
Nervebox:
A Control System for Machines Tat Make Music

Andrew Albert Cavatorta
Submitted to the Program in Media Arts and Sciences, School of Architecture and Planning

in partial fulfllment of the requirements for the degree of Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2010

© Massachusetts Institute of Technology 2010. All rights reserved.

Author May 7, 2010

Certifed

Tod Machover
Professor of Music and Media
MIT Media Lab
Tesis Supervisor

Accepted

Pattie Maes
Chairperson, Departmental Committee on
Graduate Studies
MIT Media Lab

1

Nervebox: A Control System for Machines Tat Make Music
Andrew Cavatorta

Submitted to the Program in Media Arts and Sciences, School of Architecture and Planning
on May 7, 2010 in partial fulfllment of the requirements for the degree of Master of Arts and Sciences

Abstract

Te last 130 years of musical invention are punctuated with fascinating musical instruments that use the electromechanical
actuation to turn various natural phenomena into sound and music. But this history is very sparse compared to analog and
PC-based digital synthesis.

Te development of these electromechanical musical instruments presents a daunting array of technical challenges.
Musical pioneers wishing to develop new electromechanical instruments ofen spend most of their fnite time and
resources solving the same set of problems over and over. Tis difculty inhibits the development of new electromechanical
instruments and ofen detracts from the quality of those that are completed.

As a solution to this problem, I propose Nervebox — a platform of code and basic hardware that encapsulates generalized
solutions to problems encountered repeatedly during the development of electromechanical instruments. Upon its ofcial
release, I hope for Nervebox to help start a small revolution in electromechanical music, much like MAX/MSP and others
have done for PC-based synthesis, and like the abstraction of basic concepts like oscillators and flters has done for analog
electronic synfhesis. Anyone building new electromechanical instruments can start with much of their low-level work
already done. Tis will enable them to focus more on composition and the instruments' various aesthetic dimensions.

Te system is written in Python, JavaScript and Verilog. It is free, generalized, and easily extensible.

Tesis Advisor: Tod Machover, Professor of Music and Media

2

Nervebox: A Control System for Machines Tat Make Music

Tesis Committee

Advisor
Tod Machover
Professor of Music and Media
MIT Media Lab

Reader
Cynthia Breazeal
Associate Professor of Media Arts and Sciences
MIT Media Lab

Reader
Leah Buechley
Assistant Professor of Media Arts and Sciences
MIT Media Lab

Reader
Joe Paradiso
Associate Professor of Media Arts and Science
MIT Media Lab

3

Acknowledgements

I am very thankful to -

Tod Machover for his inspiration and support

Leah Buechley for her practical guidance

Cynthia Breazeal and Joe Paradiso for their patience and inspiration

Pattie Maes for her invaluable support during my application process

Dan Paluska and Jef Leiberman for sharing the details of their spectacular machines

And Marina Porter for more than I can list

4

5

6

Table of Contents
1 Introduction.. 12
2 Electromechanical Musical Instruments... 13

2.1 Defnition... 13
2.2 Selected Historical Examples... 15
2.3 Art, Maker Culture and Electromechanical Music.................................20
2.4 Electromechanical Music vs. Electronic Synthesis.................................. 22

2.4.1 Acoustic Innovation .. 22
2.4.2 Performance: visible creation vs. music from a laptop.................22
2.4.3 Acoustic Richness: [electro]acoustic vs. digital.............................. 22
2.4.4 Contribution: new instruments vs. sofware with new
confgurations.. 23

2.5 Te Barrier.. 23
2.5.1 Example: Absolut Quartet... 23

3 Nervebox... 25
3.1 Te Big Idea.. 25
3.2 Abstractions and Processes: Evolution of Electronic Music..................25
3.3 Nervebox Abstraction... 27

3.3.1 Input Mapper - Te Brum.. 28
3.3.2 Internal Music Representation - NerveOSC................................... 29
3.3.3 Control Network - TCP/IP .. 30
3.3.4 Output Mappers - Te Bellums... 30
3.3.5 Actuation Control - Te Dulla.. 30

3.4 Detail of NerveOSC... 33
3.4.1 Structure.. 33
3.4.2 Address Patterns... 33
3.4.3 Arbitrary Frequencies.. 33
3.4.4 EventIDs.. 34
3.4.5 Timbre... 34

3.5 Timbre and Representation.. 34
3.5.1 Te Negative Defnition.. 34
3.5.2 Physical Analysis.. 34
3.5.3 Perceptual Classifcation... 37
3.5.4 In Electromechanical Instruments... 37
3.5.5 Perceptual Classifcation and Why...39

3.6 Nervebox UI... 39
3.6.1 Mapping Mode... 41

3.6.2 Debug Mode... 41
3.6.3 Go Mode... 42
3.6.4 Example Mapping.. 42

3.7 Implementation — General... 44
3.7.1 Hardware... 44
3.7.2 Operating System... 44
3.7.3 Languages.. 45
3.7.4 Brum Implementation... 45
3.7.5 Bellum Implementation ... 46
3.7.6 Dulla Implementation .. 47
3.7.7 Nervebox UI Implementation.. 49

3.8 Development Process.. 50
3.8.1 Creating New Mappings.. 50
3.8.2 Creating New Pachinko Modules...51
3.8.3 Creating a New Instrument.. 51

4 Evaluation... 55
4.1 Measuring Generality, Expressivity, and Fidelity...................................55
4.2 Te Chandelier... 55

4.2.1 Expressive Dimensions of the Chandelier.......................................56
4.2.2 Extra Credit: Synthetic Expressive Dimensions of the Chandelier
... 58
4.2.3 Expressivity of Nervebox-based Chandelier controller.................59
4.2.4 Fidelity of Nervebox-based Chandelier controller.......................63
.2.5 Conclusion.. 66

4.3 Te Heliphon.. 66
4.3.1 Expressive Dimensions of the Heliphon...66
4.3.2 Extra Credit: Synthetic Expressive Dimensions of the Heliphon.67
4.3.3 Expressivity of Nervebox-based Heliphon controller....................67
4.3.4 Fidelity of the Nervebox-based Heliphon controller.....................68
4.3.5 Conclusion.. 70

5 Conclusion.. 71
6 Future: Openness and Community.. 72
Appendix A: Code and Circuits... 73

A1: example mapping for Chandelier .. 73
A2: defnition.py fle for Chandelier ...74
A3: Generic Nervebox Python code for Bellum.. 75

7

A4: Chandelier-specifc Python code for Bellum.. 77
A5: Verilog code for Chandelier Dulla... 80
A6: Schematic Diagram of Dulla amplifer module...................................... 82

Appendix B: Timbral Descriptors.. 83
References... 85

8

List of Illustrations
Illustration 1: From patent for Elisha Gray's Musical Telegraph, showing an
array of buzzers on top and an array of batteries and primitive oscillators
below.. 14
Illustration 2: Elisha Gray's patent for the "Art of Transmitting Musical
Impressions or Sounds Telegraphically"... 14
Illustration 3: Te alternators of Taddeus Cahill's Telharmonium.................15
Illustration 4: Laurens Hammond's 1934 patent shows how the Hammond
tonewheels and alternators echo designs used in the Telharmonium...............18
Illustration 5: Detail from patent for "Hammond Vibrato Apparatus".............19
Illustration 6: diagram of alternator circuits from 1897 Telharmonium patent
.. 25
Illustration 7: diagram of alternator circuits from 1934 Hammond patent......26
Illustration 8: High-level block diagram from Robert Moog's synthesizer
patent... 26
Illustration 9: Top-level view of Nervebox abstraction....................................... 28
Illustration 10: Detail of Brum... 29
Illustration 11: Black box view of Dulla.. 30
Illustration 12: Detail view of Dulla.. 31
Illustration 13: general-purpose amplifer and H-bridge for Dulla...................32
Illustration 14: structure of MIDI message...33
Illustration 15: Grey's Timbre Space... 38
Illustration 16: Wessel's 2-Dimensional Timbre Space....................................... 38

Illustration 17: Te Nervebox UI... 40
Illustration 18: Example mapping in Nervebox UI... 43
Illustration 19: Pythonn modules of the Brum.. 45
Illustration 20: Python modules of the Bellum.. 47
Illustration 21: Detail of the Dulla... 48
Illustration 22: Nervebox UI's communication cycle.. 49
Illustration 23: Te Nervebox actuation path...52
Illustration 24: example NerveOSC packet for the Chandelier..........................54
Illustration 25: Bellum -> Dulla data format for Chandelier.............................54
Illustration 26: Harmonic Modes and the harmonic series................................ 56
Illustration 27: Intersection of 31-tone equal temperament and frequencies
created with upper harmonics... 57
Illustration 28: A-440 can be played on multiple strings.................................... 59
Illustration 29: all details contributed by user, shown in context......................60
Illustration 30: ... 61
Illustration 31: latency for note-on and note-of events......................................64
Illustration 32: rising latency, showing the slow fooding of the controller......64
Illustration 33: measurement of minimum intervals between note-on events65
Illustration 34: measurement of minimum intervals between note-of events65
Illustration 35: latency for note-on and note-of events......................................69
Illustration 36: measurement of minimum intervals between note-on events69
Illustration 37: measurement of minimum intervals between note-of events69

List of Photos
Photo 1: Te massive alternators of the Telharmonium.....................................17
Photo 2: Pneumatically-actuated violins in an orchestrion................................17
Photo 3: Guitar-bot (2003), Eric Singer and LEMUR... 21
Photo 4: Whirliphon (2005), Ensemble Robot (disclaimer: I designed this
instrument)... 21

Photo 5: Te Überorgan (2000), Tim Hawkinson at MassMoCA [Photo by
Doug Bartow]... 21
Photo 6: Absolut Quartet (2008), Dan Paluska and Jef Lieberman..................21
Photo 7: Te Heliphon... 66

9

List of Figures
Figure 1: Electronic Paths in the Absolut Quartet System..................................24
Figure 2: example mapping.. 46
Figure 3: ... 49

Figure 4: Verilog module for variable-frequency square wave generator.........53
Figure 5: Verilog for pulse-width modifer... 61
Figure 6: Augmented Verilog module "square_waves".......................................62

10

1 Introduction

Tis thesis documents Nervebox, a hardware and sofware platform

providing a general control system for electromechanical musical

instruments.

