearest

packet length, approximately 12 ms). Note-on and note-off messages were encoded

in the packet header and delayed to match the beat they were originally played on.

The quantization could be reduced significantly by time-stamping the MIDI message

with its approximate position within the phrase. Such a system could enable players

with lower bandwidth connections to play using MIDI, while other players used audio.

Another advantage of using MIDI is that the pitch and attack of each note are known,

enabling simpler beat tracking algorithms and systems of intelligent harmony, possibly

extending the system to support more tonal instruments. Integrating audio and MIDI

into the Remote Drum Network should be a subject of future work.
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4.4 Multiple players

To scale the system up to allow multiple players, I needed a server to synchronize and

mix the audio from each of the clients and stream it back to them. I also needed a

way for the server to accept new client computers without already knowing their IP

addresses.

4.4.1 Topology

I decided to use a star topology with a central

Server

Client

Client Client

Client

Figure 4-5: Remote Drum Network star
topology

server and several clients to minimize the over-

all network congestion (figure 4-5). For n play-

ers (counting the player on the server) network

load is 2(n − 1) audio streams at the server,

and 2 streams at each of the clients. For a fully

connected network, each player would have a

network load of 2(n − 1). Tempo and beats per phrase are set by the player on the

server machine. The server provides custom audio mixes that get sent back to each

client. Each mix contains the synchronized sound of everyone else minus the receiving

player’s sound.

4.4.2 Multiple player model

In the multiple player model (fig-

1

1

bs1bs1

bc1 bc1

L1

L1'

bs1

1 1

bc2 bc2
L2'

1 1

L2

Time

Client 1

Server

Client 2

1

Time
b=buffer
L=network latency

Figure 4-6: Server synchronizing two clients

ure 4-6), audio from the clients

is sent to a server which sends

custom mixes of everyone else’s

audio (but not their own) back

to the clients. To support the

same maximum network latency

as in the two-player model, the

clients have to be synchronized

with each other, and the server has to be offset by half of a phrase length. In practice,
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the system works as long as the server metronome is shifted relative to the clients

by at least the actual network latency. The server buffer is typically larger than the

client’s buffers to ensure that the audio from all the clients has been received before

mixing it and sending it back to the clients. There is one significant drawback to this

approach: although the connection between any client and the server is equivalent

to the two-player mode with a round trip delay of one phrase, connections between

clients have a round trip delay of two phrases. This gives the player on the server

more control than the clients have over guiding the musical direction of the group.

4.4.3 Client and server implementation

To allow players to hear each other, audio from each of the clients is sent to a central

server, which can host one additional player. The server has a fixed IP address, and

each client is pre-programmed to connect to it. The server currently supports four

clients and one player on the server.

Port negotiation

In order to allow any client to connect to the server, I implemented a system of port

negotiation. To initiate a connection, the client sends a packet to a dedicated UDP

port on the server. This packet contains the client’s IP address and specifies the port

on which the client would like to receive streaming audio. The server replies with the

port that it would like the client to stream to. The client and server stream audio

data to each other, and the client’s metronome starts when it receives a packet that

was sent on the server’s beat 1 (packet number zero).

The server will reject new connection requests from machines that are already

connected. When the server is full, it returns zero as the port number, and the client

can try again later. If the server doesn’t receive a packet encoded with beat 1 within

three phrase lengths, the port will time out and remove the client from the active list,

effectively removing dead connections and freeing up ports so that other computers

can connect.
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Interface

I chose to keep the Remote Drum Network’s interface quite minimal to maintain the

player’s focus on the music. Each player has an on-screen mixer which can control the

level of his own sound, the other player’s sound, and the volume of the metronome.

There is also a visual metronome to indicate the current beat.

4.5 Testing at MIT and between MIT and MLE

The system was tested with up to four players, both within the Media Lab and

between the Media Lab in Cambridge, Massachusetts and Media Lab Europe (MLE)

in Dublin, Ireland. Michael Lew, a researcher at MLE, set up a system there and

also participated in the tests. Our tests with MLE had two players (one playing on

the server) located at MIT and one at MLE. Apart from the logistics of setting up a

time to play, the MIT-MLE tests were nearly identical to tests within the Media Lab.

During the course of the tests, some packets were dropped, creating occasional pops

in the audio, but the noise was not distracting.

We used the telephone quite a bit to discuss what we wanted to do between playing

sessions, and it seems like having a way to temporarily disable the delay could let

conversation happen over the same link (by talking into the microphones). Some

text-based chat facility would have also been useful.

4.5.1 General observations

In general, participants enjoyed playing the system, and they felt that they were play-

ing music with each other. The delay took some time to get used to, but with decent

players who listened to each other, it worked. As in many kinds of improvisation,

we found that it worked best when we took turns taking responsibility for keeping

a steady background beat while the other players could play more ornamental solos.

