
Hyperproduction: an audio-centric framework for
the abstract modeling of live performance to guide

audience attention and perspective using
connected real-time systems

Benjamin A. Bloomberg
B.S., Massachusetts Institute of Technology, Cambridge (2012)

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,

in partial fulfillment of the requirements for the degree of
Master of Science in Media Arts and Sciences

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2014
©Massachusetts Institute of Technology 2014. All rights reserved.

Author
Program in Media Arts and Sciences

August 18, 2014

Certified by
Tod Machover

Muriel R. Cooper Professor of Media Arts and Sciences
Program in Media Arts and Sciences

Thesis Supervisor

Accepted by
Prof. Patricia Maes

Interim Academic Head
Program in Media Arts and Sciences



2



Hyperproduction: an audio-centric framework for
the abstract modeling of live performance to guide

audience attention and perspective using
connected real-time systems

Benjamin A. Bloomberg
Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning on August 18, 2014,

in partial fulfillment of the requirements for the degree of Master of Science
in Media Arts and Sciences

Abstract
Hyperproduction is a conceptual framework and a software toolkit which al-
lowsproducers to specify a descriptive computationalmodel and consequently
an abstract state for a live experience through traditional operating paradigms
such as mixing audio, operation of lighting, sound or video systems. The hy-
perproduction system is able to interpret this universal state and automati-
cally utilize additional production systems, allowing for a small number of
producers to cohesively guide the attention and perspective of an audience
using many or very complex production systems simultaneously. The work
focuses on exploring the relationship of conventional production systems and
techniques to abstract computational models of live performance. The concep-
tual framework will identify key elements of an effective model in each case,
with attention and perspective as the cornerstones of this exploration. Several
examples of hyperproduction systems will be constructed and evaluated in a
variety of live experiences, including sound-only performance, live broadcast,
and remote interactive audience extension.

Thesis Supervisor: Tod Machover
Title: Muriel R. Cooper Professor of Music and Media

3



4



Hyperproduction: an audio-centric framework for
the abstract modeling of live performance to guide

audience attention and perspective using
connected real-time systems

Benjamin A. Bloomberg

The following person served as a reader for this thesis:

Thesis Reader
Joseph A. Paradiso

Associate Professor of Media Arts and Sciences
Program in Media Arts and Sciences

5



6



Hyperproduction: an audio-centric framework for
the abstract modeling of live performance to guide

audience attention and perspective using
connected real-time systems

Benjamin A. Bloomberg

The following person served as a reader for this thesis:

Thesis Reader
Chris Chafe

Director, Center for Computer Research in Music and
Acoustics (CCRMA)

Duca Family Professor of Music and Technology
Stanford University

7



8



Acknowledgments
Thanks to Tod Machover, my advisor, for mentoring me for the last seven
years, and to Chris Chafe and Joseph Paradiso for their feedback as readers.
To Peter Torpey and Elly Jessop for many useful discussions throughout all
stages of thiswork, and their assistance andmoral support in debuggingmany
problems and thought experiments. Thanks especially to Peter for spending
countless hours designing and producing work, building systems and imag-
ining new paradigms for performance. To Charles Holbrow for his help and
guidance in the studio. ToAkito vanTroyer for loaning every cable anddongle
on the face of the earth. To Simone Ovsey for her incredible production skills,
and for keeping me in line and on schedule despite high pressure, high stakes,
and ambitious goals. To Luke, Garrett, Justin and Dash for their prowess as
software developers and undergraduate researchers. And to Sarah Ryan and
Kelly Donovan, for helping us order all of the parts and equipment for count-
less productions.

9



10



Contents
1 Introduction 15

2 Related Work 19
2.1 Abstract Representation . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Automated Mapping . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Literal Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Asynchronous Architecture with Flexible Frame-Rate . . . . . . 21
2.5 Large-scale production . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.1 Meyer D-Mitri formerly LCS . . . . . . . . . . . . . . . . 22
2.5.2 TiMax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Hyperproduction with high-end systems . . . . . . . . . . . . . 24

3 Control Systems for Live Production 25
3.1 The Cue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.1 Digital Cues . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.2 Transitions and Interpolation . . . . . . . . . . . . . . . 27
3.1.3 Keyframes . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.4 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Time Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.1 Speed vs. Location . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 SMPTE Linear Time Code . . . . . . . . . . . . . . . . . 31

11



3.2.3 MIDI Time Code . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Performance with Cues and Time Code . . . . . . . . . . . . . . 32

3.3.1 Nuanced Timing . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.2 Nuanced Synchronization . . . . . . . . . . . . . . . . . 33
3.3.3 A Musical Approach to Timing and Synchronization . . 33

4 A History of Opera of the Future Production Systems 37
4.1 Hyperinstruments . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 Performance Capture . . . . . . . . . . . . . . . . . . . . 38
4.1.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.3 Generative Performance Augmentation . . . . . . . . . . 39
4.1.4 Output Systems . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.5 The Role of the Engineer . . . . . . . . . . . . . . . . . . 40

4.2 Opera of the Future
Production Control Paradigms . . . . . . . . . . . . . . . . . . . 41
4.2.1 Piano Keyboard Automation . . . . . . . . . . . . . . . . 41
4.2.2 Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.3 Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.4 Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.5 Distributed Control . . . . . . . . . . . . . . . . . . . . . 44

4.3 Death and the Powers . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.1 The story . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.2 The Production Systems . . . . . . . . . . . . . . . . . . 46
4.3.3 Audio Systems . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.4 Mixing Powers . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.5 Listening, Imagining, and Reacting . . . . . . . . . . . . 51

12



4.3.6 Hyperproduction . . . . . . . . . . . . . . . . . . . . . . 52
4.4 Sleep No More . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4.1 Story Logic and User Console . . . . . . . . . . . . . . . 54
4.4.2 Portals and Masks . . . . . . . . . . . . . . . . . . . . . . 54
4.4.3 Distributed Systems . . . . . . . . . . . . . . . . . . . . . 54
4.4.4 Idempotent Triggers . . . . . . . . . . . . . . . . . . . . 55
4.4.5 Operator as Performer . . . . . . . . . . . . . . . . . . . 56

5 Modeling Advanced Performance 57
5.1 Sleep No More . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1.1 A Markup Language for Multi-dimensional Production 60
5.1.2 Production Elements in a Virtual Show . . . . . . . . . . 60
5.1.3 Operator in the Loop . . . . . . . . . . . . . . . . . . . . 63

5.2 Death and the Powers Live . . . . . . . . . . . . . . . . . . . . . 65
5.2.1 A Model of Emotion . . . . . . . . . . . . . . . . . . . . . 66
5.2.2 A Limited Representation . . . . . . . . . . . . . . . . . 67
5.2.3 Javascipt based Show Control . . . . . . . . . . . . . . . 68

6 The Hyperproduction System 71
6.1 Data Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.1.1 Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.1.2 Connections . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.1.3 Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.1.4 Containers . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.2 Advanced Features . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2.1 Cue-Stack Containers . . . . . . . . . . . . . . . . . . . . 81

13



6.2.2 Threading . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.2.3 Timed Nodes . . . . . . . . . . . . . . . . . . . . . . . . 82
6.2.4 Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.3 A Backend System . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.4 A Conceptual Framework for Creating Hyperproductions . . . 83

7 Example Mappings and Applications 87
7.1 Death and the Powers . . . . . . . . . . . . . . . . . . . . . . . . 87
7.2 Sleep No More . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

8 Performance and Evaluation 91

9 Conclusions and Future Work 97

References 99

14



Chapter 

Introduction
Control Systems for Live Production have been around for quite a long time.
Even the first “systems”, Deus Ex Machina—the theatrical effect, rather than
the cliché plot device—from thousands of years ago, required the development
of a protocol to coordinate the execution of many elements with the right se-
quence and timing.[20] Initially these protocols were borrowed from sailors’
whistles. It has since become taboo to whistle on a stage; you may cause a
sand-bag or drape to be dropped from the heavens.

This thesis presents Hyperproduction as a new paradigm for control in live
production. Hyperproduction is a conceptual framework and a software toolkit
which allows producers to specify a descriptive computationalmodel and con-
sequently an abstract state for a live experience through traditional operating
paradigms such as mixing audio, operation of lighting, sound or video sys-
tems. The hyperproduction system is able to interpret this universal state and
automatically utilize additional production systems, allowing for a small num-
ber of producers to cohesively guide the attention and perspective of an audi-
ence usingmany or very complex production systems simultaneously. Hyper-
production builds on theatrical traditions, as well as practices we’ve employed
in the Opera of the Future group, by thinking about meaningfully modeling
what happens in a live performance and the creative skill of performance op-
erators.

15



Traditions

There are several paradigms today that have become standard practice (replac-
ing whistling) for production system control. The advent of low-cost personal
computers and digital systems has made these available to even the smallest
of productions. We will begin by understanding how and why current tech-
nologies and protocols work and what their advantages are. Note that this
document is not an in depth technical brief on existing technologies; we will
cover enough to understand the difference between existing technologies and
proposed newer methods in this thesis. For an in-depth technical explana-
tion of traditional show control, please see John Huntington’s Control Net-
works for Live Entertainment.[23] It is important to note that since many of
these systems have developed around technology as it has become available
and evolved through history, even themost advanced are sometimes based on
philosophies that may no longer be pertinent given the capabilities of technol-
ogy today.

Opera of the Future

While these existing systems work well and are used quite extensively in the
entertainment industry, there are many types of production for which they
are ill-suited. If flexibility in timing and a high degree of synchronization are
required, many existing commercial systems become very complex to operate
and configure. To address these shortcomings, I will detail several specific
Opera of the Future Group strategies that augment the traditional methods of
control. The Hyperinstrument was a first attempt at creating a live produc-
tion system which had great synchronization and nuance in timing. We will
also understand how these strategies are used to great success in recent pro-
ductions of Tod Machover’s Death and the Powers[31] and the Sleep No More
Internet Extension.[9]

The Model

Dynamic production systems capable of intricate synchronization andnuanced
timing offer much capability for live performance production. However, even

16



with that capability, a higher-level abstract model of the performance is some-
times necessary to give technological systems a representation of how ele-
ments of the production should be articulated. Powers and Sleep No More are
particularly good examples of this, because their abstract representations are
critical to the realization of the production, but also very different in approach
and implementation. InDeath and the Powers themodel which drives the entire
production infrastructure is derived from the emotional state of a single char-
acter.[44] Sleep No More uses a model where time and space do not necessarily
adhere to the same rules as our physical world— this becomes more complex
when the model needs account for people and events that are in the physical
world.

The Operator

In understanding these more recent methods, we will also realize how im-
portant the role of the operator is to the success of interconnected production
systems. As systems become increasingly dynamic, an operator takes onmuch
more responsibility. In the recent past, operators’ roles, especially for Oprea of
the Future productions, have become performative in nature. In many cases,
the mix engineer, visuals operator and other personnel are responsible for the
ultimate shaping of the piece— it is they who ultimately determine what the
audience perceives. Until recently, this has been achieved by constraining the
output of the dynamic systems. For example, a hyperinstrument may generate
additional accompaniment and effects which are all fed to a mixing console,
then balanced, emphasized and ultimately fit together in a musical way by the
mixing engineer.

Hyperproduction

The question then becomes whether it is possible to take advantage of the nu-
anced input and shaping an operator affords in a more effective way. We will
see that for Powers and Sleep No More, an operator was integrated into both
systems— not just for shaping and controlling output of systems— but to alter
the input to systems as well.[44] Another simple analogy is that of electronic

17



music, where controllers are used to give some meaningful state to a repre-
sentation (ex. an Ableton[2] set) which renders the performance based both
on input from an operator. In the case of electronic music, we generally con-
sider the operator to be a performer. Indeed, Philip Glass credits an ”Onstage
audio engineer” in his ensemble[36] for such landmark pieces as Einstein on
the Beach.[14]

We should imagine the future of production to be performance-dominated art.
As technology affords more capability to live systems, it should be the goal of
system designers to create infrastructure that involves humans in emotional
and nuanced fashions. Hyperproduction is a first attempt at addressing this
phenomenon head on. It is a system designed to accommodate many types of
abstract representations and allow performers, operators and other systems to
contribute state to those models. A model can then be translated or mapped
to data that are suitable for controlling production elements.

In this thesis, I will show that Death and the Powers and Sleep No More are ex-
amples of rudimentary Hyperproduction systems. We will explain the design
and implementation of a completely new framework for facilitating the cre-
ation of hyperproduction systems, then proceed to showhow systems for Pow-
ers and Sleep No More might be implemented in this newer framework. Most
importantly, we will understand the additional capability gained by using a
purpose-built infrastructure to address this particular type of interaction. Hy-
perproduction offers the ability to integrate operators virtuosic abilities into
production systems along with performance data. More importantly this inte-
gration of performer and operator input takes advantage of abstract represen-
tations that are more flexible and capable than any system previously used in
Opera of the Future. We will see the benefits of this expanded flexibility and
capability in the following chapters.

18



Chapter 

RelatedWork
Hyperproduction is a departure from previous attempts at modeling perfor-
mance and large scale performance control systems. Below is a brief summary
of related systems and research with capabilities similar to Hyperproduction.

. Abstract Representation

Mapping and abstract modeling research generally focuses on a single strat-
egy to try and represent a piece or performance. We have seen this type of
approach in existing efforts by Camurri[6] using the Kensei model, Wander-
ley [22] looking at the relationship between controllers and sound generation,
thework of Elly Jessop[26] using the Laban effortmodel[29] for gesture quality
analysis, and even for prior Opera of the Future Productions[17] using a sin-
gle strategy for analysis and representation. Figure 2.1 shows an example of a
mapping created for a production in Peter Torpey’sDisembodied Performance
System[44]. Although the mapping can be switched for different sections of
the piece, only one mapping is active at time in this system. Hyperproduc-
tion allows designers to combine many different models, representations and
mappings together.

19



Figure 2.1: A single model abstract representation for Death and the Powers created
with Peter Torpey’s Disembodied Performance System[44]

. AutomatedMapping

Other approaches, such as Wekinator[18] and Marc Downie’s Field[12], in-
volve self-training or intelligent systems intended to allow one to specify input
and output while letting the computer do themapping. These systems assume
that it is possible manually specify what the output should be for a given in-
put, but this is generally not feasible onmany production systems. Often there
are hundreds of thousands of configurable parameters in a large production.
For example,Death and the Powers has over 400 lighting instruments each with
40+ parameters of control. To set any sort of output on such a large system
requires some way to manage a very large parameter set.

. Literal Mapping

Another set of commercial products attempts to model live performance in
a literal way, directly using sensor derived data, such as location or orienta-

20



tion of objects, to control production infrastructure. Ubisense[16], a tracking
platformmost commonly used in industrial applications for factorymachinery
automation and Blacktrax[4], a full blown theatrical tracking and show control
package, are well known solutions for this type of control. Still these products
are not able to represent abstract qualities, which are often much more impor-
tant factors in production control than direct measurements such as location
or speed.

These types of systemsmakeperfect input systems forHyperproduction. They
can contribute useful data that might be incorporated into an abstract model,
combinedwith input fromoperators and other sensors and thenused to control
production infrastructure.

. AsynchronousArchitecturewithFlexibleFrame-
Rate

There are several existing systemswhich take a similar approach to control and
architecture. These are designed to be ultimately flexible and accept input and
output data from a variety of sources and are commonly found in performance
systems.