Since the time of Taddeus Cahill's Telharmonium, musical

experimenters have generally spent more of their time re-solving the

same technical problems than creating music [1]. Tis has had a

detrimental efect on the whole feld of experimental electronic and

electromechanical music in two ways. First, time spent on technical

problems is time not available for musical and aesthetic

experimentation, though there is a small potential overlap. Second, the

difculty of the technical problems has created a barrier to entry for

many potential musical pioneers.

Tis was the state of PC-based sound synthesis before it was

revolutionized by mature sofware like MAX/MSP, Chuck,

Supercollider, cSound, and others. Tese have freed experimental

musicians from needing to each re-invent low-level synthesis before

being able to start making music [2].

I am hopeful that bringing a similarly-enabling platform to the feld of

electromechanical music will catalyze a slow but ever-growing

explosion in new types of music and expression.

An efective platform for developing electromechanical instruments

must include a way to abstract the system's necessary internal

complexity into a set of simpler concepts that combine in powerful

ways. While electromechanical musical instruments vary wildly in

their designs, there are commonalities among nearly all of them that

can be used to simplify the ways we imagine and create them. Such a

system must also be able to represent musical data in a way that is rich

enough to encompass the expressive dimensions of the input devices

and open enough to accommodate the musical subtleties of never-

before-imagined instruments.

Tis abstraction of the elements of electromechanical music, with a

focus on representation, is the subject of this research.

I think of it as a nervous system that brings music into machines.

11

2 Electromechanical Musical Instruments

2.1 Defnition

All musical instruments are cultural artifacts, and can be categorized

into a boundless number of ontologies. For example — musical styles,

tuning systems, note ranges and timbres, cultural origins, or the

mechanics of sound production. Te defnitions of these categories

serve to describe their location in an ontology and diferentiate them

from their ontological neighbors.

As all musical instruments are machines, they can be categorized by

their underlying technologies. It is into this ontological tree that I am

placing my defnition of electromechanical musical instruments.

Defnitions exist for many types of instruments using modern

technologies: electo-acoustic instruments, hybrid digital-acoustic

percussion instruments[3], prepared pianos, etc. I have not found in

the literature a clear general defnition of electromechanical musical

instruments, perhaps because they are ofen taken for granted as a

superset of more specifcally-defned types of instruments. So I will

originate a defnition for the purposes of this thesis.

I am defning electromechanical musical instruments as instruments

that use electromechanical actuation to produce motions that generate

musical signals.

Tese signals may be acoustic, directly generating sound. Tey may be

electronic, made audible through an amplifer and loudspeaker. Or

they may exist in various other media, such as wave energy in water or

resonating strings.

Tis defnition is intentionally broad, but diferent from its ontological

neighbors. Analog or digital synthesizers are not electromechanical

musical instruments because they do not generate their musical signals

using electromechanically-induced motion. Tere is an overlap

between electromechanical musical instruments electro-acoustic

instruments[4]. But electro-acoustic instruments that generate their

musical signals using synthesizers, samples, or recordings do not ft this

defnition of electromechanical musical instruments. Prepared pianos,

on the other hand, are a subset of electromechanical musical

instruments.

2.2 Selected Historical Examples

Elisha Gray is generally credited with inventing the frst

electromechanical musical instrument, the Musical Telegraph, in 1876

[5]. Te Musical Telegraph was a small keyboard instrument which

12

used a series of tuned primitive oscillators to vibrate a series of metallic

bars. In the language of the patent, in which it is called the “Telephonic

Telegraph”, we can see Mr. Gray needing to explain ideas and

abstractions that we can call by single-word names today.

Te patent begins:

“Be it known that I, Elisha Gray, of Chicago, in the county of Cook and
State of Illinois, have invented certain new and useful improvements in
the art of and apparatus for generating and transmitting through and
electric circuit rhythmical impulses, undulations, vibrations, or waves
representing composite tones, musical impressions, or sounds of any
character or quality whatever, and audibly reproducing such impulses,
vibrations, or waves, of which art and apparatus the following is a
specifcation.”

Te Musical Telegraph contained the seeds of the modern synthesizer: a

keyboard, oscillators, and a predecessor of the loudspeaker. It also

contained the seeds of the telephone, for which he famously lost the

patent rights by submitting his patent one hour later than Alexander

Graham Bell's.

13

Illustration 1: From patent for Elisha Gray's Musical
Telegraph, showing an array of buzzers on top and an
array of batteries and primitive oscillators below.

Illustration 2: Elisha Gray's patent for the "Art of
Transmitting Musical Impressions or Sounds
Telegraphically"

Mr. Gray was prescient enough to see the potential for transmitting

music over distances and to multiple receivers. He also fled a patent

for an “Electric Telegraph for Transmitting Musical Tones” [6]. Tis

leveraged the ubiquity of telegraph lines, using them as a transmission

network for music.

Taddeus Cahill extended that concept in 1897 with the completion of

his frst Telharmonium[7], the Mark I. Te Telharmonium, also called

the Dynamophone, leveraged the telephone and telephone network for

music transmission.

Music was played by live musicians on unique and complex keyboards

that were inspired by the consoles of church organs[8]. Pressing the

keyboard keys closed circuits between enormous electromechanical

dynamos and telephone lines. Te music could be heard through the

telephone by asking a telephone operator to connect you to the

Telharmonium.

Te instrument preceded the invention of the electrical amplifer,

requiring a signal generation process which switched a volume of

electrical power unusual for any musical instrument. He describes the

signal generation in his 1895 patent application:

“By my present system, I generate the requisite electrical vibrations at
the central station by means of alternating current dynamos, or

alternators, as we may briefy term them. ... Te musical electrical
vibrations which I thus throw on the line are millions of times more
powerful, measured in watts, than those ordinarily thrown upon the
line by a telephone microphone of the kind commonly used, ...”

Te alternators produced clean, sine-like waves. Te sound was pure

and sweet, but lacked character and timbral variety. Te Telharmonium

could produce more complex timbres by borrowing a technique from

pipe organs. Pipe organ consoles feature a control interface called

organ stops, which open and close the airfow to ranks of pipes which

vary by timbre or octave range. Opening diferent stops will cause any

note pressed on the keyboards to be expressed on diferent ranks of

pipes, thereby producing diferent timbres. Multiple stops can be

opened simultaneously to produce complex combinations of timbres.

14

Illustration 3: Te alternators of Taddeus Cahill's
Telharmonium

Cahill's patent includes a set of sliding drawbars, an afordance enabling

players to add various harmonics to any note played on the

Telharmonium. Te additive synthesis of multiple harmonics is

acoustically similar to the simultaneous sounding of multiple ranks of

organ pipes.

Te Mark I weighed 7 tons. It was followed by the Mark II and Mark

III, which each weighed 200 tons.

Te enormous mass of these instruments echoes the enormity of the

challenges facing early pioneers of electromechanical music. Te

illustrations from the patents remind us that these inventions came

from a time when every component had to made by hand from a

limited palette of materials. Tese economics and the general lack of

knowledge about electricity are enough to explain the sparse

development eforts during the early years of electrical invention.

Tese instruments may seem a bit crude and naïve. But the times were

not naïve mechanically or musically. Tis was the short-lived golden

age of mechanical music, in which the concepts of the player piano and

the barrel organ combined and mutated into the orchestrion — a

pneumatically-actuated whole-orchestra-in-a-box, including piano

strings, organ pipes, woodwind instruments, drums, cymbals, wood

blocks, and more.

Te most sophisticated models contained 3 or 4 full-sized violins,

which were fngered by felted mechanical paddles and bowed by an

ingenious circular horsehair bow. Te speed and pressure of the bow,

the fngering of notes and even vibrato, all of this musical expressivity

was actuated by pneumatically-powered mechanical components. Te

score was encoded in holes punched on a wide paper roll which was

read pneumatically.