Social aspects, such as turn taking, had unexpected effects due to the delay. What

one player might perceive as taking turns would seem like unison to another player.
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Since there are no visual cues as to who is playing which hits, it helped when each

drum was timbrally distinct—a djembe and bongos worked better together than two

djembes.

Although having experienced drummers helped keep everyone playing together,

actual drumming technique was not as important as having a good sense of tempo

and being able to listen to the other players. In one trial with a novice player, it was

very difficult to get ourselves synchronized, though I suspect we would have had some

trouble playing without the delay as well.

The original design of the Remote Drum Network assumed that the players would

be listening to a metronome click to stay synchronized. When the metronome was

displayed as an audible click, it turned out to be harder to listen to the other players

and had an isolating effect; each player was playing to the click, not with each other.

Displaying the metronome visually allowed the timing to be more flexible, while

achieving the main goal of keeping the tempo approximately correct.

Even without a metronome, there was a tendency to converge on tempi for which

the delay caused a shift of an integral number of beats. If the tempo was close

to correct, it tended to converge on the correct tempo as long as all of the players

attempted to match what they heard, but made their changes slowly. Some players

preferred to ignore the metronome completely, with good results.

Slow, deliberate changes that lasted more than one phrase were also necessary if

a player wanted to suggest a new rhythmic idea to the group and get the others to

follow him, or to make more large-scale changes to the music. Players were able to

play some phrases in unison, but only by repeating the same phrase many times. The

player on the server had a clear advantage due to the shorter delay, but the other

players could convince the server player to act as a musical relay, reinforcing their

suggestions to the rest of the group.

Increasing the delay to sixteen bars allowed for more complicated phrases, but it

became harder to synchronize tempo since it took twice as long to hear someone’s

reply. Eight bars phrases were the best compromise between responsiveness and

phrase complexity.
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Call and response form worked in some special cases. Four beat calls and responses

in 8 beat measures (one call and one response fit in one phrase length) worked fine

as long as they were repeated enough to convince the other players to play in the

gap. The same scenario worked poorly when the metronome was shifted to four beat

phrases. If the leader initiated the call and the others played back during the gap,

the leader heard the response while playing his next call, and the other players heard

each other’s responses at the same time as the next call.

Changing the number of beats played in a phrase without changing the system

phrase length worked for short periods, but the background player eventually had to

return to the correct phrase length. In these periods where players’ phrases were a

different length than the system phrase length, each player heard the other players

on different beats than they intended, creating a kind of unintentional phase shift.

For example, if the system was set to eight beats per phrase, and I played a six beat

background phrase while everyone else attempted to play along, I would hear their

phrases shifted by eight beats, which sounds like a whole six-beat phrase plus two

beats of offset, so an accent played on beat 1 would sound to me as an accent on my

third beat. The other players also would hear each other shifted by two beats. If I

switched back to an eight-beat bar, within a phrase, the others would hear hits on

the correct beats again.

In general, trials with three and four players worked similarly to those with two,

but it was even more important to have unique timbres. Players had to be more

sensitive to each other’s playing and needed to play more deliberately to get the rest

of the group to follow changes in the music.

Overall, the Remote Drum Network encouraged group collaboration by giving

players a sense that they were playing music together. Rather than being an exact

replica of the way people play drums together in the same physical space, the Remote

Drum Network required different techniques of listening to the other players and

anticipating their actions, which often led to musical surprises not encountered in a

traditional drum circle.
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Chapter 5

Conclusion

Electronic percussion instruments have great potential to extend the roles of tradi-

tional percussion into new areas that were not previously possible. This thesis pushes

those roles along a few different axes:

• Development of local and remote percussion networks

• Using the instruments themselves to support the creation, recording, playback,
sharing, and development of musical motifs to create a larger piece of music

• Giving players more levels of continuous control over timbre.

• Extending the joy of solo and ensemble playing to novices.

• Coupling electronic sound to surfaces that can be manipulated acoustically.

With these new potentials come some risks. For the Beatbugs, the ability to mod-

ify musical patterns after they have been played has no physical analog in traditional

instruments, so it can be difficult to make these interactions seem intuitive. Similarly,

for the Remote Drum Network, players have little experience with playing music using

long delays so any intuition has to be built through playing the system itself. With

any electronic instrument, much of the playability of the instrument comes down to

the strength of the mappings between playing gestures and sound.