SuperCollider[42] and Chuck[8] are examples of two systemswhich use a very
similar architecture but are ultimately designed for sound synthesis rather
than representation, mapping or analysis of performance. Of the two systems,
SuperCollider is the more closely related package, since it’s DSP and control
components are separated. SuperCollider is broken into scsynth, responsible
for generating audio and sclang, which communicates to scsynth via OSC and
provides all control. Hyperproduction is similar to the sclang portion of Super-
Collider but is based onNodeJS, which provides a greater degree of flexibility.
Type-checking inHyperproduction is left tomodule designers since javascript
is not inherently typed.

21



. Large-scale production

Large-scale production such as Broadway, Arena touring, or Vegas-like per-
manent installations have some of the most involved production infrastruc-
ture. Systems used for 8 performances a week, year-round must be designed
carefully to ensure there are appropriate failure mechanisms and that systems
will work even with unexpected input. Interactivity in these systems is often
kept to a minimum for this reason.

In the next chapter we will explore typical protocols and technologies em-
ployed in large-scale productions, but before we explore those, it is worth dis-
cussing a few interesting and not-so-traditional systems that have managed
to break into the high-end market and provide capability not often found or
trusted at this level of scale and stakes.

.. Meyer D-Mitri formerly LCS

MeyerD-Mitri[10] is a completely configurable, programmable audio environ-
ment comprising of both software and hardware to implement very unique
and customized DSP systems. D-Mitri and LCS are found on many Broad-
way and Westend productions. Every permanently installed Cirque du Soleil
production in Las Vegas uses a D-Mitri system for control and automation.
Systems constructed with D-Mitri are built from scratch out of modules con-
nected to the same network. Control surface modules[28] can be chosen and
assembled in any way to allow for unique interactions with operators. Figure
2.2 shows an example of a surface constructed from customizable modules.

On the Tonight Show with Jimmy Fallon, an operator uses a small puck to
specify if and where any performers go in the audience. The location of the
puck over a floorplan allows the D-Mitri system to mute nearby speakers and
prevent feedback from the performer microphones. An operator moving the
puckwhile watching a top down camera of the audience seating is muchmore
reliable than using a tracking system in this case.

22



Figure 2.2: A CueConsole modular audio control surface[28]

Cirque du Soleil uses D-Mitri to control over 512 independent speakers in their
production, KA. The system is able to spatialize live microphones on perform-
ers to the speakers, located in the head-rest of the audience seats. The perform-
ers are continuouslymoving, occasionally through the air, so the system is able
to compensate for their movement to ensure that they remain time-aligned in
the PA system.

Westend and Broadway productions often use D-Mitri for complex routing
challenges. In a recent production of Rocky onBroadway, designer PeterHylen-
ski used D-Mitri to manage a transition into the finale, in which the theater
transformed completely from a traditional proscenium to in-the-round. Si-
multaneously, a boxing ring is lowered from the fly loft and cantilevered into
the auditorium, while audience under the ring is relocated onto the stage. At
this point the performers, all wearing microphones, are in-front of the sound
system in the boxing ring. A second sound system is lowered from the ceiling
of the auditorium and all time-alignment parameters are set to use the newly
placed speakers correctly.

D-Mitri has many desirable qualities, but it is ultimately a DSP system. It is

23



very flexible in it’s capabilities and control— entirely scriptable, network dis-
tributed and customizable with respect to operator interactions— but it does
not have a way to define any model or representation that is not a traditional
mixer model. Like BlackTrax and Ubisense, most interactions are literally
translated to DSP processes.

.. TiMax

For an Arena production, it is difficult to correctly place performers in a PA
system because the distances are so great. The problem is magnified when
a production, like an ice show, happens in the round. Audience all over the
arena must be able to localize voices to their respective performers. When
speakers are hanging hundreds of feet above the people on stage, pointing in
many different directions this becomes quite a challenge.

TiMax[43] uses real-time tracking to dynamically panperformers’ audio around
a large array of speakers. Because the movement of the sound reinforcement
is linked with the movement of the performer, this provides a convincing way
to associate the artificial reinforcement with people on stage.[34]

. Hyperproduction with high-end systems
Hyperproduction aims to be a common platform for connecting all of these
systems together. In our recent past, Opera of the Future has created many
custom systems which do this type of combination, using operator input, live
sensing, and performance capture to control high-end DSP, robotics, scenic
automation, etc... We have interfaced with infrastructure big and small, and
it is the goal of this platform to be able to connect to and control all types of
systems using many varieties of input and different levels of interpretation.

Next, we will look at some of the more traditional technologies and protocols
used in large-scale production (especially in large pop and rock music tours),
but also found at smaller scales as well.

24



Chapter 

Control Systems for Live Production
To make the presentation of these systems straight forward, I’ll define sev-
eral terms that we will use in our discussion and characterization of modern
production systems:

“Production elements” are those elementswhich help the preformance achieve
some stated artistic intention and are not executed by a performer. Scenic ele-
ments, lighting, sound, visuals, projection, automation and rigging are exam-
ples of production elements.

A “production control system” (or a “control system” for short) choreographs
production elements throughout the duration of a performance. Sometimes a
control system may talk to other control systems to orchestrate many produc-
tion elements. In this case, we can separate the control systems into tiers. The
lowest “first tier” systems generate data used to directly control production el-
ements, while higher tiered systems may synchronize and link the lower tiers
together.

First tier control systems send “control-data” to production elements. We can
think of this data in two ways:

• a low level represention— i.e. how many bits of resolution, data rate,
overall bandwidth.

• a high level represenation— i.e. a color, a point in 3-d space, a trajectory,
an exponential fade.

25



Control data can be continuous, such as a representation of intensity of a light-
ing instrument over time, or momentary and binary, such as a trigger to open
a trap door.

. The Cue

A large majority of production systems are triggered directly by a human op-
erator using cues. This type of control originated because it is simplest to com-
municate verbally, by gesture, whistle, noise, etc... Cues generally comprise
of small segments of choreographed movement or changes in production el-
ements. These segments are called by a stage manager or other operator and
can be assembled in any order and refined in isolation. It gives a natural or-
ganizational structure and allows many complicated components to happen
simulaneously.

In modern large-scale productions, cues are used for triggers at the most im-
portant moments— when the synchronization of on-stage action and produc-
tion elements is critical to the performance. Important moments may include
the start of the production, large movements of automated set pieces, effects
involving danger to performers such as flying, or more mundane events, such
as a change in lighting, or a sound clip that occurs with action on stage. When
triggered, a cue (the choreography of the production elements) begins imme-
diately and runs to completion. Once a cue is called, it generally cannot be
altered and runs on a fixed timeline.

Lighting consoles (ETC[15], WholeHog[21], Chamsys[7], GrandMA), sound
mixing consoles (Studer[41], Avid[3], Digico[11], Yamaha[46],Midas[30]), play-
back systems (QLab[19], SFX[38]), and rigging and automation systems (JR
Clancy[25]) use cues to organize their functionality and their control-data out-
put.

26



.. Digital Cues

The MIDI Show Control protocol is a digital implementation of a cuing sys-
tem and allows control systems to cue other control systems. In fact, a whole
class of systems called “show control” systems generate control-data which
can be consumed by the first tier systems mentioned above. A show control
platform can synchronize the operation of many production control systems
so that lighting, sound, automation and rigging consoles can be synchronized
together.[23] Figure 3.1 shows a typical arrangement of show control and first
tier systems for controlling production elements.

.. Transitions and Interpolation

Often a production system must be able to make a transition smoothly from
one cue to another. Depending on the type of control data, different types of
transitions may be necessary. For example, the following control data types
require different transitions:

• Transitioning colors smoothly requires the traversal of some formof color
space, whether it is Red-Green-Blue, Hue-Saturation-Lightness, etc...

• Transitioning between 3 dimensional points (or n-dimensions) requires
some trajectory between those points.

Interpolation provides a way for systems to make these transitions without
explicitly defining every part of transition itself. We can define a default path
from one state of the system to another. In the case of 3 dimensional space,
this might be the shortest path in cartisian, polar, cylindrical, or any other rep-
resentation of space.

.. Keyframes

Keyframes are important to cued systems that take advantage of interpola-
tion methods. Keyframes give the state of the system at a particular moment

27



Speakers

Amplifiers
Microphones

Dimmer 
Rack

Lighting 
Intruments

Intelligent 
Lighting

Processors

Audio Mixer Lighting 
Board

The Layers of Theater Technology

Computer Show Control

Projector/
Video Display

Playback 
Deck

Production Elements - Directly Interact with Performance

First Tier Systems - Controls Prod. Elements

Second Tier - Controls First Tier Systems

High-Gain Audio
Low-Gain Audio
DMX Control
MIDI Show Control & Time Code
Video Protocol
Electrical  Cabling

Ben Bloomberg, 2006

Figure 3.1: A typical arrangement production elements, first tier and show control
systems

28



in time. An interpolation method handles any state of the system between
keyframes. Many visuals and post production systems work in this fashion,
where the timeline is fixed and the state of any element in the system can be de-
rived by looking at the two adjacent key frames and the interpolation method
between them.

.. Tracking

Tracking is a term that effects a cuing system’s behavior when cues are modi-
fied. When the state of an element is changed in a cue, it is possible to have that
changed state track through all cues following the edited cue. This essentially
makes the change in that cue “stick” throughout the rest of the production. In
certain cases, a change in a cue should be reverted when the next cue happens
or it should only be kept through a certain subset of cues. The term tracking
refers originally to the stage-manager’s ability to track changes to blocking and
set movements through a script. Production control systems need to emulate
this capability to be effective during programming rehearsals.

Certain production systems are not capable of this sort of modification. Often
systems for controlling the automation of set and rigging systems are very in-
flexible in their cue editing capability. This means that a single programming
change can sometimes take serveral hours because the system must be run
through each cue in real time to verify the state of a single paramater in each
setting.

. Time Code

Cues represent synchronization points where many elements must occur ex-
actly at the right time, but after a cue is triggered, elements run on their own
time-line. For example, a set changemade by humans, a lighting fade to black,
and a sound cue playing from tape may drift in synchronization even if all
three are started at the same moment.

29



With the advent of tape and talkies, a new standard was developed for syn-
chronizing not just specific moments in time, but all moments in time between
multiple systems. Time code was first developed to synchronize projector and
audio playback so that the two remain locked together continuously; the au-
dio and video do not drift out of sync over time because the playback rate is
kept the same between both systems.

It may seem like playback rate should not drift this way, but in reality many
systems use different methods to keep track of time. Small differences in play-
back speed accumulate over time, especially in the era of tape and celluloid.
When the “clocks” controlling the speed of devices are not perfectly synchro-
nized, time-flow is not the same across multiple systems. A drift of even 20
milliseconds in audio (less than a single frame of 30fps video) is quite notice-
able, so time code systems became widespread especially when dealing with
audio.

It wasn’t long before time code began to be applied to production control sys-
tems for live entertainment as well as post production and cinema. With it, it
became possible for elements of a production such as playback, lighting, and
video to be very tightly synchronized over longer durations.[23]

.. Speed vs. Location

It is important to understand the difference between timecode and clock syn-
chronization. There are protocols which synchronize the speed of two systems
exactly. These are clock protocols which can ensure that a frame, beat or tick is
the same length between systems. Examples of clock protocols are MIDI Beat
Clock, Word Clock, Tri-sync, Black burst, and Loop sync. This is enough to
prevent drift between multiple systems, but to ensure complete synchroniza-
tion they must all be started at exactly the same time. Obviously this becomes
increasingly difficult as the number of systems increases (can you push 47 play
buttons all in the same millisecond!?)

In contrast, a timecode protocol does this synchronization but also gives sys-

30



tems an exact timestamp, so not only are they at the same speed, but also the
same point in time as well. Timecoded playback systems can be started inde-
pendently at different times and each one immediately jumps to the correct
location and speed.

.. SMPTE Linear Time Code

SMTPE LTC is the most popular timecode format used today. It is a binary
coded audio signal which uses a manchester-like encoding to send full times-
tamp of each frame. LTC is transmitted between systems just like any audio
signal, digital or analog, balanced or unbalanced.[23]

Modern systems reading LTC often require special hardware to recover a dig-
ital audio clock from the LTC stream. This ensures that any digital audio con-
verters in the system are sampling at the same rate, ensuring the systems run
at the same speed.

.. MIDI Time Code

MTC is transmitted via MIDI equipment and contains the same information
as LTC. Support for MTC in modern Digital Audio Workstations, sequencers
and playback systems is generally better than LTC because a synchronized
audio clock is not required to decodeMTC. This doesmakeMTC systemsmore
suseptible to drift, if they are poorly implemented. This is because a system
must dynamically resample its output to the incoming timecode and ignore
its own system clock, essentially chaining the speed of the output to match
the timecode and not the system clock. That is not a trivial prospect and most
systems are not capable of such fine grained resampling.[23]

31



. Performance with Cues and Time Code

All of these methods of control have had quite an effect of live performance
over the years. As one can imagine, it is these time code and cue-based systems
that are the oldest and thus, the most robust. When it comes to large-scale,
high budget productions, producers are loath to trust any systems that are not
tried and proven. Because these types of control are the most common, tested,
robust and well matured, much thought has been spent on conforming live
performance to work within the bounds of the unique requirements.

For livemusic performances, often the drummer is given a click track or strobe
to follow the tempo of the running timecode exactly. In other cases, a conduc-
tor is responsible for listening to both a backing track and a live orchestra and
must try her best to keep the two closely aligned. Another common arrange-
ment is that a stage manager or musician will trigger preset materials at a spe-
cific moment to try and align it with the live performance. Once triggered, the
live performers must not change speed. In essence, the one “system” that can
never natively accept time code are the human performers.

Still once a performance is properly imagined along these lines, both methods
of control provide a great deal of capability for live systems and experiences.
But as we will see, they each have strengths that do not overlap, so we are left
with a gap in capability and functionality that is hard to fill with these existing
methods. Let us first look at two categories where existing systems excel:

.. Nuanced Timing

With a human calling cues, it is possible to acheive quite nuanced timing with
relation to the action on stage. A cue may be called in a pause between two
words, whether a performer has skipped the line before or not. A followspot
operator can keep the spotlight trained on a performer even if the performer
decides to make a change in his or her blocking. A sound mixer might know
tomute a wireless microphone before a hug each night, although the hug does

32



not happen exactly the same moment.

With a human operator in the loop, performers can be fluid in time and not
worry about production elements following along. Often this results in a com-
pelling and natural performance. Humans focus on the elements of perform-
ing that are most important to the audience’s experience of the piece rather
than logistics or mechanics that uphold suspension of disbelief or some other
effect.

.. Nuanced Synchronization

With timecode, an experience may be refined and perfected like a film or al-
bum because each run of the system is identical. It is possible to have hun-
dreds of separate components perfectly arranged together and intertwined in
incredible complex ways.

.. AMusical Approach to Timing and Synchronization

Let us take a step back and imagine the way an orchestra performs. Often
there are well over 100 people working together to excute what amounts to a
compelling and intensely complex sequence of actions resulting in (beautiful)
music. The combination and output is powerful and compelling; it can bring
one to tears or laughter. All the elements of an orchestra are perfectly synchro-
nized often with such careful nuance that it is almost impossible to quantify
exactly what makes an orchestral performance so moving.

Unlike timecode and cue-based systems, orchestras are able to have both nu-
anced timing and nuanced synchronization. No two performances are quite
the same, the humans focus on the experience and on the performance, rather
than being exactly aligned. Yet, for all intents and purposes, themany individ-
ual elements are exactly aligned. But as well as being aligned they are flexible:
the orchestra can pause an indeterminate amount of time, and with a single
breath or upswing of the conductor’s baton, a whole new tempo or mood is

33



set.