We may have seen the development of more sophisticated, electrically-

actuated orchestrions if it were not for the explosion in popularity of

radio in the early 1920s. Te Musical Telegraph, the Telharmonium,

the Phonograph, the orchestrion, and the radio were all attempts to

provide music without the need for musicians. Each had their

drawbacks. But radio was the clear winner by the 1920s [8].

Te mid-20th Century brought the Hammond Organ, which borrowed

many ideas from the Telharmonium. Laurens Hammond's 1934

patent[9] entitled "Electrical Musical Instrument" shows an instrument

featuring racks of spinning tonewheels which power "alternators",

drawbars controlling additive synthesis of harmonics, and complex

custom keyboards inspired by pipe organs.

Unlike previous electromechanical instruments, which were all

commercial fops, Hammond organs were wildly popular. Te

15

16

Massive Music

Photo 1: Te massive alternators of the Telharmonium

Photo 2: Pneumatically-actuated violins in an orchestrion.

Hammond Organ Company produced 31 major electromechanical

models between 1935 and 1974.

Many models included other electromechanical features such as a Leslie

rotating speaker cabinet and vibrato scanner [10]. Te Hammond

vibrato scanner produces a vibrato efect through an impressive

electromechanical method involving a primitive electronic memory

written to via the capacitive coupling of rotating plates.

Te 1960s brought Harry Chamerlin's Mellotron, a keyboard

instrument in which each key triggered playback of samples of

approximately 8 seconds each[11][12]. Tis instrument's sound

generation process seems less physical, as it is essentially a multichannel

tape player connected to a keyboard. But it is interesting as a link

between the golden age of electromechanical instruments and the

present age of music composed of samples.

Te Hammond Organ, Mellotron, and other electromechanical

instruments of the mid-20th century eventually fell out of fashion.

Tey were heavy, delicate, and expensive to develop and maintain. Tey

were also, to some degree, novelty instruments. And new novelties

continued to arrive.

Te arrival of commercial modular synthesizers by R.A. Moog

17

Illustration 4: Laurens Hammond's 1934 patent shows how the
Hammond tonewheels and alternators echo designs used in the
Telharmonium

Company and Buchla & Associates in 1973 introduced a new direction

in keyboard instruments that was more portable and ofered exciting

new sonic frontiers [13]. Te frst commercial digital samplers were

introduced in 1976 and 1979. By the late 1980s, a new sample-based

popular music aesthetic was overtaking the synth-pop of the early- and

mid-1980s. By the late 1990s, PC-based music composition and

performance was providing far more options than any dedicated

sampler or sampling keyboard.

2.3 Art, Maker Culture and Electromechanical Music

Surprisingly, we are entering another age of electromechanical music –

one of greater experimental and creative breadth than any before it.

Tese new instruments are not intended for mass markets. Tey are

unique and individual, emerging from the intersection of sound art,

installation art, robot fetishism, maker culture, and musical innovators

pushing beyond the world of laptop music.

It is misleading to post just a few examples, as there are more new

machines than I can ever keep up with. But here are 4 interesting

examples:

18

Illustration 5: Detail from patent for "Hammond Vibrato Apparatus".

Tim Hawkinson's Überorgan [14] features 11 suspended air bladders

the size of city buses and forces air from them through various devices

and actuated membranes to produce sound and music. Te score is

painted on a very long plastic sheet (at right in Photo 5, below) and

read as the sheet is scrolled by motors across an array of photosensors.

Part of its appeal is the absurdity of it size and its exaggerated

physicality.

LEMUR's Guitar-bot [15] is comprised of 4 identical units which play

together as a single instrument under computer control. Each unit can

pluck a guitar string and mechanically actuate fngering and glissando

along a fretless fngerboard. It does not represent a new way to make

music. But it is fascinating to watch and is clearly informed by a heavy

dose of robot fetishism.

Ensemble Robot's Whirliphon [16] spins 7 corrugated tubes at precisely

controllable speeds to produce 3 octaves of continuous musical notes.

It's interesting because it is the frst playable instrument to create music

in this way. Its unique timbre has been described to me as "a chorus of

angry angels" and "kind of like snifng a whole fstful of magic

markers".

Dan Paluska and Jef Lieberman's Absolut Quartet [17] is comprised of

3 multi-segment instruments. Te most memorable and impressive is

the Ballistic Marimba, which launches rubber balls in parabolic arcs,

landing them on specifc marimba bars at precise times. Tis adds a

unique performative value: the pleasure of tension, expectation and

resolution in both the visual and aural modalities.

2.4 Electromechanical Music vs. Electronic Synthesis

Why would musicians and musical inventors bother to create

electromechanical musical instruments in 2010, when digital samplers

and digital synthesis are so accessible, ubiquitous, easy and

inexpensive? In place of a scientifc explanation, I ofer 4 arguments

from personal observation.

2.4.1 Acoustic Innovation

Electromechanical instruments open the potential to create music in

entirely new ways. Tere are natural phenomena that create sound, but

require the precision control of a machine to make music. To name just

a few: spinning corrugated tubes, polyphonic musical saws,

synchronized water droplets, artifcial larynges, the chamber resonance

of architectural spaces, and the highly-expressive-but-nearly-

impossible-to-play daxophone[].

2.4.2 Performance: visible creation vs. music from a laptop

Digital performances using sequencers or other sofware can face a

19

20

Robot Music

Photo 4: Whirliphon (2005), Ensemble Robot (disclaimer:
I designed this instrument)

Photo 5: Te Überorgan (2000), Tim Hawkinson at
MassMoCA [Photo by Doug Bartow]

Photo 6: Absolut Quartet (2008), Dan Paluska and Jef
Lieberman

Photo 3: Guitar-bot (2003), Eric Singer and LEMUR

serious problem: Te audience cannot see digital music being created.

Tere is no visual causation. Tis can leave an audience feeling

disconnected from the performance. Some performances add light

shows, dancers, live experimental projections, etc. But a feeling that

nothing is “happening” can persist.

In many of the new generation of electromechanical musical

instruments, the audience can see the physical motions that create the

music. Tis can be very compelling, and at its best, downright

wondrous and hypnotic.

Dan Paluska and Jef Lieberman's Absolut Quartet and LEMUR's

Guitar-bot both demonstrate this hypnotic quality very well.

2.4.3 Acoustic Richness: [electro]acoustic vs. digital

Te naturally rich acoustic sounds of the physical world have a

complexity and physicality that many digital sources strive

unsuccessfully to match. Tese rich sounds of the physical world are

full of emotional associations, making them musically accessible and

semiotically numinous.

Te Whirlyphon is an excellent example of this. Much of its unusual

timbre comes from the glassy-sounding interaction of upper

harmonics. Tere are many arguments about which complex sounds

can be reasonably synthesized. But they are moot in this case, as even

high quality speakers cannot reproduce this highly spatialized sound —

including the way in which the geometry of the Doppler efect on the

spinning tubes changes with the listeners' proximity to the instrument.

2.4.4 Contribution: new instruments vs. sofware with new

confgurations

Electromechanical musical instruments remain a relatively unexplored

frontier. Tere is still the opportunity to create profoundly new and

compelling instruments, sounds, music, and performance experiences.

Te excitement created by Tim Hawkinson's Überorgan is among the

best examples of success based on spectacle..

2.5 Te Barrier

Tese are all good reasons to make electromechanical music. So why ,

then, would musicians and musical inventors not want to create

electromechanical musical instruments?

Creating an instrument of expressive quality, as opposed to a sound

efect, can be an arduous undertaking. Te creation of articulate sound

is an art and a science. And it is also technically challenging. Section

2.5.1 shows a real-world example of the problems that are solved over

and over again.

21

Te technical challenge has had a detrimental efect on the whole feld.

It sets a high technical barrier to entry for musical explorers. It limits

the production of high-quality instruments because their creation

requires a high degree of technical and aesthetic skill. And it limits the

quality of the music created, as most of an explorer's fnite time,

attention and ingenuity go into engineering rather than composition.

[1]

2.5.1 Example: Absolut Quartet

Dan Paluska was kind enough to send me a summary of the control

system he and Jef Lieberman developed for the Absolut Quartet. It

makes an excellent example of the set of problems facing creators of

electromechanical musical instruments. Dan explained their control

system to me as a list of electronic paths, as shown below.

22

23

Figure 1: Electronic Paths in the Absolut Quartet System

1 Flash interface receives melody input from user

2 Max/MSP patch receives text packet of notes and times

3a Computer analyzes some and expands into ~2 1/2 minute song using an equation
composition template.

3b MIDI score is appropriately filter for note ranges, allowed speed of note firings(reload time).

3c Pre-delays are added to account for air time of the rubber balls.

4 Computer outputs data as MIDI

5 Doepfer MIDI-to-TTL interface converters MIDI notes into on/off signals

6 Custom buffer board queues TTL signals and routes them

7 Control network routes signals to actuation sites.

8 Custom boards local to each ball shooter, wine glass, or percussion element that take TTL
pulse and do some local control specific to the instrument.

9a Marimba Shooters: a sequence of 4 timed operations which fires and then reloads the
shooter.