The Beatbug project gave me a unique opportunity to see how an instrument

works outside the lab, and to see how my own intuitions can differ from those of

other people. We held Beatbug workshops and performances in three cities as part of
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Toy Symphony. Thousands of people have seen them, and hundreds of people have

played them in open houses. One thing we learned is that although an interface can

seem “intuitive” to the designer, people bring their own experiences and expectations

to an instrument. One can try to help a player learn the interface by rewarding

certain gestures. Hitting the Beatbug seems obvious once someone sees that it flashes

and makes a sound when it is hit. The antennas were more difficult for people to

understand because they only modify existing sound, they don’t create any new sound

themselves. Some people stopped trying to play after bending the antennas and not

hearing anything. In that sense, the Beatbugs were not initially intuitive to players.

However, having people understand how to play Beatbugs in an open house is only

one of the goals. We found that after spending a few days working with Beatbugs in

workshops, the children understood even the most complex aspects of the interaction,

such as choosing to develop a motif further, or creating a new one.

Intuition is built through experience. Each time I play the Remote Drum Network,

the other players and I get better at anticipating each other’s music, telegraphing our

intentions measures in advance, and shifting back to a simple rhythm when we start

to lose synchronization.

This thesis is an exploration of different ways to apply electronics and computation

to percussion. It has not yet resulted in a synthesis: one instrument that uses all of

the ideas developed in these instruments. More development has to happen before

such a synthesis is possible. The Beatbugs and the Remote Drum Network designs

instead focused on a subset of those ideas to enable and reinforce specific desired

interactions. For the Beatbugs, the design of the interface helped make it easier for

the players and the audience to understand the relationship between what the players

did and what they heard. For the Remote Drum Network, the phrase delay system

was intelligible to the players, and the limitations of the system helped spark new

musical ideas that would not have occurred in a traditional drum circle.
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Chapter 6

Future work

Much remains to be done on Beatbugs, Remote Drum Network, and in the field

of electronic percussion in general. The Beatbugs could benefit from more robust

physical construction, especially if they were to be redesigned as an installation rather

than as a performance instrument. Although Remote Drum Network can tolerate high

network latencies, it currently requires significant bandwidth. Audio compression

schemes could reduce the bandwidth, but sending MIDI-type trigger data could shrink

the requirements even more, while opening up more possibilities for beat tracking

and intelligent harmony. Looking toward the future, I see acoustic-electric hybrid

instruments as a possible solution to the challenges of mapping multiple gestural and

musical parameters in a coherent way.

6.1 Beatbugs: toward a robust installation and fu-

ture applications

6.1.1 Materials and fabrication issues

Although the current Beatbug system is robust enough for workshops and perfor-

mances, it is vulnerable in unsupervised situations, making it unsuitable for installa-

tions in museums and public spaces. The antennas need to be redesigned, or replaced

with a less fragile system. Shorter, wider antennas would help limit how far a player
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could bend them. The Beatbugs would also need to be mounted in a way that con-

tains their cables and holds them at playing height to avoid tangles and to protect

the cables from being tugged on.

6.1.2 Future application development

Installations

The current Beatbug application has a linear path suited for performing a piece of

music. To support an installation in a museum context or in a public space, the

application would need to be adapted to work in a much less structured environment.

A Beatbug installation would need to be enjoyable for a range of numbers of players

and should allow them to start playing and to leave at any time. The system of

entering and sharing motifs might have to be simplified to support players with no

musical background as well as players with more experience. In a workshop, a leader

can introduce players to what the system does. In installations, there is not usually

a leader, so the interactions need to be made more obvious to the players.

Toys

Our experience of trying to commercialize the Beatbugs showed us that to make a

successful musical toy, some significant hurdles have to be overcome. Since toys are

a particularly cost-sensitive market, the electronics have to be extremely inexpensive,

limiting most electronic musical toys to crude 4-bit ADPCM samples at low bit rates.

Implementing any continuous control over timbre would be difficult using the simple

wavetable synthesizers found in most electronic music toys.

Most of the value of a toy has to be in its “stand alone” mode. If a toy is only

interesting when you have seven other friends who already own the toy, it is unlikely to

catch on as a commercial product. Although children are using computers more than

ever, parents are still reluctant to buy toys that need to be tethered to a computer,

making the Beatbug model of having a central hub that does all of the processing an

unattractive topology.
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Still, given the cost constraints, there are some techniques that could be used to

make better-sounding musical toy. Specific timbres could be chosen that sound better

at low sample and bit rates. Some simple filtering could be implemented acoustically

by letting players shape the speaker cavity with their hands, and a matrix of pre-

rendered wavetable samples could be created to approximate combinations of two

timbre parameters. FM synthesis would be a good option for toys since the hardware

requirements are minimal and the timbral range and possibility for continuous timbral

manipulation are quite broad, but there are not currently any FM synthesizer chips

that are inexpensive enough to be used in toys.

6.2 Reducing the bandwidth requirements of the

Remote Drum Network

Although the Remote Drum Network lets people play music in high-bandwidth, high-

latency conditions, there are many more lower-bandwidth, high-latency connections

in the world.