To achieve this sort of tight synchronization and flexible timing with digital
production systems, many have tried to combine cues and time code. Other
approaches involve changing the rate at which time passes using a hardware
or software interface to slow down or speed up systems to follow the perform-
ers. In some cases this can work well, but the fact that there is a fixed timeline,
nomatter its speed, makes it impossible to skip if thematerial before ismoving
too slowly. This fact, combined with the notion that these types of systems are
often unresponsive to the performers, makes the whole approach to systems
result in quite artificial feeling experiences.

Many of the Opera of the Future group productions have created custom so-
lutions to address these issues by discarding timecode and building systems
based around cuing and interactivity. By attaching production elements to live
input from the performers, a system can be tightly synchronized while main-
taining its flexibility. There are many challenges associated with interactive
production systems; the biggest being that is it hard to constrain the behav-
ior of such a system. A designer, producer or director wants to know that the
system will not have unexpected output. Artistically, it is important to make
these systems limited so that theymaintain some artistic intent instead of being
completely random. An important aside— in Opera of the Future we consider
random output or input to be not useful for most types of production, where
the production elements should be somewhat connected to the performance
happening by the humans on stage. If it is impossible to understand this con-
nection between human and technology, the next question is often why they
two should be associated at all. Some types of installation and performance
art ask this question explicitly, but much of the work in Opera of the Future is
focused on using technology to aid in story telling. In the best productions, the
audience does not concentrate on the technology involved or it’s relationship
to the performance, only the emotion being communicated.

In the next chapter, we’ll explore the Opera of the Future group approach to
designing systems as instruments. An instrument is reactive, yet constrained

34



and incredibly nuanced. An instrument is a true medium for expression. I
argue that production systems can and should be designed towork at the same
level of expressivity.

35



36



Chapter 

A History of Opera of the Future
Production Systems
In the Opera of the Future research group there are many examples of novel
production systems that do not follow traditional control paradigms. Indeed,
the original concept of the Hyperinstrument challenged many of the standard
assumptions in live performance technology. In this section, wepresent a sum-
mary of the different systems created by Opera of the Future and used in per-
formance. The later systems are responsible for much of the motivation lead-
ing to the creation of theHyperproduction framework. Thesewill be discussed
in more detail to set the stage for the conceptual elements that underpin the
platform presented in this thesis. We will look at each of these systems from
a production perspective. Later on, I will argue that the best production sys-
tems are performative in nature and the difference between production and
performance perspectives is small.

. Hyperinstruments

TheHyperinstrument was the group’s first foray into unified production tech-
nology. The motivation behind the project was to allow virtuosic perform-
ers the ability to produce experiences with great complexity in a live perfor-
mance setting. Previously these experiences could only be achievedwith post-
production in a recording studio because somany elements had to be carefully

37



Performance
Capture

(Sensors)
Analysis

Generative
Performance
Augmentation

Output
Systems

(Sound System)

Engineer

Traditional
Capture

(Microphones)
Audience

Performer

Figure 4.1: Basic components of a Hyperinstrument system

crafted and fit together. The aim of a Hyperinstrument was to give perform-
ers control over these elements via an interface which was already a natural
extension of their expressive tendencies.[33]

Over the years, Opera of the Future has crafted many of these systems for live
music performance. In the systems have the following components shown in
figure 4.1.

.. Performance Capture

The system has a set of sensors which capture the performance. These sensors
take a variety of forms; accelerometers, IR beacons, microphones, resistive or
capacitive sensing, cameras, RFID, etc...

The original Hypercello used a combination of capacitive sensing on the fin-
ger board, IR proximity sensing between the bow and the instrument, and
accelerometers on the bow to capture movement.[32][35]

38



Sensing and capture of performance elements is a broad field and is outside
of the scope of this thesis, but much of the capability of a Hyperinstrument
system is tied to the quality of data received from performance capture mech-
anisms.

.. Analysis

Once there is captured data, analysis provides a way of creating “meaning”
from that data. We cannot extract this meaning directly because the data from
sensors is often imperfect. For example, it may be necessary to understand
how a bow is being moved. An accelerometer will only provide a measure-
ment of the bow’s acceleration, so more calculation is necessary to understand
position or speed. The best analysis systems take data from sensors and pro-
vide a technological representation of the performer’s intention. It is this rep-
resentation of expression that is translated into control for additional layers of
the performance. There are many types of analysis techniques ranging from
simple scaling to FFT to very complex classification systems taking advantage
of machine learning techniques.

Many of the original hyperinstrument systems were created with one or two
very basic methods of analysis.[32] However, we have found that different
analysis strategies work well in different scenarios– it is most advantageous to
use a combination of systems.

.. Generative Performance Augmentation

Once there is some representation of the performer’s intention, a set of sys-
tems take that representation and actually create additional content to the com-
poser’s specification. Content can be created from real-time input (i.e. trans-
formed audio) as well as from playback of pre-authored material (sampled
audio or MIDI). Pre-authored content can also be transformed in real time.
Because the representation is constantlymodified by the performance, the con-
tent is generated in a way that is closely connected to the performer and their

39



performance.

.. Output Systems

Output systems are responsible for communicating the additional content and
the performance to the audience. A large sound system may deliver a rein-
forced version of the performance combinedwith all the augmentation created
by the hyperinstrument system. The design and creation of these output sys-
tems have a large effect on the aesthetic of the piece, however their design is
not compositional the same as the generative performance augmentation de-
sign. These elements are similar to the type of canvas or paint an artist might
choose when starting a new work.

.. The Role of the Engineer

In all of the hyperinstrument systems there is a role which is often not dis-
cussed. For the best result, an engineer is in the loop shaping and guiding the
hyperinstrument system. In many cases this role is filled by the sound mixing
engineer, but in certain cases there may be other operators (lighting, visuals,
etc.) as well.

These operators are not strictly necessary; it would be possible to create a sys-
tem with enough complex analysis and automation that the piece could run
itself completely without interaction from anyone but the performers. How-
ever, in practice this degree of automation isn’t realistic and time is better spent
in other areas, given a tight production schedule.

The engineer provides other benefits as well; the rehearsal becomes much
more flexible when a person is there to make small corrections and changes
in the moment— it becomes possible to orchestrate much more complex inter-
actions. The most important benefit of the engineer is to allow the process of
producing and rehearsing the piece to remain a strictly “musical” endeavor.
It is hard to exactly quantify this quality of rehearsal and performance. To

40



put it in a simplified way, an engineer has extraordinary capture, analysis and
augmentation capabilities. In a scenario where technological capture, analysis
and augmentation systemsmay not be completed yet, an engineer can provide
a bridge toward a completed experience that allows the rehearsal process to
retain the feel of a music rehearsal. When the systems are completed and the
performers are used to them, the engineer often does less, but any abnormali-
ties can be taken care of in a uniquely flexibleway that even themost advanced
AI and machine learning could not accomplish.

. Opera of the Future
Production Control Paradigms

These control paradigms have become standard architectural building blocks
in our system designs. Previous productions and pieces (including most hy-
perinstrument pieces) have each included one ormore of these elements. They
augment the traditional methods described in the previous chapter.

.. Piano Keyboard Automation

Perhaps the most common production paradigm is that of piano keyboard au-
tomation. The performance is represented as a collection of patches. Each
patch contains parameters for one or many synthesizers and samplers. Patch
changes are notated throughout the performance in a score or script and re-
called by the player.

This type of system is found on almost everymodern production but the gran-
ularity of the patch parameters varies wildly. The system currently used on
many Opera of the Future productions uses a virtual rack to run components
of the system that are shared between all patches. A “chunk” keeps track of
parameters and components that change in each patch. The chunk contains
audio and MIDI routing, a mixer and a time-line which is completely isolated
to that patch. Chunks can be recalled by the keyboardist at any point in the

41



production.

Another complex aspect of keyboard automation is the patch transitions. Mod-
ern automation systems are able to intelligently cross-fade from one patch to
another, or even let two patches overlap. This is critical to ensure that there are
not artifacts, clicks, pops, or abrupt cutoffs when patch changes occur during
a musical phrase.

.. Modes

A mode system is a generalized version of a Keyboard patch system. Modes
are often applied to change the behavior of a system completely. In Opera of
the Future productions, mode-based systems are often used when the same
input devices must serve very different roles. A mode might be created for
each segment of a piece to allow similar production elements to change in-
teractions and behaviors. In the case of a hyperinstrument system, slightly
different analysis and performance augmentation may be configured in each
mode.

.. Triggers

Triggers allow small pre-authored segments of content to be replayed. These
segments are intended to overlap slightly and are granular enough that they
can synchronize with live performance at tempos slightly faster and slower.
Generally, each trigger is notated in the score as an instrumental part, and it is
cued by the conductor along with the orchestra so that the segments are well
timed with the rest of the players and feel organic in the context of the music.

Triggers often control content that may not be specifically musical in nature.
However, visual elements, real time effects, automation, lighting and other
systems can be triggered musically in a way that feels more connected for a
large ensemble than if time-code or stage management or other traditional
means are employed.

42



.. Mappings

When sensors or continuous controllers are involved (knobs, stretch sensors,
tracking systems, etc.), control of production systems takes an entirely differ-
ent form. Mapping systems provide a toolset for working with continuous
data to allow translation andmanipulation of any inputs into appropriate con-
trol sources for output systems.

The first general purposemapping system created for Opera of the Future was
Joshua Strickon’s SecretSystem[40] which could integrate control over a vari-
ety of lighting, scenic, audio and robot elements based on input from sensor
data. SecretSystem was a perfect tool for creating simple mathematical rela-
tionships between sensors and production systems.

The concept of themapping systemwas refined forDeath and the Powers, where
many continuous data sources from the stage, performers, and orchestra needed
to be manipulated and combined to control all aspects of the production on a
much larger scale. The key element of the system for Powers was the fact that
rather thanmapping input directly to output, an intermediatemodel was used
to abstractly represent state within the piece. We will explore this concept in
muchmore depth the next chapter. This systemwas developedwith the name,
Disembodied Performance System[44], since it was created to allow the main
character in Powers to perform without being present on stage. Despite the
name, the system became applicable in many other contexts as well. Several
modern hyperinstrument pieces[17][26] were created with the same system,
with the DPS components completely replacing the analysis stage described
in section 4.1.2.

Mapping systems often contain a great deal of analysis and can be thought of
as an analysis toolkit. The Disembodied Performance Systemworks only with
continuous data, however, so analysis for strings, booleans, or other complex
data are currently impossible.

43



.. Distributed Control

Distributed control is becomingmore prevalent as internet-based performance
grows more popular. There are a variety of ways of assembling the previous
building blocks. Originally the Open Sound Control protocol (OSC) provided
a flexible and simple way to connect all of these systems together on the same
local network. Unfortunately, OSC does not route well over the internet. Most
OSC implementations are UDP based, and TCP OSC does not have session
management. Websockets are quickly becoming a viable transport for per-
formance data over the internet. For the recent production, A Toronto Sym-
phony[1], OSC was utilized as a communications protocol to control lighting
elements on and in the CN Tower. OSC was sent directly from the orches-
tra to the tower via the internet. While OSC via TCP should have been a
viable transport— in practice no commercial production systems supported
TCP OSC well. Tools for understanding the state of the link from the hall to
the tower were not dependable. Ultimately, an SSH tunnel was employed to
wrap the OSC link to provide some sort of encryption and session manage-
ment. The final system flow is shown in 4.2. For later projects, Websocket
implementations in Java, NodeJS and Python provided session management,
authentication and encryption without having to use an additional tunnel to
ensure reliability and security.

A secondary example: for the 2014 Sochi Winter Olympics, the NBC broad-
cast of all curling events was produced out of a control room New York City.
Jpeg2000 video, uncompressed audio feeds, and control data to operate cam-
eras remotely were sent back and forth over a 10Gbps network connection
from the Olympic venue in Sochi to the US. Being able to utilize a crew and
production facilities in the states freed up resources in Sochi for larger and
more complex events.

Distributed control allows systems to be situated in locations all over theworld,
contributing input and taking control data for a unified performance. Dis-
tributed control also allows multiple incarnations of a performance to be as-

44



Video 1

.

QLab

MIDIP
ipe

MIDIP
ipe

Hall Visual 
Triggers

Monitors

Internal/Proprietary
MIDI
OSC over TCP Tunnel

OSC over UDP
MADI
Analog Audio

RS232 A Toronto Symphony

233.118.105.100

S Y S T E M    F L O W    D I A G R A M

Audio

.

CN Tower
Live Camera 

Stream

Constellation

Record

Digico SD9
48 channel 

mixer

Main L-R 
Speakers

Floor L-R 
Speakers

Cluster & 
Front Fill

Sub-
woofers

Lighting 
Command

Light System 
Engine

Digital Performer 8

.

Mach 
Five 3

Kontakt 
5

Tower Visual 
Triggers

ATEM
Video 

Switcher

Video 2

.
Quartz

Composer atemOSC

Samples

Keyboard 1

Projection

Streaming 
Broadcast

HD-SDI/HDMI Video
Streaming Video

InternetSSH Tunnel, Snd 3000, Rcv 3001 SocatSocat

MIDI 
Split & 
Boost

Figure 4.2: System flow for A Toronto Symphony

45



sembled in different ways in different places. By publishing the data used to
create or augment a performance and all the component pieces of the perfor-
mance we can “render” a single experience for many different output medi-
ums.

. Death and the Powers

Death and the Powers was a project originally commissioned for Prince Albert,
which premiered in Monte-Carlo in 2010. This production encompasses all of
the building blocks outlined in the previous section.

.. The story

Powers is an opera about a man, Simon Powers, who wants to live forever. He
designs and builds “The System” with his research assistant Nicholas, which
allows him to upload his essence and cease his existence in the world of the
flesh. Once in The System, he slowly becomes his surroundings until he is an
all-inhabiting, all-controlling presence that no longer values what it means to
be human.

The world descends into chaos as he tries to convince his family to join him
in the digital realm. World leaders make an attempt to appeal to Simon to fix
the problems created by his companies and holdings, but he does not listen to
them. At the end of the story he tries without success to convince his daughter
to join him in The System.[37]

.. The Production Systems

When Simon dies and goes into the system at the end of Scene 1, in reality the
singer goes down to the orchestra pit, enters a sound isolation booth, and puts
on several sets of sensors thatmeasure aspects of hismovement and breathing.
At this point he continues the rest of the piece hidden from the audience, but

46



the sensors and microphone he uses translate his performance to all aspects
of the production technology; lighting, sound, visuals, robots, scenic automa-
tion, and video are controlled based on mappings from his sensor and audio
data.[27]

TheKeyboard automation systemhas 47 patcheswhich recall parameters across
six synthesizers and samplers. The production has 8 master modes that set
up different rendering presets, banks of samples for audio triggers, and vi-
suals presets. Each audio trigger optionally recalls a visuals mode as well.
The visual system has well over 300 modes and mappings that change by trig-
gers from the orchestra. In the case of this production, a patch change in the
keyboard automation system, a note from another player in the orchestra, or
manual cues can be used to trigger audio, video or mode changes on any of
the systems. The score represents a set of synchronization points that are used
to alter the treatment of real-time information such as audio or sensor data, or
to trigger the start of a set of authored content that is altered in real time. In a
sense, the entire production was a large hyperinstrument.

Components of the production system are distributed across several networks
that allow the various systems to exchange data with OSC[5]:

• The audio system receives tracking data from a UWB RFID system to
control tracking, effects and panning.

• Audio data is sent to the mapping system where it is scaled and passed
to the robot system to modulate on-board lighting.

• Sensor and audio analysis from the mapping system is sent to the vi-
suals rendering systems and robots to influence on-board lighting and
articulation

• Triggers from the orchestra are relayed to the Keyboard Automation,
Mapping and Visuals systems.

47



• Mode changes from the triggers systemand keyboard are communicated
to all visuals systems and keyboard automation system.