9b Wine Glasses: solenoid pull

9c Percussion: solenoid pull with 8 levels of strength for midi volume.

Key to color tags in Listing 1:

mapping input data to an internal musical representation

routing the music data to multiple output devices

mapping the musical data into actuation control

actuation circuitry
Te color tags above show how the tasks of the electronic paths can be abstracted into tasks common to all electromechanical musical
instruments: mapping input data to an internal musical representation, routing the music data to multiple output devices, mapping the
musical data into actuation control, actuation circuitry.

Developing solutions to handle these tasks required commercial data conversion products and multiple custom circuit boards, the invention of
an internal data format (on top of MIDI), custom circuitry to map the musical data to actuation, custom motor controllers, and the solving
of many smaller problems within each task.

3 Nervebox

3.1 Te Big Idea

While electromechanical musical instruments vary wildly in their

designs, there are commonalities among nearly all of them that can be

used to simplify the abstractions by which we imagine them and to

expedite the processes by which we create them.

To that end, I present Nervebox, a hardware and sofware platform, as a

generalized control system for machines that make music.

3.2 Abstractions and Processes: Evolution of Electronic Music

Abstractions matter, intellectually and economically. For instance, the

collective development of higher abstractions in electronics has enabled

an economy of portable ideas and modular components. Shared,

portable ideas are needed to build a culture which supports a

technology. And modular components representing those abstractions

transform the design and development processes, empowering

experimenters and engineers with to build with greater complexity and

speed.

We can see the evolution of abstractions and processes in electronics in

the patents already referenced.

Tough this diagram (Illustration 6) of the Telharmonium's alternators

does contain some symbols for electrical abstractions such as wires and

inductive coils, it is mostly defned in very physical terms: materials,

tolerances, springs, blocks, diameters of wire, numbers of windings.

Cahill could not treat these parts as modular components because

every component had to be made and tested by hand [8].

37 years later, this diagram (Illustration 7) of the Hammond organ's

alternators is more schematic and abstract, focusing more on electrical

concepts and taking most of the materials and components for granted.

Tis level of abstraction describes far greater complexity than the

24

Illustration 6: diagram of alternator circuits from
1897 Telharmonium patent

previous diagram.

41 years later, in 1975, we see the continuing evolution of abstractions

in Robert Moog's patent for his frst commercial modular synthesizer.

Te schematic diagram in Illustration 8 describes the circuitry almost

entirely in modular blocks, high above the level of by-then-cleanly-

abstracted standard electronic components. Once again, this level of

abstraction describes at least one order of magnitude more complexity

than the diagram in the previous patent.

25

Illustration 8: High-level block diagram from Robert Moog's synthesizer
patent

Illustration 7: diagram of alternator circuits from 1934
Hammond patent

It also echoes advances in the design process. Wrapping complex

circuits in reductive abstractions frees engineers and experimenters

from needing to invest their time and ingenuity in lower-level tasks,

such as making precise resistors from scratch, or stable voltage-

controlled oscillators. Portable abstractions such as various types of

oscillators, amplifers, and flters continue to co-evolve with

commercially available standardized components, enabling engineers

and experimenters to think and build at increasing levels of abstraction

and complexity.

A similar evolution has taken place in the feld of digital synthesis. In

1966, when Paul Lansky was beginning to compose music on digital

computers, the very basics of digital synthesis were just being

developed[18]. Making music with digital computers required a

signifcant knowledge of algorithms, music theory, and the workings of

mainframe computers. His work process involved writing instructions

on stacks of punch cards, waiting for his job to write the instructions to

digital tape, and carrying the tape across the street to "play" on another

computer. Composing his frst piece took one and a half years. He was

so surprised and disappointed by the results that he destroyed all

evidence of the piece.

Today, anyone with access to a PC can compose music in real-time with

digital synthesis. No knowledge of algorithms, music theory, or

computer science is necessary. Various music sofware packages such

as SuperCollider, Digital Performer, cSound, and PureData hide these

complexities under the surfaces of high-level abstractions. Tis

simplicity, which brings computer-based composition processes within

the reach of millions, has precipitated a boom in new music and

musical ideas[19].

Electromechanical music technology, by comparison, has not gone

though a similar evolution in the last 50 years. It still lacks the level of

empowering abstraction found in analog and digital synthesis

technologies. One result is that musical explorers working with

electromechanical music must invest signifcant time and ingenuity

solving low-level problems from scratch.

3.3 Nervebox Abstraction

Te Nervebox platform encapsulates the inherent complexity of control

systems for electromechanical music into a set of general abstractions

that can be used to bring music into nearly any electromechanical

musical instruments, musical robots, or sound installations. It is not

limited to any particular type of music, actuation, or sound-producing

natural phenomena.

Illustration 9 shows the Nervebox platform's abstraction of the

26

functions that are common to almost all electromechanical

instruments. Tese are abstracted into 5 components: input mapping,

internal representation, control network, output mapping, and

actuation.

Te names of some of the abstractions are inspired by names of brain

structures: cerebrum, cerebellum and medulla. Te Brum interprets

diverse inputs and abstracts them into a common representation. It

manages the user interface (Nervebox UI), stores mappings and

confgurations, and coordinates the actions of the Bellums. Each

Bellum receives abstracted musical data from the Brum and converts it

into machine control commands appropriate to its instrument. Since

each type of instrument is diferent, each Bellum is confgured

diferently. Tis pushes the various instruments' diferences out to the

periphery of the architecture. Te Dulla is the actuation interface,

where the bytes meet the volts. It controls motors and other actuators.

It also reads data from sensors for closed-loop operations.

3.3.1 Input Mapper - Te Brum

In this system, mappings convert one form of data to another, and ofen

serve musical and aesthetic purposes in the process. Te Nervebox

platform assumes there will be one or more simultaneous streams of

input. Capturing and encoding these streams is the frst function of the

Brum, or input mapper. Diferent stream types are handled by diferent

27

Illustration 9: Top-level view of Nervebox abstraction

modules, making it easily expandable to new input types. Te next

function of the Brum is to convert elements of the incoming data into

musical events and assign them to one or more instruments. Te

output of the Brum is a stream of musical events encoded in a unifed

format that serves as the Nervebox platform's internal musical

representation.

3.3.2 Internal Music Representation - NerveOSC

In all electronic and electromechanical musical instruments, music is

abstracted into an internal data representation that can be processed,

manipulated, mapped and routed. Tis may be analog or digital,

single- or multichannel, serialized or real-time.

MIDI is a great standard and has enabled a revolution in electronic

music. But MIDI's reductiveness and limitations cause many musical

inventors to fnd it necessary to create their own formats. Even when

these formats piggy-back on top of MIDI, they are ofen proprietary,

ad-hoc, time-consuming to create, and not portable.

Te Nervebox platform represents data in a unique favor of the Open

Sound Control format [20], called NerveOSC. I chose OSC over MIDI

because its address patterns and fexible data arrays make possible a

data format which can describe complex musical concepts within the

28

Illustration 10: Detail of Brum

clear semantics of the format, as opposed to the ad-hoc and convoluted

hacks of MIDI. NerveOSC is intended to be able to reasonably

represent all the richness of musical expression created by input devices

and all of the musical and timbral possibilities of any instruments used

as output. Tis is covered in greater detail in section 3.4 - Detail of

NerveOSC.

3.3.3 Control Network - TCP/IP

Most systems require an electronic network to route their inputs and

internal signals to multiple devices or actuators. For example, the

Telharmonium used the telephone network and the Hammond organ

used matrices of wires from the manuals to the tonewheels. NerveOSC

is built on top of OSC, which uses TCP/IP and UDP as its wire-level

protocols. Basing Nervebox's control network around TCP/IP

eliminates the need to create a proprietary wire-level protocol.

3.3.4 Output Mappers - Te Bellums

Tis mapping layer takes NerveOSC data as input and maps it to

machine control commands that drive the electromechanical actuation

that creates music. In doing so, it abstracts the mechanical and

electronic details away from the rest of the system. One Bellum will

exist for each instrument or major component thereof. And separate

code modules will be required by diferent types of instruments (see 3.8

Development Process below).

3.3.5 Actuation Control - Te Dulla

Tis abstraction layer is the fnal stage where the bytes meet the volts

(that drive the machines that make the notes). Here I defne actuation

as the mechanisms that convert machine control signals into musically

vibrating air. Tis could be an electric organ's motorized tone wheels

and speaker, motors spinning corrugated tubes, solenoids striking

resonant metal chimes, or the bellows and pneumatic valves of a church

organ. Te possibilities are boundless. Actuation has 2 components:

the acoustic machinery that vibrates the air and the electromechanical

systems that control that machinery.

29

Illustration 11: Black box view of Dulla

Any attempt to standardize the acoustic machinery that vibrates the air

will be working against the innovative spirit I'm seeking to support and

promote.

But the electronic control of the machinery can be abstracted in this

way: From a gross perspective, the Dulla is a black box that receives

standardized machine commands from the Bellum and produces the

precisely-timed high-current signals that drive the instrument's

actuators. In closed-loop actuation systems, there are also lines of

sensor data running from the instrument back to the black box.