Audio compression

The delayed phrase model allows enough time for the audio stream to be compressed

and decompressed. Even a simple algorithm like ADPCM would reduce the band-

width requirement to one quarter that of uncompressed audio, but one could use

better, more processing intensive codecs like MP3 to cut the bandwidth requirements

further.

Sending MIDI style trigger information

A more extreme reduction in bandwidth would be to only send trigger information

with each drum hit. CNMAT’s OpenSoundControl would be a good choice for this

job, since it can take in MIDI data and prepare packets for OTUDP. Without good

controllers and careful mapping, some of the intimacy that comes from sending actual
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audio could be lost. One interesting commercial controller is the Roland Handsonic

HPD-15, a hand drum controller with multiple pressure sensitive pads. It might be

a good testbed for networked drum circle ideas.

It might also be possible to change the pitch of incoming notes to follow what is

being played on each client machine, or to match an underlying structure, enabling

the use of more tonal sounds and chord changes.

One could create heterogeneous Drum Networks in which some players send and

receive trigger information over low bandwidth connections, while others send and

receive audio. One possible client for a low bandwidth drum network could be a cel-

lular phone. As phones incorporate more sophisticated processors, software synthesis

could become possible, letting players send trigger and timbre control data to make

expressive electronic percussion sounds using their phones. One interesting aspect

of representing the data as triggers is that the system could change the timing of

individual notes, perhaps applying a little quantization to make it harder for novices

to divert the whole group. Beat tracking would also be easier, since it would require

no audio analysis.

The bandwidth savings of sending trigger data come at a cost though. There is a

risk, especially in a delayed phrase situation such as the Remote Drum Network, of

losing the belief that the other people are actually playing music. Trigger data can

lack the obviously human feel of actual audio, making the players feel more isolated

rather than less.

6.3 Acoustic/electric hybrids

One of the things that makes the Remote Drum Network enjoyable to play is that it

uses actual audio from the players. This both greatly broadens the possible range of

sounds that the player can use, and gives the sound a more personal connection.

With the Echo Drum, Pressure Tambourine, Drum Network, and Remote Drum

Network, I was working on ways to combine computation and network ideas with

acoustic sound. This aspect was missing from the Beatbugs and although they each
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had their own speakers and made sounds when they were hit, the sound was clearly

electronic and the player had no actual acoustic control over the sound.

Through the development of MIDI, electronic musical controllers became abstracted

from sound production. This was a powerful development since it enabled any param-

eter of the sound to be mapped to any function of the controller. It proved invaluable

for the Beatbugs because it allowed the bulk of the processing to occur on the com-

puter, while letting the Beatbugs themselves work as input and output devices. The

problem with decoupling the controller and the sound source is that someone needs

to create a mapping between playing gesture and sound, and creating rich and expres-

sive mappings that still make sense is hard. It can be especially difficult to combine

multiple sound and gestural parameters into groups that make sense physically and

musically without having the mapping seem arbitrary.

In contrast, the sound of an acoustic instrument is dictated by its physical form.

A player can gain rich and simultaneous control over many parameters of the sound

through interaction with that physical form. On an acoustic guitar, one note can be

played in many different ways; for example, the string can be played using a pick,

fingernail or pad of a thumb. The string can be plucked closer to the bridge, or closer

to the neck. The strings can be muted partially or fully by the player’s palm or fingers.

For each method of playing, there are infinite sub-variations, each involving control

over many sound parameters at once.

To duplicate the range of sounds and manipulations possible in acoustic instru-

ments, one approach has been to make an electronic controller with a large number

of sensors and controls and to map each to a parameter of the sound generator. The

difficulty with this approach is that someone has to choose the physical parameters

and sound parameters that make sense together, which can be arbitrary, like the

mapping of a midi knob box, or more metaphoric, like a wind controller’s attempt

to emulate a saxophone or clarinet). Most keyboards use the piano metaphor: keys

specify which note to play, key velocity maps to note velocity, and pitch bend and

modulation are mapped to two wheels on the left side of the keyboard. Any commer-

cial sound module can be controlled by any keyboard, and the module is designed
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to work with these mappings. Keyboards work well for piano and organ sounds, but

founder when faced with sounds that need a greater degree of continuous control.

My hunch, developed through the experiences and projects described in this thesis,

is that by bringing some parts of the process of sound creation back into the physical

world, one could interact with the sound in the same ways possible with an acoustic

instrument, giving a more coherent interdependence between different parameters.

The playing gestures would not just be metaphors for acoustic playing, but real

acoustic interactions with the sound. The drum work just begins to touch on this

idea, but doesn’t go nearly far enough. One of my goals for future work is to create

these hybrid instruments to see if my hunch is correct.
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Appendix A

Beatbug circuit schematics

Top view Bottom view

Figure A-1: Beatbug circuit layout
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