• Tracking data is communicated to the robot control system to influence
the movement of the walls.

.. Audio Systems

The full audio system for Powers consists of a proscenium spaced array of ap-
proximately 20 loudspeakers which provide a traditional frontal image for
sources on stage. An additional 60-80 loudspeakers surround the audience
driven by a 3rd Order Ambisonic system, which has 52 sources that are spa-
tialized around the audience throughout the production. A 23 foot speaker
on the lip of the stage has 64 four inch drivers each individually powered and
controlled. The system uses a Wave Field Synthesis algorithm based on Evert
Start’s work at Delft University[39].4.3

The audio system for Death and the Powers relies heavily on real-time data.
Much of this data is provided by the UWB RFID tracking system, but an even
greater portion is provided by the mixing engineer, in particular, me.

.. Mixing Powers

From a mixing standpoint, Powers is operated much like a Broadway produc-
tion. We avoid the “typical sound” of Broadway by very carefully choosing
our equipment, speaker locations and mixing aesthetics. That said, each per-
former and instrument in the orchestra has a dedicated microphone much like
a Broadway production. Along with digital inputs from computer playback,
surround andmonitoring, the mixing engineer is responsible for 350 audio in-
puts and 250 audio outputs in total. Since I only have 10 fingers, we use VCA
automation to keep track of the inputs and outputs in a manageable way. The
mixing console has 9 modes which pull necessary groups of faders to the right
place on the console at each point in the production. The modes also control

48



Figure 4.3: Death and the Powers Audio System

49



the panning automation in the surround system.

For eachmode, the activemicrophones are placed on the surface undermy fin-
gers. At any given time, only a single microphone is turned on on stage. This
is because opera singers are so loud that having any other nearbymicrophones
turned on causes bad phasing and comb filtering caused when one source is
picked up by multiple microphones.

Aswell as singermicrophones, there are also faders for the orchestra, surround
sound, playback and effects. These faders group many microphones together.

Given that there are many lines and the production moves relatively quickly,
as the mixing engineer, I must have the entire production memorized and I
know exactly how loud each performer performs each line of the piece. I bring
up a fader for each line to the correct position and make sure the electronics
and orchestra are at the proper level. Like the engineer in a hyperinstrument
context, this could be thought of as a musical performance almost as much
as the players in the orchestra. Each night the piece is played differently and
I must adapt to the changes in performance the same way the players and
singers do. As I improve, I get to understand nuances like lines that always
change dynamics (i.e. the beginning of a line might be very quiet and the end
much louder). The more nuanced I am, the more effective and transparent the
audio sounds in the hall.

With this system (and almost every system I design and mix on) the goal is
transparency and natural sound. We aim to have quiet sections of the piece
sound as if they are unamplified; this does not mean there is no amplification.
Rather, we strive to create an environmentwhere the audiencemember forgets
that the sound system exists, every word is crystal clear and the system does
not add unnatural timbre to voices or instruments unless it is intentional.

As with the hyperinstrument system, an engineer provides an advantage that
is nearly un-reproducible by mapping, machine learning, or other technolog-
ical system in this case. It allows for almost infinite flexibility; although a
system could be devised to “automix” the production taking into account the

50



score and lines and orchestra, it would be impossible for such a system to be as
nuanced as a person listening. When the goal is nuance and emotion, a person
is a critical part of the process. For simpler scenarios– offline processing, basic
multi-source speech– it is possible to use an automated system.

Many systems[13][24] have been created to accomplish basic mixing like this.
None have been demonstrated to correctly handle the demands of a live stage
production.

.. Listening, Imagining, and Reacting

But what exactly does the mixing engineer do to create such a nuanced mix
that an automixer cannot achieve? In many cases, he or she uses a significant
amount of imagination! Often this involves conceiving a mental model of the
location and treatment of sources, elements in the mix, to help determine how
and where every input should be placed for the audience to experience. For
example: we could imagine that each element of the mix— each instrument—
reacts with the others and with some artificial space, maybe very large or very
small. Changing the relative size and location of elements causes our attention
to be drawn to them differently.

If a background element (ex. a soft violin) suddenly becomes very loud, we
have the option (as the mix engineer) to let it rise to the front of of the audi-
ence’s attention or to reduce its focus, either by making it smaller or pushing
it further away.

All of these abstract qualities (size, space, location and distance) contribute a
great amount to the feel of the mix and the engineer’s ability to keep many
sources discretely placed for the audience to appreciate. The engineer modu-
lates them with great nuance like a player manipulates an instrument.

51



.. Hyperproduction

If we could take this extraordinarily nuanced modulation of these abstract
qualities, the information that the mixing engineer is encoding already, and
make it available the way performance data is used in a hyperinstrument sys-
tem, it is possible to imagine a true mixture of human and computer collabo-
ration where the level of detail and nuance is much greater.

Rather than having the computer create relatively naive responses to the per-
formance itself and have an engineer to make sure the output is appropriate,
we should give all the systems in the production access to the engineer’s intu-
ition first. Using this topology of interconnection, it might be possible to have
many systems following a piece the same way a mixing engineer does.

. Sleep NoMore

Sleep No More is an immersive theater experience based on Shakespeare’s
Macbeth and Hitchcock’s Rebecca. Typically, audience members experience
the performance by walking through a 90,000 square foot space on 6 stories of
an extremely detailed set, while the cast members have interactions and play
out scenes, sometimes involving the audience. The audience members wear
masks anddo not speak for the duration of the 3 hour event. There are 20 hours
of content in the performance. Users cannot see everything in one night and
are encouraged to make their own version of the performance each viewing
by exploring and following characters they find interesting.

Our research group teamed up with the creators of Sleep No More to try and
understand what it would be like to recreate the experience of Sleep No More
for online participants at home. The goal of our collaboration was to build the
required media distribution channels so that it would be possible to experi-
ment by linking those at home to the world of the showwith very low-latency
video and audio broadcast over the internet.

52



Master
(Cauldron)

Portal Arbiter

User StateScript
Story Logic

Client Handler Participants
(Console)

Static Web

Video Switching

StreamingAudio

Portals

Observers

Masks

Streaming Relay

172.16.4.10[1,6]

172.16.0.100

172.16.2.x

172.16.1.105
172.16.0.110

172.16.1.10[1,4]
manderley.media.mit.edu

manderley.media.mit.edu

Logs

Cameras — 172.16.3.x

PBX — 172.16.0.110

Operators

Internal
HTTP
JSON over WebSockets

OSC over UDP
Audio
Streaming Video/Audio (H.264/MP3 over RTMP)

Mask data output may be 
either OSC/UDP or 
JSON/UDP.

Remote Theatrical Immersion: 
Extending Sleep No MoreApple QC Network Multicast

233.118.105.100

S Y S T E M    F L O W    D I A G R A M

Figure 4.4: Sleep No More Internet Extension System Diagram

This could not be achieved with continuous high-bandwidth connection; this
approach was deemed impractical and ineffective from an artistic standpoint.
With a carefully curated selection of experiences using text, image, video and
sound, we can create the illusion of a much larger, more vast and limitless
experience by revealing less to the online user initially.

As a result, it was necessary to be able to orchestrate video, sound, text and im-
agery very precisely andwith low latency for the online users and at times, for
audiencemembers seeing the performance on-site as well. A system overview
is shown in figure 4.4.

53



.. Story Logic and User Console

A master story logic system controls all aspects of the performance experi-
ence for both online and on-site participants. It sends control messages to all
systems to ensure visual, aural, physical and virtual experiences stay synchro-
nized with the script. The engine is flexible so that the story unfolds in a non-
linear fashion.

Online, the user interacts with a web-based console which provides text, im-
ages, video and sound depending on the story and how online and on-site
participants interact with the system.

.. Portals andMasks

On-site, the participants wear a mask that has been instrumented with an An-
droid device to deliver sound through bone-conduction speakers and to col-
lect biometric data.[45] These masks lead the participants to various portals
throughout the space. Portals allow online and on-site participants to com-
municate. The bandwidth of this communication varies greatly; some portals
are simply a book flying off a shelf with specific words circled. Some send
video or audio to the participant on-line.

.. Distributed Systems

Sleep No More represents an entirely different type of production system. In-
stead of the audience sharing a performance venue together, everyone was
separated and experiencing the piece in their own homes on a computer by
themselves. In an attempt to recreate the feeling of individual agency— is a
key characteristic of the original production— those at home and those in the
space were able to wander relatively freely around the their respective worlds.
In the case of the online experience this world was virtual, meaning that both
time and space could be altered with little consequence.

As a result, the production systems for this project had to take into account

54



the real time-line of the participants in the live production while constructing
a world and series of events for the people in the online experience. In cer-
tain ways, this is equivalent to creating a full production that is completely
customized for each audience member.

To achieve this, all the systems for this production were designed to be multi-
input, multi-output. The mixing console was software based and could gen-
erate separate mixes for every participant whether online or wearing bone-
conduction headsets in the physical space. A video system was also capable
of generating output separately for each audience member. Both audio and
video systems could take live input from a number of sources around the live
space, from telephones, and from pre-recorded material as well. The mate-
rial could be altered separately for each participant in real time even if it was
pre-recorded playback.

In certain cases, having many audience members with individualized experi-
ences created certain constraints that needed to be satisfied, such as live spaces
that could only be used by one person at a time. These sorts of constraintswere
verymuch based in real time and real space and they also imposed constraints
on the the virtual experience.

At the heart of this complex orchestration of real and virtual experiences was
a control system, the Story Logic, which kept track of what was essentially an
individualized score or script for each audience participant. As the audience
made decisions, especially in the virtual realm, the score was able to rewrite
itself.

The Story Logic also had a knowledge of participants’ locations in the physical
space as well. This allowed special behavior when two

.. Idempotent Triggers

Like many of our other projects, the “score” or Story Logic had a number of
triggers associated. These triggers were slightly different from those of other

55



systems such as Powers, in that they were more like switches, enabling and
disabling parts of the experience. When called, a trigger was assigned to an
audience member. Because of this arrangement, triggers could be applied in
almost any order. When the audience entered a new part of the piece, special
triggers could disable all other running triggers to ensure it was possible to
reset to a known state.

.. Operator as Performer

The online experience for Sleep No More was loosely based on classic text-
based adventures. A goal of the experience was to ensure that participants
never felt like they were interacting with a computer, so the system would
never respond “command not found” or “please try again”. Instead, at any
unknown input, the systemwould involve a human operator to intervene and
send back appropriate responses.

This is another case where it would have been possible to devise a very com-
plex natural language processing system to try and account for all possible
user input, but the goal of the project was to create an incredible user experi-
ence, not to design a bullet-proof NLP engine. In our case, having a person in
the loop provided far greater nuance, emotion, and satisfaction. Like the mix-
ing engineer in Powers and for Hyperinstruments, the Sleep NoMore operator
was a uniquely performative role. As someone interacting with audience and
shaping the experience, the operator had to know the story and the physical
and the virtual spaces completely so that they could improvise creative and
appropriate responses to any sort of interaction.

56



Chapter 

Modeling Advanced Performance
In this chapter we’ll discuss Sleep NoMore and the most recent production of
Death and the Powers in detail. Both productions took a unique approach to pro-
duction control which served as a testing ground for basic Hyperproduction
systems. Rather than focus only on the nuts and bolts of each production sys-
tem, wewill look at the conceptual model of the production— amodel that the
production systems were able to replicate in the digital domain— understand
how operators were included in the model, and how this ultimately resulted
in a more powerful experience for the audience.

The nature of production often makes it difficult to fully test a new system in
all theways that one plans originally. There are somanymoving parts to a pro-
duction that unexpected interactions between all the parts often cause systems
to change drastically from their initial intention. Thismakes live production an
extraordinarily hard environment for conducting research, because it is quite
difficult to propose a project and see it through exactly the way it is proposed.
Ultimately the artistic nature of the production and the experience of the audi-
ence must take precedence over any technology. Artistic vision often evolves
quite organically and more often than not technology must similarly evolve
for the result to be satisfying.

57



. Sleep NoMore
The structure of Sleep No More is unique from a traditional stage production
in several ways. First and foremost, the production has no stage; instead the
audience members wander around a set of 100 rooms. Because of this, it is
impossible for an audience member to see all the action happening in the pro-
duction at any given moment. As a trade-off, however, audience members
are given some agency in what they would like to view during the evening.
One can decide what to do and where to go. Significant events happen more
than once to givemore audience the chance to be part of specialmoments. This
works particularlywell because certain portions of the experience happen only
for a limited number of people at a time.

A conceptual model of the performance must keep track of all of these pieces:

• what is happening at various points in the production in each location

• which experiences happen only for limited numbers of people

• when rooms are available to enter or are locked up

Another unique aspect of Sleep No More is that despite all of the agency af-
forded to those in the experience, the entire production is constrained quite
heavily by time. In essence the entire production is on time-code and it is im-
possible to linger in a moment or be fluid with timing. An incredibly nuanced
19 channel sound track gives performers all their cues for the entire duration
of the performance.

In summary, the production can be understood fully by referencing a large
spreadsheet of time-slots, locations, scenes and characters, a point in the sound
track, and a cue stack on the light console. These items, used along with the
current time, specify an exact state of the performance for every human and
technical production element every second of the show. Of course within the
time-slots, ranging from seconds to minutes, it is possible for the live perform-

58



ers to improvise. At times they must make decisions about which audience
members to include in smaller segments of the performance as well.

Creating an online version of the production affordsmore flexibility and agency
to the participants, who are not limited by the physical constraints of a real-life
space. In the online world, it is possible to teleport, travel back and forward in
time, and even alter the flow of time. One of the biggest challenges in creating
production systems for the online version of the show was to determine the
best means of modeling this new kind of world. It poses a unique challenge
in keeping track of the state of a performance because, in the most basic way,
each online viewer could be in a completely different state depending on his
or her decisions and actions in what was ultimately a fluid environment.

The online production systems had to be able to deliver a completely tailored
experience based on the same world, but fractured to different states of exis-
tence as soon as a participant enters it. This sort of model and interaction is
common in computer games, but the main difference between a game experi-
ence and this one is the notion that all decisions and actions a user takes must
be sent to the production to ensure they are possible in the context of the live
performance and the space. For example, two users could not exist in certain
virtual rooms if their partners in the real world could not as well. At moments
in the live performance, real-time video and audio is sent to participants on-
line.

So given this, online production was a single production but the very defini-
tion of a single production— what it means for participants to be sharing an
experience together— is not so clearly defined.

Howdowe create amodel that encompasses these types of productions; where
the world is multi-dimensional and people explore at their own pace, where
certain interactions must be constrained but others may be completely un-
restricted and the systems creating the experience must be able to create many
similar but customized versions of the same production?

In the following sections I will describe the approach taken in detail from a

59



modeling and operation perspective. Once the concept of Hyperproduction,
the system created for this thesis, is clearly defined in following chapters, I will
return to this production to explain the advantages hyperproduction has over
the implementation used here.

.. AMarkup Language for Multi-dimensional Production

The first challenge is to describe the world of the production explicitly, defin-
ing all paths a user might take through it— what is possible to access when
and how. The story is intricately tied to this description, almost like a script
that contains scenic descriptions. This approach is the reverse, a vast scenic
description instead contains the story that exists in each part of the described
world. To achieve this level of detail an XMLmarkup languagewas developed
and employed (JEML, affectionately named are its creators, Jason and Elly) to
contain and describe all the required elements. Here it is possible to see a de-
scription for a world that rebuilds and reworks itself based on the actions of
the user. The main elements here are items, actions, and events. Events may
cause items to appear and disappear, actions to enable or disable, and media
assets whether live or pre-recorded in any medium to play.