Within that black box are 2 layers. Te frst is an FPGA that receives

machine control commands from the Bellum. Almost all machine

control circuitry is created within the FPGA: signal generators, PWM

sources, H-bridge logic, stepper motor controllers, A/D converters,

quadrature decoders, and more. Compared with microcontrollers,

FPGAs are well suited here because of their ability to perform multiple

time-sensitive tasks literally simultaneously. Compared to discrete

electronic components, FPGAs are compact and very power-efcient.

But most importantly, they enable this platform to use one standard set

of electronic hardware to perform any and all machine control tasks.

And FPGAs are confgured with Verilog or VHDL code, making

complex circuitry as portable and easily reproducible as sofware.

30

Illustration 12: Detail view of Dulla

Te second layer is simply multiple channels of high-current switches

that amplify the low-current output of the FPGAs to the high-current

signals that drive the actuators.

Nervebox presents a standard amplifer circuit and standard H-bridge

circuit, freeing musical experimenters from the need to design their

own.

Illustration 13 shows the schematic diagrams for the amplifer. For

simplicity and ruggedness, I presently use TIP120 NPN bipolar

junction transistors in both designs rather than MOSFETS. As they've

been used only in all-on/all-of modes, heat dissipation has not been a

problem. But in the future I may upgrade to a more mature MOSFET-

based design.

While the development of new instruments will still require new

actuation code to be written, the Dulla handles many underlying

functions and enables standardization of hardware and circuit designs

that are easily portable and quickly reproducible. Also, a future online

library (see section 5) of Verilog modules could help ease and speed

development time.

3.4 Detail of NerveOSC

As mentioned above, this system's internal musical representation is

called NerveOSC. It is a unique favor of the fexible OSC protocol.

OSC supports some features missing from MIDI [21].

31

Illustration 13: general-purpose amplifer and H-bridge for Dulla

3.4.1 Structure

Where a typical MIDI channel voice message has the following 3-byte

structure:

A typical NerveOSC packet has this structure:

device/subsystem [eventID, frequency (Hz), amplitude, timbre data array]

3.4.2 Address Patterns

Using OSC's address pattern feature, NerveOSC can address any

number of uniquely-named devices. And it can address subsystems

within each, such as a specifc string or a group of strings. Tis ofers

far more, and more transparent, address space per event than MIDI's

16 channels.

NerveOSC adds 3 more useful features: arbitrary frequencies, eventIDs,

and timbre data.

3.4.3 Arbitrary Frequencies

Arbitrary frequencies are described in Hz with 16 bits of precision,

making it easy to use any tuning system without employing hacks.

In contrast, MIDI defnes notes as numbers from 0 to 127, with each

explicitly representing a note in 12-Tone Equal Temperament

@A=440Hz. It is possible, at the receiving end of a MIDI message, to

interpret MIDI note numbers in any way desired. But if one is using a

tuning system such as 31-tone equal temperament, MIDI's full 128 note

range barely describes 4 octaves. It would be possible to send other

octave ranges on other MIDI channels, or to accompany every single

note with a another MIDI message, a pitch_bend command that

modifes its frequency. But using a representation system that can

describe any frequency directly and without ad-hoc hacks is much

simpler.

3.4.4 EventIDs

EventIDs are used for mundane but important purposes. Teir main

function is to connect initial events (like pushing a key on a keyboard)

to corresponding update events (like rolling the pitch or mod wheels

while the key is down). In this case, the initial and update events would

carry the same eventID, making them logically connectible

downstream. Tis makes it much easier to describe dynamic tones with

glissando, portamento, tremolo, and changes in timbre. It also helps to

32

Illustration 14: midi message structure

prevent crosstalk between music events that originate from diferent

input devices.

3.4.5 Timbre

Te third new feature of NerveOSC is timbre data. Timbre values are

added to the end of the data array in NerveOSC. Te considerations for

the encoding timbre are summarized in the next section.

3.5 Timbre and Representation

3.5.1 Te Negative Defnition

Timbre is ofen negatively defned, as a sort of musical chaf lef over

afer loudness, pitch and duration have been extracted. For instance,

the American National Standards Institute defnes timbre as "[...] that

attribute of sensation in terms of which a listener can judge that two

sounds having the same loudness and pitch are dissimilar". In the

absence of an authoritative positive defnition, much highly original

research has attempted to characterize timbre from diferent

perspectives .

Tese eforts generally fall into two categories, physical measurements

and perceptual classifcation. Tough much of the research shows that

it is difcult to fully separate the two.

3.5.2 Physical Analysis

In physical terms, timbre can be defned as the change in a sound's

spectra over time. Te complexities of raw sound — each frequency,

phase and amplitude, plus their individual distortions and

aperiodicities — present an unmanageably large data set. Terefore,

much of the work in physical analysis has focused on representing the

perceptually important aspects of timbre within a reduced number of

dimensions[22].

Te fundamental modern work on timbre is J.M. Grey's Timbre Space

[23], which used human subjects to quantify the perceptual diference

between pairs of sounds of various orchestral instruments. Tese

relationships of perceived diference showed very promising correlation

when represented in a 3 dimensional graph of quantitative sound

properties developed by Grey. Tis work is the foundation cited by the

majority of subsequent work on timbre.

Following Grey's initial research, many reductive models parse timbre

into distinctly spectral and temporal aspects. Te two primary spectral

characteristics are a wide vs. narrow distribution of spectral energy and

high vs. low frequency of the barycenter of spectral energy [24].

Temporal aspects are slightly more complex, as they deal with changes

over time. Much research has focused on the attack portion of a

33

34

Illustration 15: Grey's Timbre Space

Dimension I: spectral energy distribution, from broad to narrow

Dimension II: timing of the attack and decay, synchronous to asynchronous

Dimension III: amount of inharmonic sound in the attack, from high to none

Illustration 16: Wessel's 2-Dimensional Timbre Space

BN - Bassoon
C1 - E flat Clarinet
C2 - B flat Bass Clarinet
EH - English Horn
FH - French Horn
FL - Flute
O1 - Oboe
O2 - Oboe (different instrument and player)

S1 - Cello, muted sul ponticello
S2 - Cello
S3 - Cello, muted sul tasto
TM - Muted Trombone
TP - B flat Trumpet
X1 - Saxophone, played mf
X2 - Saxophone, played p
X3 - Soprano Saxophone

Timbre Spaces

sound's envelope, because that period has been shown to play an

inordinately important role in how we identify sounds [25]. Te

primary temporal characteristic used by Grey is whether the high or

low frequencies emerge frst during the attack period.

A highly reductive 2-dimensional timbre space was developed in 1978

by David Wessel [26] for use as a timbre-control surface for synthesis.

Te idea was that by specifying coordinates in a particular timbre

space, one could hear the timbre represented by those coordinates.

Such a 2-dimensional timbre controller brings to mind the "basic

waveform controller"from Hugh LeCaine's 1948 Electronic Sackbut

[27]. Where LeCaine's 2-dimensional timbre controller uses "bright <-

> dark" and "octave <-> non-octave" as its axes, Wessel's timbre space

uses "bright <-> dark" and "more bite <-> less bite". Te term "bite" in

this case refers to a collection of characteristics of a sound's onset time.

In 2004 Geofroy Peeters and others from the Music Perception and

Cognition and Analysis-Synthesis team at Ircam collected timbral

description systems from all available literature and extracted 71

timbral descriptors. Nervebox does not use these 71 timbral

descriptors, but I've listed them in Appendix B because they provide a

sense of the number of quantitative dimensions that afect timbre.

Peeters and company used incremental multiple regression analysis to

reduce the 71 timbral descriptors down to an optimal set of 5

psychoacoustic descriptors:

1. spectral centroid

2. the spectral spread

3. the spectral deviation

4. the efective duration and attack time

5. roughness and fuctuation strength

Tis is interesting as an attempt to incorporate all known timbral

descriptions. But its efectiveness in predicting perceptual timbral

diferences has not yet been tested.

3.5.3 Perceptual Classifcation

All of this research into the physical aspects of timbre can help us better

understand the perceptual aspects. For instance, sounds having a

higher-frequency barycenter of spectral energy are generally said to

sound 'brighter'.

But perceptual classifcation and the creation of useful timbral

description systems are much more difcult. Some interesting attempts

have been made, such as Te ZIPI Music Parameter Description

Language [28] and SeaWave [29]. But timbre, like consonance, seems

to be at least partly a cultural construct [30][19] – making it even more

difcult to fnd an unbiased solid ground on which to build a

35

classifcation system.

Quietly lurking behind most of this work is the subject of identity —

identifying individual musical instruments out of an orchestra or

specifying exact timbres out of the palette of all possible sounds. Carol

L. Krumhansl's research[22] revealed the existence of uniquely-

recognizable perceptual features for certain instruments, such as the

odd-harmonic of a clarinet, the mechanical "bump" of a harpsichord,

coining the term specifcities.