An example representation of a room is shown in figure 5.1.

.. Production Elements in a Virtual Show

Video and audio systems are triggered based on the asset and event tags. In
the case of the audio system, a pool of players and effects is allocated, started
and routed to users when needed for a specific part of the experience, then
resources are returned to the pool. Video, unlike audio, uses dedicated and
reserved streaming and processing for each online participant. Ultimately for
these experiences to work at scale, all systems must be able to function like
the audio system, in pools. This provides a method to dynamically scale the
system while keeping requirements for computational power as efficient as
possible.

60



1 <room id=”veggie_patch_grave” room_number=”3-3” locked=”false” name=”a␣graveyard”>
2 <short_description>a small graveyard</short_description>
3 <long_description>
4 A cobblestone path winds its way through a small graveyard.
5 Headstones emerge from the ground in rows like a vegetable patch. Something here is familiar.
6 </long_description>
7 <exit id=”veggie_garden_3” direction=”north” target=”walled_garden_3” locked=”false”>
8 <short_description>the walled garden</short_description>
9 </exit>
10 <exit id=”veggie_living_room” direction=”west” target=”macduff_living_room” locked=”false”>
11 <short_description>a small cottage</short_description>
12 </exit>
13 <item id=”headstone_1” type=”furniture” name=”a␣headstone” does_reset=”true”>
14 <short_description>a rounded headstone</short_description>
15 <long_description>
16 You can make out the word ”NAISMITH” on the grave. The dates seem to have been eroded away.
17 </long_description>
18 </item>
19 <item id=”headstone_2” type=”furniture” name=”a␣headstone” does_reset=”true”>
20 <short_description>a crossed headstone</short_description>
21 <long_description>
22 It says, ”Catherine␣Campbell.” Apparently, Catherine died quite young.
23 </long_description>
24 </item>
25 <item id=”headstone_3” type=”furniture” name=”a␣headstone” does_reset=”true”>
26 <short_description>a headstone topped with an angel</short_description>
27 <long_description>
28 This is a large onyx marker for the graves of the Macbeth family.
29 </long_description>
30 </item>
31 <item id=”buried_bone” magical=”true” visible=”false” name=”a␣broken␣bone” does_reset=”true”>
32 <short_description>a leg bone, fractured in the middle</short_description>
33 <long_description>
34 It’s a human legbone. You can’t imagine why you dug this up.
35 When you gaze on it though, you can’t take your eyes off of it.
36 </long_description>
37 </item>
38 <action id=”dig_in_graveyard” command=”use” override=”true”>
39 <event type=”TextDisplayEvent”>You know you’re not supposed to dig in graveyards, but here you are.</event>
40 <event type=”VisibilityChangeEvent” thatThing=”buried_bone” visible=”true” silent=”true”></event>
41 <event type=”ItemMoveEvent” thisThing=”self” thatThing=”buried_bone”></event>
42 <event type=”TextDisplayEvent”>…Thiswill be enough. You should go.</event>
43 <event type=”RemoveActionEvent” id=”dig_in_graveyard”></event>
44 </action>
45 <item id=”dirt_mound” type=”furniture” name=”a␣mound␣of␣dirt” does_reset=”true”>
46 <short_description>a mound of dirt, piled on top on a grave</short_description>
47 <long_description>
48 You might expect there to be grass or rocks in this dirt, but you see none.
49 Everything appears to be the same consistency as cottage cheese, thanks to the rain.
50 </long_description>
51 </item>
52 <item id=”graveyard_dirt” magical=”true” visible=”false” name=”dirt␣from␣a␣grave” does_reset=”true”>
53 <short_description>dark grey mud, from a grave</short_description>
54 <long_description>
55 The mud oozes between your fingers, cold and slimy. There is power here.
56 </long_description>
57 </item>
58 <action command=”pickup” condition=”equals(thatThing,␣&quot;dirt_mound&quot;)” override=”true”>
59 <event type=”VisibilityChangeEvent” thatThing=”graveyard_dirt” visible=”true”></event>
60 <event type=”ItemMoveEvent” thisThing=”self” thatThing=”graveyard_dirt”></event>
61 </action>
62 <action command=”move” name=”leave␣grounds␣for␣hotel” condition=”equals(thatThing,␣&quot;macduff_living_room&quot;)”>
63 <event type=”AssetEvent”>
64 <asset type=”audio”>all-off-zones</asset>
65 </event>
66 <event type=”AssetEvent”>
67 <asset type=”audio”>hotel-zone-on</asset>
68 </event>
69 <event type=”AssetEvent”>
70 <asset type=”audio_loop”>hotel</asset>
71 </event>
72 </action>
73 </room>

Figure 5.1: An excerpt of JEML used to define items and locations in the virtual world
of Sleep No More.

61



It is worth discussing the audio system inmore detail since it has some unique
properties discussed briefly in previous sections. Rather than using a physi-
cal mixing console for routing inputs and output, the audio system was com-
pletely software based, running on top of the popular digial audio worksta-
tion, Reaper. Inputs and outputs of the DAWwere created programmatically
and initialized at the beginning of the performance. Connections were cre-
ated to sample playback software (Kontakt 5), hardware inputs from tradi-
tional microphones, IP sources from the local network or the internet, or tele-
phones linked via an Asterisk PBX. Using these capabilities, the system was
able to dynamically route and mix many different sources to many outputs.
The most nuanced mixes were created for users on their headphones at home.
For these mixes, a combination of all the sources were spatialized binaurally
and streamed in real-time via aWowza and IceCast server to the web interface
used by online users. The latency on the live mix delivered to clients was gen-
erally less than 4 seconds. For this reason most of the content was designed to
cross fade in a subtle way. Certain sounds needed abruptly were triggered on
the client end in the online participant’s web-browser. Latency for these trig-
gers could be much lower because no streaming buffer is required to ensure
smooth playback of audio.

The control mechanism and the model for this type of production control is
quite unique. Again, the approach is half video game, and half show control.
To keep track of possibilities we defined a second markup language (BLEML,
Ben-Luke-EllyMarkup Language) mapping routing and assets to specific con-
trol commands. Unlike JEML, BLEML defined an idempotent set of ’cues’
which could be applied over and over again. Each cue puts the system into
a known independent state for some set of inputs and outputs, meaning that
applying the same cue over and over again to the same IO has no result. This
allows flexibility in the JEML system to make calls to BLEMLwithout needing
to keep track of the state audio system— the audio systemwill always become
completely the state implied by the sent cue. By specifying inputs and out-
puts separately, the system is effectively running a cue stack for each set of

62



IO. Again, the ultimate result here is giving the online user agency. It is pos-
sible to enter and exit a room 50 times and the production systems will apply
the correct sounds and videowithout needing to understand howmany assets
should be overlapping or whether fades have finished.

A sample of BLEML is shown in figure 5.2. Note that these cues define a set of
inputs and are called from the JEML for a specific output. The JEML system
triggers operations on all systems, including the Asterisk PBX, via OSC.

.. Operator in the Loop

What does it mean to operate a virtual show? In the case of Sleep no more, a
team of 8 people operated various aspects of the production to make sure it
was operating smoothly.

• A story logic operator was responsible for the overall interaction of all
components of the production. This includes synchronization with live
aspects of the show, all on time code.

• A location and tracking operator oversaw systems to understand where
on-site participants were located throughout the production. This infor-
mation was kept up to date within the JEML system.

• A portals operator was in charge of systems for high-bandwidth com-
munication between remote and on-site participants. Portals were em-
bedded in the set, allowing participants to communicate discreetly.

• Story operators were the remainder of the team, monitoring and manip-
ulating interactions between those online and the JEML system.

Each member of the operations team was a human interface between tech-
nology and the audience. Rather than using the hyperinstrument-live-mixing
model of letting systems do what they will and constraining the output, this
arrangement actually allowed the operators to exactly determine both input

63



1 <show>
2 <cue id=”owls”>
3 <midi note=”18”/>
4 </cue>
5 <cue id=”vertigo-main”>
6 <midi note=”19”/>
7 </cue>
8 <cue id=”ballroom”>
9 <midi note=”20”/>
10 </cue>
11 <cue id=”thunder”>
12 <midi note=”21”/>
13 </cue>
14 <cue id=”all-off-zones”>
15 <midi startnote=”0” endnote=”11” hold=”1” vel=”0”/>
16 </cue>
17 <cue id=”all-off-console”>
18 <midi startnote=”0” endnote=”63” hold=”1” vel=”0”/>
19 </cue>
20 <cue id=”all-off-mask”>
21 <midi startnote=”63” endnote=”127” hold=”1” vel=”0”/>
22 </cue>
23 <cue id=”all-off”>
24 <midi startnote=”0” endnote=”127” hold=”1” vel=”0”/>
25 </cue>
26 <cue id=”kitchen-radio-stream-on”>
27 <channel id=”cKit” vol=”0” time=”3”/>
28 </cue>
29 <cue id=”kitchen-radio-stream-off”>
30 <channel id=”cKit” vol=”-60” time=”3”/>
31 </cue>
32 <cue id=”agnes-mirror-stream-on”>
33 <channel id=”cAgnes” vol=”0” time=”4”/>
34 </cue>
35 <cue id=”agnes-closet-stream-on”>
36 <channel id=”cAC” vol=”0” time=”4”/>
37 </cue>
38 <cue id=”grace-mask-on”>
39 <channel id=”mGrace” vol=”0” time=”4”/>
40 </cue>
41 <cue id=”grace-mask-off”>
42 <channel id=”mGrace” vol=”-60” time=”4”/>
43 </cue>
44 <cue id=”dark-closet-on”>
45 <channel id=”ClstToPh” vol=”0” time=”2”/>
46 <channel id=”PhToHP” vol=”0” time=”2”/>
47 <channel id=”mGrace” vol=”0” time=”2”/>
48 </cue>
49 <cue id=”dark-closet-off”>
50 <channel id=”ClstToPh” vol=”-60” time=”2”/>
51 <channel id=”PhToHP” vol=”-60” time=”2”/>
52 <channel id=”mGrace” vol=”-60” time=”2”/>
53 </cue>
54 <cue id=”phone-call-on”>
55 <channel id=”GraceToPh” vol=”0” time=”0.5”/>
56 <channel id=”PhToHP” vol=”0” time=”0.5”/>
57 </cue>
58 <cue id=”phone-call-off”>
59 <channel id=”GraceToPh” vol=”-60” time=”0.5”/>
60 <channel id=”PhToHP” vol=”-60” time=”0.5”/>
61 </cue>
62 <cue id=”phone-booth-triangle-on”>
63 <channel id=”SmpToPh” vol=”0” time=”0.5”/>
64 <channel id=”PhToHP” vol=”0” time=”0.5”/>
65 <midi note=”2” hold=”1”/>
66 </cue>
67 <cue id=”phone-booth-triangle-off”>
68 <channel id=”SmpToPh” vol=”-60” time=”0.5”/>
69 <channel id=”PhToHP” vol=”-60” time=”0.5”/>
70 <midi note=”2” hold=”1” vel=”0”/>
71 </cue>
72 </show>

Figure 5.2: An excerpt of BLEML used to define several idempotent triggers in the
Sleep No More Internet Extension audio system.

64



and output of many systems. In the case of the story operators, control would
be transferred to a human if the computer was unsure of what to do. This
allowed the system to behave with incredible nuance— a human with knowl-
edge of story and the world canmore naturally respond and react to unknown
input.

This is the most basic form of hyperproduction. In this case of this production,
it was the operators behind the scenes, not performers, that were able to shape
the world and the presentation of the piece. Of course performers had a huge
role in that presentation as well, but the operators also played a performative
role, interacting with the technological systems.

We learned from this experience that a performative production role can be
much more complex and nuanced than a simple sound mix or a visuals oper-
ator. Operators were responsible for aggregating all sorts of information from
many sources and using it in a creative way to affect the experience of the par-
ticipants. The production was a complex interplay of elements that could not
have been managed any other way.

This production motivated some of the more advanced features of the hyper-
production system that will be described in the next chapter. The final imple-
mentation is able to handle the control aspects of these systemswith additional
benefits.

. Death and the Powers Live

For the most recent 2014 performance ofDeath and the Powers, produced by the
Dallas Opera, there was considerable talk about mounting performances in
many different venues around the world. Instead we chose to do a MET-style
international simulcast of a single production in Dallas. Traditional simulcasts
bring up a unique challenge in that ultimately, it does not matter whether or
not it is a live broadcast or a screening of an previously recorded piece. To
address this, we developed an interactive mobile application designed to take

65



DEATH AND THE POWERS
Simplified data-flow for live broadcast & 
interactive mobile experience.

Conventional 
Broadcast 

Camera

Wireless 
Cameras on 
Robots & Walls

Music Triggers from 
Orchestra & Singers

Location 
Tracking & 
Performance 
Sensors on Cast

Mobile 
Experience 
Director

Broadcast Sound 
Mixer

Broadcast Video 
Switcher

MIT MEDIA LAB
CDN Cached Pre-authored 
Images, Video, Audio (No live 
content).
Mobile Experience Control Data 
Relay to Venues

Satellite Uplink

Satellite 
Downlink

Real-time
Computer 
Generated 
Broadcast 
Content

Microphones on 
singers and 
orchestra

DALLAS OPERA
Production & Broadcast Systems

REMOTE VENUE
HD Projection, Surround Sound 
and Mobile Devices

MAIN SATELLITE 
BROADCAST

INTERNETINTERNET

Wireless Internet 
Access In 
Remote Venues

Audience Mobile 
Device

Chandelier 
Control Systems

5.1 Surround Sound

1080i HD Projection

The satellite link carries switched HD 
1080i video and dolby encoded audio 
with 5.1 and stereo broadcast mixes 
of the performance. 

The internet carries data from sensors and 
information to synchronize the mobile 
experience with the live performance. This 
is relayed to servers at the lab and 
distributed to remote venues.  No video and 
audio are sent live via this connection, only 
control data.

At the lab, the control data is combined 
with pre-authored, non-live content 
(video and audio clips, images, etc…) 
This content is distributed to mobile 
users via traditional CDN during the 
performance or packaged with the initial 
app download. 

At the remote venue, audiences view 
the main HD broadcast projected with 
surround sound.

An internet connection allows them to 
download and use the app, which 
consists of pre-authored content tightly 
synchronized to the live performance. 
Audience can use the app to send data 
back to the performance which is 
aggregated at the lab and used to 
control show systems. 

Additional content is generated in real 
time for inclusion in the main broadcast. 
This content is composited using feeds 
from live cameras on the set and in the 
house as well as playback of pre-
authored graphics.

Figure 5.3: Death and the Powers Live System Flow

advantage of all the same show control infrastructure used to drive the per-
formance systems. Visuals, audio, video and other elements were rendered in
real-time on the devices, essentially extending the production systems into the
hands of the remote audiences. Figure 5.3 gives an overview of the additional
systems created for the simulcast.

All touch and movement events from the remote device were relayed back to
the production in Dallas and incorporated into visuals control mappings for
the Moody Foundation Chandelier, a 50ft LED-based lighting element in the
house of the theater.

.. AModel of Emotion

Themodel for Powerswasmuch different from Sleep NoMore simply because
of the nature of the story. Instead of modeling the state andworld of the entire

66



performance, the model consisted of an abstract representation of the main
character, Simon Powers. Inmanyways this is effectually amodel of theworld
and the entire performance because he becomes everything in the production
and the story as the piece progresses.

Sensors attached to the body of the performer, Robert Orth, measured aspects
of his movement, breath and voice. The sensor data was mapped to a set of
abstract qualities using Peter Torpey’s Disembodied Performance System.[44]
These abstract qualities— anger, intensity, tension, fracture, and weight were
used to control production systems. Meaningful mappings from these quali-
ties to production elements were much easier to design (ex. the visuals should
be more frenetic and red as Simon becomes more angry).

A visuals operator provided more nuanced shaping with continuous param-
eters connected to the mapping system as well. As with hyper-instruments,
it would have been possible to do this mapping based on sensors, but given a
fixed amount of time, the perception that a human operator offered was vastly
more capable and nuanced. The operator was following the same sorts of pa-
rameters calculated from sensors, but was able to do it more precisely.

.. A Limited Representation

This type of organization of qualities with a single operator worked particu-
larly well for Powers, an opera about an all encompassing omnipresence. Only
Simon’s emotions and performance were ultimately translated to the produc-
tion systems. This is fortunate because the DPS system was only capable of
measuring a single set of inputs and outputs. If there had been multiple char-
acters which needed to be monitored, calibrated and sent to separate control
systems, the mapping would have very quickly become unwieldy. A possi-
bility might be to use a separate instance of the system for each character, but
it quickly becomes difficult to track changes and updates between the two in-
stances. In fact, this was necessary once the mobile aspects of the piece were
added for the Dallas production. A secondary mapping system with a sepa-

67



rate set of cues and connections was responsible for managing interactions to
and from mobile devices. While this was fine in practice, it does not diminish
that fact that for an ideal system, the mapping instances would also be able to
influence each other.

Ultimately, to be able to model a piece with all its entities and parts— not just
based on a single character—wemust have away of organizingmore complex
mappings. There are a number of useful constructs which could help this sort
of model to be much more widely applicable:

• Nesting of mappings

• Ability to group mappings and duplicate them together

• Separate cue stacks for separate groups of mappings

• Interactions and/or connections between disparate groups of mappings

Hyperproduction provides these constructs in a programmatic way so that
systems can be constructed by hand or by script and components can be ab-
stracted and isolated in meaningful ways. We will learn about the tools and
organization of the hyperproduction framework in the next chapter.

.. Javascipt based Show Control

The control system for Powers Live was the first Opera of the Future Produc-
tion system to be implemented in Javascript. NodeJS support for WebSockets
is well tested and robust and the asynchronous nature of the V8 engine and
Javascript made it possible to handle large numbers of concurrent connections
quite effectively.

The system consisted of a load-balancer and two virtual machines each run-
ning 4 NodeJS processes with the Node Cluster module load-balancing TCP
connections to the processes. VMswere chosen to increase reliability. If one of

68



the VMs went down, it was a simple matter to reconfigure the load-balancer
and point connections to another instance.

Separate infrastructure served content delivery network accelerated assets to
users, and a caching and content versioning systemwas created to ensure mo-
bile devices would only download necessary components. Much care had to
be taken to ensure that users would not overload the venue internet connec-
tions.

The system used a websocket connection opened to the device and with-in a
webview renderer to send both triggers and live performance data at 12fps to
users’ devices. Playback of pre-cachedmedia assets could be triggered, aswell
as real-time generative graphics, audio, and device vibration. Because trig-
gers were sent via websocket, latency was negligible, compared with satellite
broadcast latencies.

As a blue-print for the hyperproduction system, we paid close attention to
performancemetrics on the Powers live system and spent a significant amount
of time load-testing and bench-marking before the broadcast. For a system and
production of this magnitude (with a significant amount of publicity), it was
imperative for the system to behave without issue on the day of the broadcast.
This presented quite a conundrum, because there wasn’t a way to truly test
with real devices at scale— the first complete operation of the system was for
the performance. Great care was taken to work with venues to ensure internet
connectivity, bandwidth to the application servers.

We will discuss the performance and capability of this system and the hyper-
production system in Chapter 8.

69



70



Chapter 

The Hyperproduction System
Given all of these production control methods used in a variety of ways over
the last 7 years, we can imagine and design the next generation of a hyper-
instrument system— one where the engineer is as integrated into the perfor-
mance and the production control as the performers. Rather than using the
engineer as a safety net to contrain the output of all systems, we should imag-
ine the engineer as a node in a mapping system, capable of providing complex
analysis and mapping that might require emotional intuition.

To facilitate this arrangement of people and technology, the Hyperproduction
system is an advancedmapping and analysis tool for live data input, similar to
the “Disembodied Performance System” by Peter Torpey and the “Extended
Performance Extension System” by Elly Jessop. It is intended to be used in
combination with an engineer, taking his or her input to production systems
and using it to influence other production elements in a hyperintrument-like
fashion.

The system is based on NodeJS which provides a performant, asynchronous
platform that is optimized at runtime. The systemhas no sense of time or fram-
erate; instead it is event-based and uses a push architecture. Any change of in-
put causes an evaluation of all affected system outputs. Previously this sort of
architecture would be too slow for use in performance critical environments.
The wide adoptance of i series Intel processors and Google’s V8 Javascript en-
gine proved in initial testing that this arrangement could be achieved. In the
case that an input changes too quickly, timing nodes are able to re-time incom-

71



ing data so the rest of the system evaluates at a reasonable interval.

. Data Architecture

The system is separated into nodes that process data, devices that connect
the system to the outside world, and containers that contain nodes and de-
vices and have some interesting properties. Connections and ports facilitate
the passing of data between nodes, device and containers. The system uses a
“push” model to ensure that outputs are updated as their inputs change. Let’s
look in detail at each component.

All objects—ports, connnections, nodes, devices and containers- have a unique
ID. This ID is used to associate objects with each other and create connections
that pass data. When hand-writing mappings, it is possible to specify these
IDs. Future versions of the system will have a descriptive name associated
with nodes and containers that does not need to be unique.

All objects have a JSON representation aswell, which provides a simplemeans
of integration with frontend or monitoring systems. Internally, the JSON rep-
resenation is used as a template to create deep copies of nodes and containers.

.. Nodes

Nodes are the smallest building block of the system. A node takes a definition:
a number of inputs and outputs, a text description and a processing function.
When created, the node instantiates ports for each input and output, and con-
nects them to the processing function from the definition. When inputs are
updated, the processing function is called to process data to outputs. The pro-
cessing function has a state that can be maintained across calls. This allows
the function to implement processing that takes previous input or output into
account.

Keeping the definition of the node’s behavior separate from the node itself

72



1 //Definition of a node
2 AddOperation2i1o = {
3 nodetype: ”AddOperation2i1o”,
4 descr: ”Two␣input␣adder”,
5 procfn : function(ports, state) {
6 ports.o1.set(ports.i1.get()+ports.i2.get());
7 return state; // for a simple adder state is not used
8 },
9 inputs: {
10 i1 : { type : Type.INT, defaultValue : 0 },
11 i2 : { type : Type.INT, defaultValue : 0 }
12 },
13 outputs : {
14 o1: { type : Type.INT, defaultValue : 0 }
15 }
16 }
17
18 //Creating the node from the definition with the id ”myAdder”
19 myMapping.createNode(AddOperation2i1o, ”myAdder”);
20
21 //Creating a second adder
22 myMapping.createNode(AddOperation2i1o, ”anotherAdder”);

Figure 6.1: A basic node definition and instantiation

73



1 //Connect the output of myAdder to the first input of anotherAdder
2 myMapping.connectByNodeIdPortName(”myAdder”,”o1”,
3 ”anotherAdder”,”i1”);

Figure 6.2: Connecting the two ports on nodes using the node-id, port name method.

facilitates simple copying of nodes. The node keeps the defintion used to create
it and can therefore be duplicated very easily.6.1

Nodes are intended to be incredibly simple to write. During production, a
node could be added to the system dynamically and replicated as many times
as needed, wherever the node’s functionality is required. The system does not
need to be restarted to add nodes; this is a benefit of using a scripted language.
The intention is that a library of nodes could be accumulated over time to pro-
vide many types of processing.

Data entering and exiting the node on a port can take any form. This provides
support for complex data types such as multi-dimensional input and output,
strings, ENUM, etc. In the current implementation it is up to nodes to do their
own type checking. This functionality is left to the node and is not executed
in ports or connections to prevent overhead. A map may have thousands of
connections, ports and nodes. By checking type only in nodes that require it,
it is possible to have greater control of the overall performance of the system.

.. Connections

A connection is a unary object that connects a single output and input. An
output port may have many connections, but an input port may only have a
single connection. When an output port’s value is updated, the port object
updates all its connections, which in turn update respective input ports.

Connections can be created between any two port IDs as long as one port is an
input and one is an output. Methods exist to create connections between ports
by their ID directly or also with two node IDs and port names.6.2

74



.. Devices

Devices are special nodeswhich connect the system to the outsideworld. Ade-
vice node takes a definition that maps inputs or outputs to some control-data
for a production system. Currently there are OSC Sender and OSC Receiver
nodes. OSC is an increasingly commonprotocol that is foundonmanyproduc-
tion systems— mixers, video switchers, lighting consoles, playback systems,
DSP, etc. The definition for an OSC device node lists possible OSC addresses
that the sender and receiver can use to communicate. The arguments for each
address can be associated to ports on that node.

The OSC nodes are based on NodeJS OSC-min library and work in several
modes:

Receiver nodes may

• work in a subscription mode, where a message is sent to suscribe to data
sent to the system at periodic intervals. When data is received, the cor-
responding output ports on the device node are updated. Ports may be
defined for each argument of every input message.

• work in a pollingmode, where amessage is sent for each OSC address at
a specified timeout when that message is received. An update command
sends messages to all defined OSC addresses for each address initially.

• work in a passive mode, where no attempt is made to subscribe or poll.

Sender nodes may

• work in an all-update mode, where any input causes all defined ad-
dresses to send their current state.

• work in single update mode, where input to the node causes only the
associated OSC address to update.

75



• work in message send mode, where input on a port causes a specific
message and arguments to be sent.

We have created basic OSC maps to prove interoperability with Behringer’s
x32 mixer, a 48 input 24 output digital mixing console that is OSC control-
lable. The x32 OSC Device node can read and send values of faders and read
values of meters. There is also a basic OSC map for Blackmagic’s ATEM HD-
SDI video switcher, which is currently able to take a camera on the program
output.6.3

Future implementationmight involve the creation ofDMX,ArtNet,MSC,MIDI
and Time code Device nodes. The goal of the system is to have as much inter-
face capability as possible with as many existing control systems as possible.
This facilitates the connection of many different types of systems together us-
ing this platform.

.. Containers

Containers hold internal nodes and connections which can be duplicated or
used together as a logical grouping of functionality. Since these containers are
mappings themselves and can be represented as JSON, it becomes possible to
store groups of nodes that can all be instantiated together in a textual repre-
sentation.

Inlet and outlet nodes are special nodes whose connections appear on the out-
side of the container and on the Inlet or Outlet object inside the container.
These make it possible for nodes outside a container to connect to nodes in-
side a container. This is achieved with a special port type, EXT, that when
instantiated is added to the container’s port list instead of the node’s. An Inlet
node has a standard output Port and an EXT input port, and Outlet node has
a standard input port and an EXT output port.

Containers themselves behave like nodes and can therefore be embedded like
a node inside other containers. A root container is instantiated automatically

76



1 //OSC Definition for first 3 channels of X32 mixer
2 X32ReceiveNode = {
3 nodetype: ”Receive”,
4 descr : ”Receives␣data␣from␣the␣X32␣module”,
5 outputs : {
6 o1: { type : Type.INT, defaultValue : 0},
7 o2: { type : Type.INT, defaultValue : 0},
8 o3: { type : Type.INT, defaultValue : 0}
9 },
10 addresses : {
11 ”/ch/01/mix/fader”: [”o1”], //map of arguments
12 ”/ch/02/mix/fader”: [”o2”], //to ports defined
13 ”/ch/03/mix/fader”: [”o3”] //above
14 }
15 };
16
17 //Instantiating an OSC Device node with X32 definition and IP
18 var myReceiveNode = new OscReceiveNode(”receiver”,’18.85.52.46’ \
19 , 10023, X32ReceiveNode);
20
21 //Add receive node created with X32 definition to mapping
22 myMapping.createDeviceNode(myReceiveNode);
23
24 //Create an adder in the mapping
25 myMapping.createNode(AddOperation2i1o,”adder”);
26
27 //Create connect outputs of two faders to an adder
28 myMapping.connectByNodeIdPortName(”receiver”, ”o1”, ”adder”, ”i1”);
29 myMapping.connectByNodeIdPortName(”receiver”, ”o2”, ”adder”, ”i2”);

Figure 6.3: Instantiating and connecting OSC Nodes.

77



when the system is started to contain all devices, nodes and containers.
1 //Here we see the JSON result of embedding a container
2 //within a copy of itself
3
4 var ContainerMapNode = require(”./ContainerMapNode.js”);
5 var ComputeModules = require(”./ComputeModules.js”);
6 var l = require(”./log.js”);
7 var bb = require(”./benb_utils.js”);
8
9 var myMapping = new ContainerMapNode();
10
11 //Create all nodes, including inlets and outlets for the container
12 var add1 = myMapping.createNode(ComputeModules.AddOperation2i1o);
13 var inlet1 = myMapping.createNode(ComputeModules.Inlet);
14 var inlet2 = myMapping.createNode(ComputeModules.Inlet);
15 var outlet1 = myMapping.createNode(ComputeModules.Outlet);
16
17 //connect nodes together within our mapping
18 myMapping.connectByNodeIdPortName(inlet1, ”o1”, add1, ”i1”);
19 myMapping.connectByNodeIdPortName(inlet2, ”o1”, add1, ”i2”);
20 myMapping.connectByNodeIdPortName(add1, ”o1”, outlet1, ”i1”);
21
22 //create a copy of the container and its contents
23 //embedd the copy within our first mapping
24 myMapping.createContainerMapNode(myMapping.getFullMapping());
25
26 //Print resulting JSON
27 l.debug(JSON.stringify(newMapping.getFullMapping(), undefined, 2));

1
2 ////
3 //
4 // Resulting JSON
5 //
6
7 {
8 ”nodes”: {
9 ”48c41ed6-64f6-414d-809f-5f66be998f15”: {
10 ”nodetype”: ”AddOperation2i1o”,
11 ”descr”: ”Two␣input␣adder”,
12 ”ports”: {
13 ”inputs”: {
14 ”i1”: ”145b2021-4c89-42f6-aa6d-3d0635da77e0”,
15 ”i2”: ”7bd63c9d-ccfd-47c3-9040-429bf99a2322”
16 },
17 ”outputs”: {
18 ”o1”: ”b86ee1cf-a64e-4538-8b7b-29d3e5861f4d”
19 }
20 }
21 },