3.5.4 In Electromechanical Instruments

Te requirements of timbral data description in NerveOSC are more

focused. We are controlling physical instruments with natural timbral

dimensions, not synthesizers. For practical purposes, we're interested

in only the aspects of an instrument's timbre which are variable and

controllable via actuation. Te timbral variations of any one

instrument should generally be expressible in a small number of

dimensions. In fact, the timbral parameters of the attack time are

unlikely to vary for any one instrument, according to Dr. Shlomo

Dubnov : “Tis efect, which for time scales shorter than 100 or 200 ms

is beyond the player, is expected to be typical of the particular

instrument or maybe the instrument family.” [25]

3.5.5 Perceptual Classifcation and Nervebox

I'd like to have built the NerveOSC timbral data format on top of the

physical analysis of timbre because of the precision it provides. But I

built it on top of the perceptual classifcation of timbre, because users of

the system are unlikely to have access to the tools or knowledge

necessary for physical analysis.

I believe that any perceptual ontology of timbre will grow unwieldy in

size long before it becomes inclusive and detailed enough to be useful

for this purpose. So Nervebox users are able to defne their own

collection of timbral terms for each instrument. I expect to see terms

with names implying a boundless number of possible classifcation

schemes, for instance: pinkness, maraca, sidetoside, heavenly, those that

belong to the Emperor [31] and rusty.

Users developing a new instrument are responsible for fnding and

naming the timbral variations that can be made via actuation. Users

creating new input mappings will be able to map selected ranges of the

expressive dimensions of input devices to selected ranges of the user-

defned timbre values. Tis is covered in more detail in section 3.8 –

Development Process.

In this way, the timbre data format can represent the expressive

capabilities of nearly any input devices, the timbral capabilities of nearly

36

any experimental instruments, and the mapping of the former onto the

latter. In section 4 I will be evaluating success in this based on tests of

Nervebox's expressivity and fdelity.

3.6 Nervebox UI

Te purpose of Nervebox's user interface (Illustration 17) is to enable

users to create new mappings between streams of musical input such as

MIDI keyboards, composition sofware, network streams, or custom

devices and various instruments. It can also be used to debug

mappings and connections and to test all instruments prior to a

performance.

Te user interface enables users to create new mappings for the Brum

without writing any code or needing to understand the inner working

of the instruments. Tis high level of abstraction greatly speeds and

simplifes the process of composing and performing. I am describing it

here in some detail because improvements in abstraction and process

are much of the motivation behind Nervebox.

3.6.1 Mapping Mode

Mappings are created using a patchbay metaphor in the main area (1).

Right-clicking on the workspace brings up a menu of available modules

(1.a). Clicking a menu item causes a module's interface element to be

created at the click's coordinates. So far I've only written the modules

for mapping MIDI inputs. Modules for OSC and other input formats

will be written in the next version. Modules can be dragged by their

blue top bars (1.b) and deleted by clicking their "x" buttons (1.c).

Te green connector (1.d) at the top of a module is its main inlet. Te

one or more green connectors (1.e) at the bottom of a module are its

outlets. Connections between modules (1.f) can be created by

sequential mouse clicks, causing the outlet of one module to be routed

to the inlet of another. Te connections can be destroyed by clicking on

the connection line itself.

Te green connectors (1.g) on the right side of of the MIDI-to-OSC

modules are timbre inlets, setting timbre values that will be sent to the

Bellums with each NerveOSC packet. Each type of instrument has a

diferent set of timbre inlets, representing each instrument's timbral

dimensions.

Mappings are listed, created, loaded, saved, and deleted in the panel

labeled Manage Mappings (2).

3.6.2 Debug Mode

Te Enable Trace and Enable Debug features greatly simplify the

debugging process by causing the internal behavior of the mapping

37

38

Illustration 17: Te Nervebox UI

process to be shown in the UI.

Te Control Panel (3) in the upper lef corner enables a user to set

global functions for the interface. For instance, the Enable Trace button

is blue, indicating it is in its "true" mode. When Enable Trace == true,

the contents of messages passed between modules are displayed (1.h)

next to the inlet connectors of each module.

Enable Debug causes internal system messages to be displayed in the

System Messages (4) pane.

3.6.3 Go Mode

When preparing for a performance, this interface can be used to show

in real-time which input devices (5) and instruments (6) are connected.

Te next version will show more data about the exact status of each

Bellum, such as whether its Dulla, amplifers, and senors are connected

and responding.

It is also expected that each Bellum will feature built-in test sequences,

allowing users to run thorough checks of each instrument's tuning,

timing, etc., prior to a performance.

3.6.4 Example Mapping

A walk though the fow of a mapping may help clarify what these

mappings can do and how they work.

Te mapping in this example is called "Hammond Chandelier", as

indicated by the label in the upper right and by the highlight in the list

of mappings. It is created for the Chandelier, an instrument envisioned

by Tod Machover which is capable of playing rich and complex

harmonics.

A MIDI-to-OSC module's timbre inlets refect the timbral dimensions

of the selected instrument. In this case, the Chandelier is selected, so

the timbre inlets refect the Chandelier's timbral dimensions: vibrato

depth, vibrato speed, an undertone, and the frst 7 steps of the

harmonic series. Tis mapping enables a player to adjust the

harmonics added to each note played on the keyboard by using controls

on the keyboard that are mapped to diferent MIDI channels. In my

tests I use a keyboard featuring assignable sliders, which I use to mimic

the drawbars of a Hammond organ.

Te Sources pane shows one MIDI source (0) with a green light,

indicating the one MIDI interface that is plugged into the Brum.

A MIDI Source Stream module (1) is set to listen to the MIDI stream

that is present: "/dev/midi1". Tis module parses MIDI messages from

the input stream and adds appropriate eventIDs to each. Its outlet is

connected to the inlet of a MIDI Channel Filter module (2).

39

40

Illustration 18: Example mapping in Nervebox UI

In the MIDI Channel Filter, MIDI messages having a channel value of 0

are routed to the main inlet of a MIDI Command Filter module (3).

Messages having channel values of 1-8 are routed to the timbre inlets of

a MIDI to OSC module (4).

Te MIDI Command Filter module (3) is routing MIDI messages with

command values of "note of" to the main inlet of a MIDI-to-OSC

module (5) and messages with command values of "note on" to the

main inlet of another MIDI-to-OSC module (4).

Messages with command values of "mod wheel" and "pitch bend" are

routed to the timbre inlets of MIDI-to-OSC module (4), enabling the

player to change the depth and speed of the vibrato by rolling the

keyboard's mod wheel and pitch bend wheel.

Te MIDI-to-OSC modules (4, 5) convert incoming MIDI messages to

NerveOSC messages with this format:

device/subsystem [eventID, frequency (Hz), amplitude, {timbre data}]

A packet from MIDI-to-OSC module (4) in this mapping might look

like this:

'/chandelier/freq/' [1, '75.216257354', 100, 127, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Tis music data is sent to the Chandelier and converted into music.

A mapping like Hammond Chandelier can be created in less than 2

minutes. Even mappings controlling complex interactions between

multiple input streams and instruments can be created quickly and

easily using these high-level abstractions.

3.7 Implementation — General

So far, my explanation of Nervebox has been largely conceptual. But I'll

need to explain details of my present implementation to provide

context for the upcoming major sections: Development Process,

Evaluation, and Conclusion.

3.7.1 Hardware

Te Brum and Bellums of Nervebox are built to run on commodity

PCs. I've been using a variety of laptops and netbooks from Dell and

HP. I chose Dell netbooks for their excellent Linux support and

because their low price can help keep Nervebox accessible to other

users. Te Dullas are currently built with Xilinx Spartan 3-AN

development boards.

3.7.2 Operating System

Te Brum and Bellums are built on top of Ubuntu Linux 9.10, and

should be forward-compatible with future versions. I chose Linux

41

because it's easy under Linux to access byte-level I/O from any

peripheral device, such as MIDI and RS-232 interfaces. It is also easy to

set priorities for individual processes — which is important because

music performance sofware must have the highest possible process

priority to ensure the lowest possible latency.

3.7.3 Languages

Te Brum and Bellums are written in Python 2.6.4 and are expected to

be forward-compatible with Python 3.x. I chose Python because of its

ever-growing popularity and its potential accessibility to inexperienced

programmers.

Te circuitry of the various Dullas is defned using Verilog. I chose

Verilog because the only other mature option, VHDL, is frightful to

behold.

Nervebox UI is written purely in JavaScript. I chose Javascript for

Nervebox UI because I prefer for user interfaces to run in a browser.

Te Web paradigm inherently supports multiple users and can be run

instantly from any modern computer without installers and drivers.

3.7.4 Brum Implementation

Te Brum is the switchboard at core of Nervebox. It handles the

connection and disconnection of devices, such as MIDI sources, OSC

42

Illustration 19: Python modules of the Brum

sources, Bellums and browsers. And it manages multiple persistent

channels of communication with each — via raw sockets, UNIX

character devices, and OSC and HTTP over TCP/IP. It stores mappings

and system states; serves and stores data for Nervebox UI; consumes

several sources of confguration data — conf fles, frequency and

keyboard maps, instrument specifcations, and MIDI and OSC input

device specifcations.