78



22 ”8a8ea6c9-c8dd-4a78-9cf2-92e46602e386”: {
23 ”nodetype”: ”Inlet”,
24 ”descr”: ”Allows␣publishing␣inputs␣of␣a␣ContainerMapNode.”,
25 ”ports”: {
26 ”inputs”: {
27 ”i1”: ”26546e23-11cd-4107-9d3d-24dd57007ad6”
28 },
29 ”outputs”: {
30 ”o1”: ”b7a00c01-6e52-4da5-a7cb-23542ea1ac47”
31 }
32 }
33 },
34 ”16021595-e14e-4d14-8585-df98a5f3c804”: {
35 ”nodetype”: ”Inlet”,
36 ”descr”: ”Allows␣publishing␣inputs␣of␣a␣ContainerMapNode.”,
37 ”ports”: {
38 ”inputs”: {
39 ”i1”: ”0540fa4c-5a65-49ef-b654-b7ed31992710”
40 },
41 ”outputs”: {
42 ”o1”: ”09a91baf-7df0-4d33-94c8-30d107fb99cd”
43 }
44 }
45 },
46 ”4815305b-0aaa-4472-bb10-3eb0efc45cd2”: {
47 ”nodetype”: ”Outlet”,
48 ”descr”: ”Allows␣publishing␣outputs␣of␣a␣ContainerMapNode.”,
49 ”ports”: {
50 ”inputs”: {
51 ”i1”: ”18fbdc58-3bfb-4e22-8f4f-2f02371fd873”
52 },
53 ”outputs”: {
54 ”o1”: ”4a0768cb-2cc7-4361-9863-671ad39a10d1”
55 }
56 }
57 },
58 ”d9b0b6f7-a615-406d-85db-a30a2baebd71”: {
59 ”nodes”: {
60 ”620c5257-bede-485b-a0df-580f95155dc0”: {
61 ”nodetype”: ”AddOperation2i1o”,
62 ”descr”: ”Two␣input␣adder”,
63 ”ports”: {
64 ”inputs”: {
65 ”i1”: ”59363ee1-834a-4c91-841a-4fd6a1330741”,
66 ”i2”: ”5c9f5ab6-8f1d-410f-bf12-2e87374456de”
67 },
68 ”outputs”: {
69 ”o1”: ”6dea271a-505c-4011-988c-41c6dd1bd296”
70 }
71 }
72 },
73 ”81292832-7a04-4054-829c-9692c685e39d”: {
74 ”nodetype”: ”Inlet”,
75 ”descr”: ”Allows␣publishing␣inputs␣of␣a␣ContainerMapNode.”,
76 ”ports”: {
77 ”inputs”: {
78 ”i1”: ”f8d80287-abf6-4894-99fb-47f10b36d914”
79 },
80 ”outputs”: {
81 ”o1”: ”766409c1-b12a-4809-a128-940a1aa6a6a3”
82 }
83 }
84 },
85 ”b8d48301-ca56-48b6-834b-3626508f7c70”: {
86 ”nodetype”: ”Inlet”,
87 ”descr”: ”Allows␣publishing␣inputs␣of␣a␣ContainerMapNode.”,
88 ”ports”: {
89 ”inputs”: {
90 ”i1”: ”70e80717-4763-445e-90dd-662c23d09231”
91 },
92 ”outputs”: {
93 ”o1”: ”84c40f16-418a-4f18-947a-062d098258bf”
94 }
95 }
96 },
97 ”b507585e-41eb-40b3-855a-31c4d37e6d33”: {
98 ”nodetype”: ”Outlet”,
99 ”descr”: ”Allows␣publishing␣outputs␣of␣a␣ContainerMapNode.”,
100 ”ports”: {
101 ”inputs”: {
102 ”i1”: ”e60166f6-b081-4863-a5b7-c7cace8ca8fc”

79



103 },
104 ”outputs”: {
105 ”o1”: ”7ead8a71-d57e-499d-857a-a7917101f29d”
106 }
107 }
108 }
109 },
110 ”connections”: {
111 ”62702f9c-6752-4a0a-ad0d-b6c4bfe30fe7”: {
112 ”o”: ”766409c1-b12a-4809-a128-940a1aa6a6a3”,
113 ”i”: ”59363ee1-834a-4c91-841a-4fd6a1330741”
114 },
115 ”0eb3e627-3da4-4be5-a4f2-385f2599266e”: {
116 ”o”: ”84c40f16-418a-4f18-947a-062d098258bf”,
117 ”i”: ”5c9f5ab6-8f1d-410f-bf12-2e87374456de”
118 },
119 ”b23a2e5d-c686-44d6-ac7e-d454b4c351ca”: {
120 ”o”: ”6dea271a-505c-4011-988c-41c6dd1bd296”,
121 ”i”: ”e60166f6-b081-4863-a5b7-c7cace8ca8fc”
122 }
123 },
124 ”nodetype”: ”ContainerMapNode”,
125 ”descr”: ”A␣container␣for␣a␣sub␣mapping.”,
126 ”ports”: {
127 ”inputs”: {
128 ”in-81292832-7a04-4054-829c-9692c685e39d”: ”f8d80287-abf6-4894-99fb-47f10b36d914”,
129 ”in-b8d48301-ca56-48b6-834b-3626508f7c70”: ”70e80717-4763-445e-90dd-662c23d09231”
130 },
131 ”outputs”: {
132 ”out-b507585e-41eb-40b3-855a-31c4d37e6d33”: ”7ead8a71-d57e-499d-857a-a7917101f29d”
133 }
134 }
135 }
136 },
137 ”connections”: {
138 ”7f7d1c20-bf07-405c-91ba-7195754058bb”: {
139 ”o”: ”b7a00c01-6e52-4da5-a7cb-23542ea1ac47”,
140 ”i”: ”145b2021-4c89-42f6-aa6d-3d0635da77e0”
141 },
142 ”04dbc24c-e6cd-477a-bd67-1bd9173be56a”: {
143 ”o”: ”09a91baf-7df0-4d33-94c8-30d107fb99cd”,
144 ”i”: ”7bd63c9d-ccfd-47c3-9040-429bf99a2322”
145 },
146 ”2f7a43ab-caad-4795-b0a0-30e4ea60ce29”: {
147 ”o”: ”b86ee1cf-a64e-4538-8b7b-29d3e5861f4d”,
148 ”i”: ”18fbdc58-3bfb-4e22-8f4f-2f02371fd873”
149 }
150 },
151 ”nodetype”: ”ContainerMapNode”,
152 ”descr”: ”A␣container␣for␣a␣sub␣mapping.”,
153 ”ports”: {
154 ”inputs”: {
155 ”in-8a8ea6c9-c8dd-4a78-9cf2-92e46602e386”: ”26546e23-11cd-4107-9d3d-24dd57007ad6”,
156 ”in-16021595-e14e-4d14-8585-df98a5f3c804”: ”0540fa4c-5a65-49ef-b654-b7ed31992710”
157 },
158 ”outputs”: {
159 ”out-4815305b-0aaa-4472-bb10-3eb0efc45cd2”: ”4a0768cb-2cc7-4361-9863-671ad39a10d1”
160 }
161 }
162 }

It is important to note that while containers may have Inlets and Outlets to
facilitate external connections, it is possible to connect any input and output
across the entire system through many containers, as long as both port IDs or
node IDs and port names are known.

80



. Advanced Features
Several more advanced features are planed for this framework and have not
been completely implemented and tested. These are described in this section.

.. Cue-Stack Containers

An enhanced container is planned with the following additions:

• The container has many sub-containers.

• Inlets and outlets are kept in sync between the master container and all
sub containers so that all the sub-containers have the same inputs and
outputs.

• A special interpolator node has all inlets and outlets of the master con-
tainer.

• The connections to these inlets and outlets are switched to directly send
and receive from a single sub-container based on input to the interpola-
tor node.

• The interpolator node takes input to specify which sub-container should
be used and a value to interpolate outputs to the newly selected sub-
container.

• The interpolator node decides how to interpolate based on the data-type.

Given this implementation it would be possible to create a sequence of map-
pings and cross-fade between them. This effectively creates a structure where
a list of cued interactions and be embedded inside a group-able, copy-able
object. With the whole object represented in JSON, it is possible to proga-
matically design and instantiate cue lists. Cue-stack containers might contain
specific input-output mappings or even just simple constants.

81



For the remainder of the document, when I use the terms cue, cue lists, and
cue stacks in reference to this framework, I am referring to this arrangement
of sub-containers.

.. Threading

By default, NodeJS operates on a single thread. This provides good perfor-
mance and in practice works well for very large mappings. It would be possi-
ble to run multiple versions of the system and have them communicate. This
communication could be using standard show control protocols (OSC, MSC,
etc...) or a more tailored protocol. A device or node could be designed to man-
age inter-process communication.

.. Timed Nodes

In the current implementation, nodes pass data to their outputs on any change
of input. This causes the system to run “as fast as possible.” While this is de-
sirable in many cases, one can easily imagine a scenario where systems should
be pipelined and a desired frame-rate must be carefully maintained.

A timing node passes input to output at a specific rate rather than on any
change. Both external and internal clockingmechanisms are planned. Because
timing is not guaranteed in NodeJS, this sort of clocking is really only suitable
for control data, not for media.

.. Feedback

When using a timed node, it will be possible to have nodes feed their output
back to control inputs. Without imposed limits on timing, the system would
get itself into an accelerating loop. Allowing feedback enables the possibility
for cue lists to run themselves. An action or input can be mapped and deter-
mine the next cue or sub-container, on a cue-by-cue basis.

82



. A Backend System

The system was designed such that it provides a flexible and scriptable back-
end that may be integrated with a frontend later on. It is not intended as a
user-friendly tool for making these kinds of maps useful to beginners or even
novices, rather it is for power users to facilitate experimentation with differ-
ent models of performance and integration of operators and engineers into the
analysis of live production.

The system provides a JSON representation. We additionally created a rudi-
mentary UI to visualize containers, nodes and devices. It is suggested that
frontends for this system keep a representation of the current container. All
create, destroy, connect, and disconnect operations return appropriate JSON
to keep a representation updated with the state of the backend system.

. AConceptual Framework for CreatingHyper-
productions

Given the productions described earlier and the lessons learned building and
producing pieces for the last several years, the following is a general guide to
creating a system with this new framework:

Identify Inputs and Outputs

It is important to understand the types of sensor input, analysis, production
output and control that will be possible for production. Often these resources
are limited for reasons that are not artistic. Furthermore, it is important to
understand how outputs are enumeratedwith respect to the audience. If there
is a single speaker for each audience member, and each audience member has
some specific control input (the case for Sleep No More), then a mapping and
cuing system may need to be slightly different in arrangement than a single
PA system for the entire audience with no input (the case for Death and the
Powers)

83



Identify Model-worthy Elements within the Piece

Wemust determine which components of the piece require a model to be fully
represented conceptually by the system. This part of the design process takes
imagination and often it helps to understand the qualities of elements in the
piece that may need to be altered. For example, in a television studio with
a discussion panel, we may wish to model each panelist and keep track of
qualities such as ’degree of engagement’ or ’jealousy.’ Using available input
data, audio mix, volume, camera positions, etc... we might determine a value
for each of these qualities for each panelist and use those values to determine
a proper way to light the scene— for example with the most engaging panelist
the brightest.

In Sleep No More, each location was modeled in detail. The entire world was
augmented with properties to allow participants to interact with them in the
physical and virtual worlds.

Death and the Powers Live uses a single character as one model and an ag-
gregate of all remote audiences as a second model. In the implementation for
Dallas, the two models were not able to interact.

In this framework, we use containers for modeled elements. Each container
can have mappings which analyze incoming data, whether from production
systems and operators (cameras, mixing console), performers (sensors on Si-
mon Powers), or audience (user input from participants of Sleep No More).
Since each container can have a cue-stack, it is possible to havemany variations
of states of analysis and output for any given element. Unlike existing systems,
it is possible for different modeled elements to interact with each other.

Containers may even contain other containers, so it is possible to have nested
sets of cue-lists. Adding feedback control of cues and input, this creates quite
an unlimited set of control capability.

Mapping to Production Elements

Mappings for taking abstract qualities and rendering to production elements

84



may also be implemented in containers. These containers have inputs for ab-
stract qualities coming frommodeled elements and create the necessary trans-
formations to apply the qualities to production elements. Often production
control for basic elements does not have the flexibility to map directly from
the model. Sometimes there is secondary mapping infrastructure whose only
function is to scale continuous data, or quantize data to a specific frame rate
which can be accepted by the control system for a particular element. A con-
tainer can fulfill this role without needing an additional system. Timing, scal-
ing, and even different modes of control (through cue stacks) may be inte-
grated into a single container for this purpose.

Passing Non-traditional Data-types

Because the framework does not have restrictions on the data passed over
ports and connections, it is possible to make nodes that process more complex
inputs, such as text input from users online. This makes it possible to imagine
and create interactions that are not only based on continuous input (floats, in-
tegers, etc..), but also text based, or other inputs. For implementing a system
similar to the JEML structure used in the Sleep No More online experience,
this capability is useful. Elements, cues and triggers may be named.

85



86



Chapter 

Example Mappings and
Applications
In this we’ll detail several live production scenarios and possible representa-
tions of them within this framework. We will start with our two case study
production, Powers and Sleep No More and look at a few other hypothetical
scenarios as well.

. Death and the Powers
An implementation of the Powers mapping systems in this framework is rel-
atively straight forward. The following containers would be created:

• Simon container—with mappings for all of Simon’s emotional state and
outputs containing higher quality abstractions of his performance.

• Mobile systems container—with mappings for aggregated mobile inter-
actions from remote audiences in other cities. This container outputs the
state of the other souls in the system.

• Stage systems mappings— this container takes abstract qualities from
the Simon container and scales them for use in the production systems
on stage. This includes lighting, video and LED interactions.

• Chandelier container— which takes abstract data from Simon, and the

87



remote users to generate control data for systems rendering the visuals
displayed on the Chandelier.

• Operator input container— receiving data from operators, sound and
visuals and routing as input data to the Simon and Remote Audience
containers.

Each container has nodes which implement the mappings required to take in-
put to output in a meaningful way.

. Sleep NoMore
Sleep No More has complex requirements that can only broadly be consid-
ered ”mapping.” To build a systemwith the hyperproduction framework that
recreates the functionality of the story logic and JEML systems is not trivial.

Todo this, we should imagine cue-stack containers to operate like state-machines.
Each cue (or sub-container) representing a location in the world has an inter-
nal mapping which contains constants for text delivered to the user, items in
the room, available actions, media assets, etc... Actions in the roommay utilize
their own cue-stack container if there is logic to their availability. Output from
the internal nodes in a cue feeds the cue selection input for themain stack of lo-
cations. On a cue change or cross-fade, the entire contents of the sub-container
change to new constants, sending new data back to the user. Input and output
can be numbers, text, vectors or just about any other data type. This makes it
possible to imagine a node handling user input in text form.

Creating that number of cues would be incredibly complicated to do by hand
writing definitions. Instead, it would be possible to write a JEML parser which
could read the file and create all the necessary infrastructure to support the
production.

The advantage of designing the system this way: it is possible to generatively
build a world for each user when they log in to the system. Not only is it

88



possible to build these worlds, duplicating state, functionality and everything
else, but it is also possible to create links between the created worlds quite
easily. Again, a connection can be created between any input and output ports
on the system, regardless of howmany sub-containers there are separating the
ports from each-other.

We look forward to the next production requiring this type of complexity.
Although this framework has not yet been tested in this type of use case, it
was designed with these capabilities in mind to be able to handle the most
advanced type of multifaceted production. It should be possible to run a cue-
stack container or sub containers for each member of the audience, dynami-
cally build and destroy mappings based on templates, and create links across
the system to or from any component to any other component, regardless of
how the components were created.

89



90



Chapter 

Performance and Evaluation
It is not simple to come up with an evaluation for a system which has not
yet been battle tested in a large-scale production. Had timing and scheduling
worked out, this systemwould have been employed for Death and the Powers
and several productions slated for summer of 2014. Unfortunately, the sum-
mer productions did not happen andPowers hadproduction challengeswhich
meant time for testing new and un-proven systems was very short.

That said, the Powers Live system is a good example of a completely fresh
approach on a new platform (NodeJS) with some of the architecture and tech-
nical implementation that was later incorporated into the Hyperproduction
framework.

The Powers Live system also gave a good sense of how to work with NodeJS
at scale and in high-pressure production situations. The content versioning
and remote control aspects of the system, allowing us to centrally disable and
enable functionality, roll-back or push new assets and content, allow or disal-
low network connectivity, etc... were heavily utilized when, in the 15 minutes
before the production, telephone calls started arriving saying that a few users
were experiencing crashes of the mobile application.