One of its more complex functions is the metaprogramming module

called pachinko.py. Tis module converts the text-based mappings into

runnable code. For instance, the example mapping from Illustration 16

is dynamically generated by Nervebox UI and is stored on the server as

the text below.

pachinko.py creates a runnable mapping by instantiating runnable code

for each module defned in the "# modules" section above. It then

confgures the modules using parameters from the "# functions" section

and creates a fow control network based on the fow control implied in

the rules of the "# connections" section.

3.7.5 Bellum Implementation

Te function of the Bellum is to convert incoming NerveOSC messages

into machine control commands, which are sent to the Dulla.

43

Figure 2: example mapping

[# modules
{action:"new", type:"modules", name:"0", param:"MIDI_Source_Stream",
client_x:23, client_y:14},
{action:"new", type:"modules", name:"1", param:"MIDI_Filter_Command",
client_x:27, client_y:251},
{action:"new", type:"modules", name:"2", param:"MIDI_to_OSC",
client_x:55, client_y:321},
{action:"new", type:"modules", name:"3", param:"MIDI_Filter_Channel",
client_x:383, client_y:159},
{action:"new", type:"modules", name:"4", param:"MIDI_to_OSC",
client_x:26, client_y:476},
functions
{action:"setSendOnPitchBend", type:"function", name:"0", param:false},
{action:"setOSCPath", type:"function", name:"4", param:"/chandelier/kill/"},
{action:"setFreqMap", type:"function", name:"4", param:"et31_offset_0_l"},
{action:"setInstrument", type:"function", name:"4", param:"chandelier"},
{action:"setFreqMap", type:"function", name:"2", param:"et31_offset_0_l"},
{action:"setOSCPath", type:"function", name:"2",
param:"/chandelier/freq/"},
{action:"setInstrument", type:"function", name:"2", param:"chandelier"},
{action:"setSendOnModWheel", type:"function", name:"0", param:true},
{action:"setMIDIDevice", type:"function", name:"0",
param:"General_midi"},
{action:"setPath", type:"function", name:"0", param:"/dev/midi1"},
connections
{dest_inlet:0, dest_name:"2", type:"connection", action:"add",
src_name:"1", src_outlet:1},
{dest_inlet:0, dest_name:"3", type:"connection", action:"add",
src_name:"0", src_outlet:0},
{dest_inlet:0, dest_name:"1", type:"connection", action:"add",
src_name:"3", src_outlet:0},
{dest_inlet:1, dest_name:"2", type:"connection", action:"add",
src_name:"1", src_outlet:3},
{dest_inlet:2, dest_name:"2", type:"connection", action:"add",
src_name:"1", src_outlet:6},
{dest_inlet:0, dest_name:"4", type:"connection", action:"add",
src_name:"1", src_outlet:0},
{dest_inlet:3, dest_name:"2", type:"connection", action:"add",
src_name:"3", src_outlet:1},
{dest_inlet:4, dest_name:"2", type:"connection", action:"add",
src_name:"3", src_outlet:2},
{dest_inlet:5, dest_name:"2", type:"connection", action:"add",
src_name:"3", src_outlet:3},
{dest_inlet:6, dest_name:"2", type:"connection", action:"add",
src_name:"3", src_outlet:4},
{dest_inlet:7, dest_name:"2", type:"connection", action:"add",
src_name:"3", src_outlet:5},
{dest_inlet:8, dest_name:"2", type:"connection", action:"add",
src_name:"3", src_outlet:6},
{dest_inlet:9, dest_name:"2", type:"connection", action:"add",
src_name:"3", src_outlet:7},
{dest_inlet:10, dest_name:"2", type:"connection", action:"add",
src_name:"3", src_outlet:8}

]

Each Bellum features a core of generic code that handles all of the

common features. Tese include a socket connection for receiving

NerveOSC messages and 2 unidirectional raw sockets for

communication with the the Brum. It also manages communication

with one or more Dullas via RS-232 ports. Each Bellum also features

code that is specifc to the instrument it controls. See 3.8 Development

for more details.

3.7.6 Dulla Implementation

Te present Dulla implementation is functional. But its inspiration lies

in a design concept that was beyond the scope of this thesis. Here I

44

Illustration 20: Detail of the Dulla

Illustration 21: Python modules of the Bellum

describe the Dulla's inspiration and its present state.

Te Dulla is conceived as an all-purpose PC peripheral for reading data

from virtually any sensors and for controlling virtually any type of

actuation. Tis design is is, in part, a reaction to my frustration with

the exorbitant costs and limited functionality of commercial motor

control products. At its core is an FPGA (Field-Programmable Gate

Array), not a microcontroller. I chose FPGAs because they can operate

in a parallel fashion without encountering clock division problems.

Te Dulla design is conveniently modular, with pre-designed current-

switching circuits to amplify the small signal from the FPGA into high-

power signals for driving actuators. Tese circuits are very simple and

inexpensive because all processing functions occur within the FPGA.

For instance, the pulse-width-modulated signals output by the H-

bridge will be generated by sof PWM circuitry within the FPGA. Te

H-Bridge is just switching power.

Te important result is that users can control their new instruments'

actuators without designing and creating new hardware. Tis removes

a substantial barrier; users with no knowledge of circuit design can

create their own electromechanical musical instruments.

Of course users may create their own circuit modules. But the basic 4

should be enough for most projects: amplifer, H-bridge, digital input,

ADC input.

Te main diference between the current implementation and the

design concept is that the design concept features a mainboard with the

FPGA and 32 slots for small daughter boards. Tese daughter boards

would hold the aforementioned circuit modules.

Te Dulla's mainboard and daughter boards have not yet been designed

and fabricated, as that is beyond the scope of this thesis.

Currently the Dulla exists in the form of Xilinx development boards

and circuits occupying number of breadboards. I have written and

tested Verilog modules for RS-232 communication, packet

accumulation, channel demultiplexing, PWM and signal generation,

and quadrature decoding. And I've breadboarded and tested the

amplifer, H-bridge, and digital input circuits.

I've been using the Xilinx XC3S700AN device from the non-volatile

Spartan 3-AN family. It runs at 50MHz and features 372 general-

purpose I/O pins and 700,000 system gates. Te chip costs about $40

and requires few supporting components.

3.7.7 Nervebox UI Implementation

Tere are 3 main components that make Nervebox UI work: the Brum,

45

the HTTP connections, and the Client.

Te Brum does not serve up the Client like a series of web pages. Te

Client is a persistent, free-standing program, running in the browser.

Te Brum and Client exchange only data, formatted as JSON

(JavaScript Object Notation) [32]. Te Brum pushes data about

Nervebox's confguration and state to the Client. And the Client sends

data about changes to mappings and Client state to the Brum. Figure 3

shows a list of Brum functions called by the Client.

Nervebox UI's HTTP connections do not use the normal HTTP

request/response cycle. Tey use two unidirectional connections, a

receive and a persistent transmit.

Requests are sent from the Client to Apache, the HTTP server, as usual.

Apache is confgured with mod_python, enabling it to run python

scripts as subprocesses of its main process. Incoming HTTP requests

are passed of to a small script, rx.py, which parses requests and passes

them to the Brum via a TCP/IP socket connection. Te Brum does not

return a response to the request at this point. Te Brum returns only a

JSON-encoded "true" for any request; or an error message if an

exception was encountered.

Responses to the request return to the Client via a persistent HTTP

connection, also known as HTTP server push. Tis is maintained

through tx.py, another script that runs as a subprocess of Apache and

connects to the Brum via TCP/IP socket connections.

Te server push channel exists because the server constantly needs to

send data to the client that the client did not request. In HTTP (prior

46

Illustration 22: Nervebox UI's communication cycle

Figure 3: remote script names

getInputs getMapping ping_client
getBellums getMappingNames trace_source
getMidiDevices getCurrentMappingName trace_component
getNoteMaps deleteMapping trace_timbre
getFreqMaps saveMappingAs

saveBlankNewMapping

to HTML5), the client is intended to the Client only when requested. A

nontrivial amount of hacking and fne tuning is required to make server

push work reliably.

Te server push channel is used to send all data. Even data that could

travel in the response to a request from the Client. Tis is done partly

for the simplicity that comes with consistency. But it is also intended to

prevent connection deadlock. Browsers can only keep a limited

number of connections open to any one server. Since the server push

connection is already persistently open, I'm ensuring all other

connections are as short as possible, lessening the chance that the

browser will reach its connection limit.

Te client is written in entirely in JavaScript, with styles defned with

Cascading Style Sheets. It does not use 3rd-party libraries like jQuery,

Dojo, or ext.js. Instead, it uses a framework called mrClean that I wrote

previously and fnished for this project.

mrClean is a framework for creating rich, desktop-like applications that

run inside a browser. It provides core libraries for HTTP

communication, error handling and reporting, saving and restoring

GUI state, drag and drop, skins, event routing, and more. Much of its

functionality is dedicated to desktop-like user interaction. It also

includes a library of constructors for 33 JavaScript object, from foating

dialog boxes to date-manipulating libraries to folder trees.

All of the rich and responsive interactivity you see in Nervebox UI

comes from mrClean.