Ultimately the systemworked incredibly well. Our simulations on the system
supported about 7500 clients connected across 8 processes. The bandwidth on
that system 200Mbit with high CPU usage on the VM guests and host. During
the performance, we sustained about 1000 simultaneous connections across 9

91



cities for the 90 minute production.

The performance of NodeJS on Powers Live made it a good candidate for the
Hyperproduction framework. As well as being extraordinarily easy to inte-
grate with websockets, communications protocols like OSC, and other show
related IO (MIDI, etc...), the asynchronous nature of the platform lent itself
well to the challenge of eschewing traditional frame-rate limitations. Existing
systems in the Opera of the Future group (DPS[44] and all derivatives) use a
set frame-rate for the entire system. Not only do they require a single specific
frame rate, but they use a ”pull” architecture, where outputs are evaluated
each frame by traversing a tree all the way to the inputs. While this integrates
well with video and visuals based systems, it is unsurprisingly quite complex
to use connected to many systems at running different rates.

Since the goal of this framework is to do exactly that, it became necessary to
choose a new architecture. The holy grail of these systems is a ”push” evalua-
tion method where outputs are re-evaluated when input changes. This sort of
system is often complicated to make work well because evaluations may need
to happen incredibly fast. Initially, several tests were conducted to determine
whether this sort of approach was feasible with NodeJS and what overhead
was incurred by having the structure of Nodes, Containers, and connections.

The following performance test was conducted:

• Programmatically create a large number of two input adder nodes

• Connect nodes together in a large tree, with the inputs of each adder
connected to the outputs of another adder.

• On the bottom of the pyramid (adders with unconnected inputs), loop
through the inputs of each adder and change the value as quickly as pos-
sible.

• Count and time the number of changes of the output of the last adder.

This test is shown in figure 8.1.

92



1
2 var ContainerMapNode = require(”./ContainerMapNode.js”);
3 var ComputeModules = require(”./ComputeModules.js”);
4
5 var l = require(”./log.js”);
6 var bb = require(”./benb_utils.js”);
7
8 var myMapping = new ContainerMapNode();
9
10 var triangle_height = 3, total_nodes = Math.pow(2,triangle_height);
11 var unconnectedInputs = []
12
13 for (var i = 0; i < total_nodes-1; i++) {
14 var n = myMapping.createNode(ComputeModules.AddOperation2i1o,i);
15 bb.forEachObjKey(myMapping.getPortsByMapNodeId(n).inputs, function(portName,portId) {
16 unconnectedInputs.push(portId);
17 });
18 if ((unconnectedInputs.length > 0) && (i > 0)) {
19 myMapping.connectByPortId(myMapping.getPortsByMapNodeId(n).outputs.o1, unconnectedInputs.shift());
20 }
21 }
22
23 myMapping.createNode(ComputeModules.ProcessCounter,”counter”);
24 myMapping.connectByNodeIdPortName(0,”o1”,”counter”,”i1”);
25
26 console.log(JSON.stringify(myMapping.getFullMapping(), undefined, 2));
27
28 //console.log(JSON.stringify(myMapping.getCytoscapeElements()));
29
30 l.profile(”1000␣adds”);
31 for (var c = 0; c < 1000; c++) {
32
33 //l.profile(”single add”)
34 for (var i = total_nodes-1; i >= total_nodes/2; i--) {
35 myMapping.setValueByNodeIdPortName(i-1,”i1”,c);
36 myMapping.setValueByNodeIdPortName(i-1,”i2”,c);
37 }
38 var total = myMapping.getValueByNodeIdPortName(0,”o1”);
39
40
41 //console.log(total);
42 if ( total != total_nodes*c ) {
43 console.log(”Ack␣something␣went␣wrong!␣”+total)
44 break;
45 }
46
47 //l.profile(”single add”)
48
49 //l.info(myMapping.getValueByNodeIdPortName(”counter”,”o1”));
50
51
52 }
53 l.profile(”1000␣adds”);

Figure 8.1: Hyperproduction framework adder performance test

93



Setting the tree height gives the number of total adders. For 1000 loops, each
unconnected input is set to a newvalue. This causes evaluations of each branch
in the tree for every leaf. Table 8.1 shows the results of this test and it is possible
to get an idea of howmany nodes are realistic for a given process. These results
are in the best case, the V8 Javascript runtime is able to optimize the adder
node efficiently. For more complex nodes, performance would most likely be
worse.

However from these results, we can see that it is possible to have an output fed
by 128 inputs changing as quickly as possible while maintaining well over 30
frames-per-second at the output node. A single branch evaluation is extraor-
dinarily fast. Typically trees of nodes in mappings are much deeper than they
are wide, so this is also encouraging— we can see that evaluating 10 nodes in
a branch is well under a millisecond.

This is sufficiently performant to run all mappings that have been created by
theOpera of the Future Group in the last 6 years. Mostmappings are on the or-
der of 25-40 total nodes, which would run at 300-600 frames per second in this
framework. Given these results and the new organizational features added,
we look forward to creating much, much larger and more complex mappings.
For extremely large systems that cannot fit on a single process, it would be
possible to run different components in separate processes as well.

Additional work will be conducted in the following months:

• Running a similar test with two isolated trees with separate outputs to
understandwhether performance of the evaluations are correlated to the
number of total nodes in the mapping or only the nodes in the tree

• Quantifying the run time of very long branches

• Testing the performance more complicated data types— such as arrays
and strings

• Testing inter-process communication to see how isolated the computa-

94



Height No.
Adders

Inputs Run
Time
(ms)

All
Eval. (ms)

Branch
Eval. (ms)

FPS All FPS
Branch

1 2 1 34 0.034 0.034 29411.7 29411.7
2 4 2 106 0.106 0.053 9433.9 18867.9
3 8 4 282 0.282 0.070 3546.0 14184.3
4 16 8 702 0.702 0.088 1424.5 11396.0
5 32 16 1680 1.68 0.105 595.2 9523.8
6 64 32 3953 3.953 0.123 252.9 8095.1
7 128 64 9176 9.176 0.143 108.9 6974.7
8 256 128 21031 21.031 0.164 47.5 6086.2
9 512 256 47649 47.649 0.186 20.9 5372.6
10 1024 512 110083 110.083 0.215 9.08 4651.0
Table 8.1: Results of Adder Test conducted on a 2.4GHz Intel quad-core i7 laptop

tion running across processes must be

Even given all of these tests, the best feedback will be obtained by using the
system for a production in a typical scenariowheremapping and show control
are required. Plans are in progress to see this happen throughout the next
academic year.

95



96



Chapter 

Conclusions and FutureWork
Production systems are being innovated at incredible rates. The speed atwhich
new sensing methods, new production elements, and new signal processing
are introduced is staggering. As these new systems are growing popular, more
and more complex control technology is necessary to manage and connect
them together. Timecode and traditonal cuing cannot give us meaningful,
emotional, human experiences. It is my hope to develop the advanced fea-
tures of the hyperproduction system and turn the platform into a tool that
can be adapted and extended as new technology and systems are released.
By creating a system capable of replacing every existing control arrangement
we have used in thus far in Opera of the Future, I hope that we can push the
boundaries of what is possible with live experiences.

The next step in this work will be to test this system on large-scale high stakes
production. There aremanyupcoming opportunities to see this take shape and
understand what modifications need to be made to support flexible rehears-
ing, programming and performing with the system. Our hope to support an
entirely new type of performance, one that specifies new anddifferent involve-
ment of space, time, interaction and emotion. Scoring in these realms opens
the door to many interesting possibilities for experience. Among upcoming
opportunities are a pavilion for the World Expo 2020 in Dubai, two operas in
Boston and the United Arab Emirates, new hyperensemble pieces, and many
other exciting commissions.

It is my intention to continue development on this project as long as it remains

97



a technically groundbreaking complement to our production process. Since it
provides extraordinary new capabilities that have been impossible until now,
I look forward to seeing it grow and become an integral part of our future
work.

98



References
[1] A Toronto Symphony. URL: http://toronto.media.mit.edu (visited on

07/21/2014).
[2] Ableton Live. URL: https://www.ableton.com/en/live/new- in- 9/

(visited on 07/21/2014).
[3] Avid. URL: http://www.avid.com (visited on 07/21/2014).
[4] BlackTrax. URL: http : / / www . cast - soft . com / blacktrax (visited on

07/21/2014).
[5] Benjamin Bloomberg.Death and the Powers SystemsDetailWorkbook. URL:

http : / / web . media . mit . edu / ~benb / statics / POWERS % 20Majestic %
20Documentation%20v2.1.pdf (visited on 07/21/2014).

[6] Antonio Camurri et al. “EyesWeb: Toward Gesture and Affect Recogni-
tion in Interactive Dance and Music Systems”. In: Comput. Music J. 24.1
(Apr. 2000), pp. 57–69. ISSN: 0148-9267. DOI: 10.1162/014892600559182.
URL: http://dx.doi.org/10.1162/014892600559182.

[7] Chamsys MagicQ. URL: https://secure.chamsys.co.uk/magicq (visited
on 07/21/2014).

[8] Chuck Language Documentation. URL: http://chuck.cs.princeton.edu/
doc/language/ (visited on 07/21/2014).

[9] J. Rogers D. Dixon and P. Eggleston. Between Worlds: Report for NESTA
onMIT/Punchdrunk Theatre Sleep NoMore Digital R&DProject. University
of Dundee, University of West England Bristol, 2012.

[10] D’Mitri Digital Audio Platform. URL: http : / / www . meyersound . com /
products/d-mitri/ (visited on 07/21/2014).

99



[11] Digico. URL: http://www.digico.biz (visited on 07/21/2014).
[12] Marc Downie. “Field— aNew Environment forMaking Digital Art”. In:

Comput. Entertain. 6.4 (Dec. 2008), 54:1–54:34. ISSN: 1544-3574. DOI: 10.
1145/1461999.1462006. URL: http://doi.acm.org/10.1145/1461999.
1462006.

[13] Dugan Automixing. URL: http : / / www . protechaudio . com / products /
PDFFiles/DuganMixing.pdf (visited on 07/21/2014).

[14] Einstein on the Beach: LAOpera ProgramNotes. URL: http://www.laopera.
org/documentslao/press/1314/lao.einstein-iw-f-web.pdf (visited on
07/21/2014).

[15] Electronic Theater Controls. URL: http://www.etcconnect.com (visited on
07/21/2014).

[16] Enterprise Location Intelligence. URL: http : / / www . ubisense . net / en/
(visited on 07/21/2014).

[17] Faster than Sound 2010: Spheres and Splinters. URL: http://bot23.com/
2010/11/15/faster-than-sound-2010/ (visited on 07/21/2014).

[18] Rebecca Fiebrink, Perry R. Cook, and Dan Trueman. “Human Model
Evaluation in Interactive SupervisedLearning”. In:Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. CHI ’11. Vancouver,
BC, Canada: ACM, 2011, pp. 147–156. ISBN: 978-1-4503-0228-9. DOI: 10.
1145/1978942.1978965. URL: http://doi.acm.org/10.1145/1978942.
1978965.

[19] Figure 53:QLab. URL: http://figure53.com/qlab/ (visited on 07/21/2014).
[20] MaryHart.The art of ancient Greek theater. LosAngeles, Calif: J. PaulGetty

Museum, 2010. ISBN: 1606060376.
[21] HighEnd Systems. URL: http://www.highend.com/ (visited on 07/21/2014).

100



[22] Andy Hunt, Marcelo M. Wanderley, and Matthew Paradis. “The Im-
portance of Parameter Mapping in Electronic Instrument Design”. In:
Proceedings of the 2002 Conference on New Interfaces for Musical Expres-
sion. NIME ’02. Dublin, Ireland: National University of Singapore, 2002,
pp. 1–6. ISBN: 1-87465365-8. URL: http://dl.acm.org/citation.cfm?
id=1085171.1085207.

[23] John Huntington. Show networks and control systems : formerly control sys-
tems for live entertainment. Brooklyn, N.Y: Zircon Designs Press, 2012.
ISBN: 0615655904.

[24] IntelligentAudioMixing andMastering Technology -MixGenius. URL: http:
//mixgenius.com/ (visited on 07/21/2014).

[25] JRClancy SceneControl 5600. URL: http://www.jrclancy.com/scenecontrol5600.
asp (visited on 07/21/2014).

[26] ElenaNaomi Jessop.Agestural media framework : tools for expressive gesture
recognition and mapping in rehearsal and performance. 2010.

[27] Elena Jessop, Peter A. Torpey, and Benjamin Bloomberg. “Music and
technology in death and the powers”. In: Proc. NIME ’11. 2011, pp. 349–
354.

[28] LCS CueConsole Modular Control Surface User Guide. URL: https://www.
meyersound.com/pdf/products/lcs_series/CueConsole_Brochure.pdf
(visited on 07/21/2014).

[29] R Laban.Mastery of Movement. 4th ed. Northcote House, 1980.
[30] MIDAS. URL: http://www.midasconsoles.com (visited on 07/21/2014).
[31] MIT Media Laboratory, Opera of the Future: Death and the Powers. URL:

http://powers.media.mit.edu (visited on 07/21/2014).
[32] TodMachover. “Hyperinstruments:AComposer’sApproach to the Evo-

lution of Intelligent Musical Instruments”. In: Cyberarts: Exploring the
Arts and Technology (1992). Ed. by L. Jacobson, pp. 67–76.

[33] Tod Machover. Hyperinstruments: A Progress Report. MIT Media Labora-
tory, 1992.

101



[34] MadamButterfly Stalked ByTiMaxTrack TheActors. URL: http://livedesignonline.
com/theatre/madam-butterfly-stalked-timax-track-actors (visited
on 07/21/2014).

[35] JosephA. Paradiso andNeil Gershenfeld. “Musical Applications of Elec-
tric Field Sensing”. In: Computer Music Journal 21 (1997), pp. 69–89.

[36] Philip Glass Ensemble: Artists. URL: http://www.pomegranatearts.com/
project-philip_glass/artists.html (visited on 07/21/2014).

[37] Robert Pinsky. “Death and the Powers: A Robot Pageant”. In: Poetry
(2010), pp. 285–327.

[38] SFX. URL: https://www.stageresearch.com/products/SFX6/SFX6.aspx
(visited on 07/21/2014).

[39] Evert Start. “Direct sound enhancement by Wave Field Synthesis”. PhD
thesis. Delft University, 1997.

[40] Joshua Strickon. “Smoke and Mirrors to Modern Computers: Rethink-
ing the Design and Implementation of Interactive, Location-Based En-
tertainment Experiences”. PhD thesis. Massachusetts Institute of Tech-
nology, 2003.

[41] Studer by Harman. URL: http://www.studer.ch (visited on 07/21/2014).
[42] SuperCollider. URL: http://supercollider.sourceforge.net/ (visited

on 07/21/2014).
[43] Timax Tracker. URL: http://www.outboard.co.uk/pages/timaxtracker.

htm (visited on 07/21/2014).
[44] Peter Alexander Torpey. Disembodied Performance: Abstraction of Repre-

sentation in Live Theater. 2009.
[45] Akito van Troyer. “Enhancing Site-specific Theatre Experience with Re-

mote Partners in Sleep No More”. In: Proceedings of the 2013 ACM In-
ternational Workshop on Immersive Media Experiences. ImmersiveMe ’13.
Barcelona, Spain: ACM, 2013, pp. 17–20. ISBN: 978-1-4503-2402-1. DOI:
10 . 1145 / 2512142 . 2512150. URL: http : / / doi . acm . org / 10 . 1145 /
2512142.2512150.

102



[46] Yamaha Commercial Audio Systems. URL: http : / / www . yamahaca . com/
(visited on 07/21/2014).

103