3.8 Development Process

Again, I'm proposing that Nervebox's value is the way in which it

empowers musical experimenters to create new musical machines more

quickly and easily. Tis section covers the development process on a

practical and detailed level.

3.8.1 Creating New Mappings

Te most common development activity will be the mapping of various

inputs to various instruments, as I expect that each instrument

developed will likely be used for more than one composition or

performance context.

I covered the process of creating mappings in detail in sections 3.6 and

3.6.*. Tese mappings leverage many underlying systems of the Brum

as discussed above — functionality that would otherwise take many

days to code from scratch.

Using the abstractions presented in Nervebox UI, complex mappings

can be created, tested, and debugged within minutes. No coding is

47

required. And robust tools exist to help in debugging.

3.8.2 Creating New Pachinko Modules

Nervebox currently supports 6 types of mapping modules. So far I've

been able to build all if the mappings I've needed using only these. But

future users will inevitably want others, particularly modules for

fltering and routing OSC inputs or raw audio streams.

To create new pachinko modules, new code must be written in

pachinko.py and the Web client fles nervebox.js and app.css. I can

create a new module in under an hour. But new users will face a

daunting learning curve in the metaprogramming of pachinko.py, the

pure-JavaScript GUI architecture of mrClean, and the unusual HTTP

communication technique that connects them. So the development of

new pachinko modules will currently be difcult for users.

A future version of Nervebox UI may include a way for users to create

new pachinko modules without needing to understand the underlying

architecture. A purely graphical method will be included in Nervebox

UI 2.0.

3.8.3 Creating a New Instrument

Unlike the creation of new mappings and new pachinko modules, the

creation of control systems for new instruments requires some

48

Illustration 23: Te Nervebox actuation path

engineering.

Nervebox provides hardware and sofware that greatly expedite the

process of developing control systems for new electromechanical

instruments. But I don't believe the convex hull of all these

instruments' possibilities can be realistically predicted. And any

attempt to limit those possibilities would be working against the

exploratory spirit I'm seeking to support and promote with Nervebox.

Te design of new instruments requires a chain of decisions that starts

at the instrument and works backwards towards the fow of incoming

musical data. I will use the Chandelier as an example of the process of

creating an actuation path.

a. Choose actuation methods

Te FPGA in the Dulla is able to generate almost any type of control

signal for electrically-controlled actuators: stepper and servo motors,

solenoids and electromagnets, electro-pneumatic and electro-hydraulic

valves and more. So users are free to choose any type of actuator that

suits their instrument.

Te Chandelier is designed to use 48 separate electromagnets to excite

48 strings. And it uses 48 brushless DC motors to engage or release

padded levers that can damp the strings. Te electromagnets are driven

by square waves of varying frequencies. And the damper motors are

engaged when a simple DC current is on, and disengaged via spring

return when the DC current is of. Tis makes for 96 channels of

actuation.

b. Choose current-switching circuits

Te function of the current-switching circuits is to amplify the low-

power control signals generated by the output pins of the FPGA into

high-power signals for driving actuators, or to act as a safe electrical

interface between incoming sensor data and input pins of the FPGA.

Te current-switching circuit modules of the Dulla (from section 3.7.6)

should be able to power and control almost any actuators drawing up to

60V @ 8A. So users generally won't need to design their own circuits.

49

Figure 4: Verilog module for variable-frequency square wave generator

module square_waves (
 input clock, // wire from system clock
 input [23:0] period, // 24 wires setting value for square wave period
 output square_wave_pin_out // wire to FPGA output pin
);
 reg [24:0] period_counter = 0; // 25-bit register for period counter
 reg wave_bool = 0; // boolean value sent to pin square_wave_pin_out
 always @(posedge clock) // at the positive edge of every clock cycle
 period_counter <= (period_counter > period*2)?0: period_counter+1;
 // increment register period_counter, reset to 0 when it exceeds period*2
 always @(posedge clock) // at the positive edge of every clock cycle
 wave_bool <= (period_counter > period)?1:0;
 // set register wave_bool to 1 if period_counter > period, otherwise 0
 assign square_wave_pin_out = wave_bool;
 // continuously assign value of wave_bool to square_wave_pin_out

endmodule;

But they will need to create the circuits on circuit boards or

breadboards. Section 6 includes ways future Nervebox versions could

expedite the creation of circuit boards.

Te Chandelier uses the same simple amplifer circuit for all 96 of its

actuators.

c. Write Dulla confguration to produce actuation signals

Te function of the Dulla's FPGA is to convert incoming motor control

commands from the Bellum into signals that control the actuators. Te

Dulla is confgured using Verilog.

I'm aware that FPGAs and Verilog are not part of the current standard

hacker toolkit. Tis is likely to be the most challenging part of the

development process. Nervebox contains a few Verilog modules, such

as an RS-232 receiver, that will help expedite common tasks. And

section 6 covers ways this could be made easier in the future.

In the Chandelier, each of the 48 electromagnets and 48 damper motors

is controlled by the output of a separate pin on the the Xilinx

XC3S700AN. Te signals for the electromagnets are all square waves of

diferent frequencies. Listing 4 shows an example of the Verilog code

from which each variable square wave oscillator is created.

A more complete listing of the Chandelier's Verilog code can be found

in Appendix A.

d. Write Bellum logic to convert music data into actuation

commands

Many of the complex functions of the Bellum are already built into the

platform code:network and RS-232 communications, OSC parsing,

event management, and the formalities of registering with and

unregistering from the Brum. And there is a growing library of musical

logic such as multithreaded classes for vibrato, tremolo, arpeggio, and

the future scheduling of events.

Te task of the users' code is to convert the NerveOSC input into the

machine-control commands consumed by the Dulla. Tis is where the

music meets the machinery. Tis conversion process contains the

musical logic of the instrument, which may be very simple or very

complex.

I'll continue to use the Chandelier as an example for consistency, even if

it is a rather complex example.

Te Chandelier's rich sound is the result of the use of harmonics and a

slow, shallow vibrato. Illustration 21 shows the meaning of the values

in an example packet of NerveOSC.

50

Te OSC address ends in 'freq', indicating that the note value should be

interpreted as a frequency in Hz.

While the vibrato speed and vibrato depth values are both set to 0, the

Chandelier Bellum still uses a baseline vibrato. So a single, sustained

note event arriving as a packet of NerveOSC is converted into a

constant stream of changing frequencies sent to the Dulla until the

Bellum receives a NerveOSC packet with a matching eventId and an

address of 'chandelier/kill/'.

Te harmonics array has non-zero entries for the second and sixth

harmonics, indicating that additional notes are to be sounded

concurrently with the fundamental frequency. Tese notes have

amplitude values of 64/128 and 32/128, adjusting for zero-based

counting. Like the fundamental note, each of these harmonics will also

be converted by the vibrato process into a stream of ever-changing

frequencies.

51

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0 0 0 0 0 1 0 0 1 1 1 0 1 1 1 0 1 1 1 1 1 0 0 1

red bits encode the id of the target string, in this case string 1
blue bits encode the period of the string in 50MHz clock cycles, in this case 28409 cycles, or a
frequency of 440Hz.

Illustration 24: Bellum -> Dulla data format for Chandelier

'/chandelier/freq/' [1, '75.216257354', 100, 0, 0, 0, 63, 0, 0, 0, 31, 0, 0]

address eventId note amplitude

vibrato

speed

vibrato

depth harmonics

Illustration 25: example NerveOSC packet for the Chandelier

Te user must also decide on the data format to be sent from the

Bellum to the Dulla. For instance, data is sent from the Chandelier's

Bellum to its Dulla is in the format shown in Illustration 24.

Te standard Bellum code includes functions to simplify the process of

encoding binary data for the Dulla.

See Appendix A for the Python code that performs these operations.

52

4 Evaluation

4.1 Measuring Generality, Expressivity, and Fidelity

Te initial goals of Nervebox will be satisfed if it provides a platform

encapsulating the complex technical problems encountered in the

development of electromechanical musical instruments behind a set of

high-level abstractions that can be combined to control almost any such

instrument. I label this ability to control many diferent types of

instruments the generality of Nervebox.

I evaluated the generality of Nervebox by using it as a platform upon

which to build control systems for 2 very diferent electromechanical

musical instruments — the Chandelier and Ensemble Robot's

Heliphon. I then tested these systems to determine their fdelity and

expressivity.

I am considering any control system's fdelity to be a measurement of

its ability to reproduce the intentions of the composer or player to the

best or its instrument's ability. Put more simply, the fdelity is the

measure of the correctness of a control system, the inverse of the

measure of its errors or artifacts.

And I am considering a control system's expressivity to be a

measurement of its ability to defne and exploit the full expressive range

of the instrument it is controlling — frequency range, dynamics,

timbres, textures, and specifcities. Extra credit: adding new,

compound expressivities that are not naturally inherent to the

instrument, such as the additive harmonics of the Hammond

Chandelier mapping in Illustration 16 and section 3.6.4.

4.2 Te Chandelier

I've already used the Chandelier in earlier examples. For this section,

I'll provide a more more thorough description of the instrument and

the implementation of its controller.

Tod Machover's group has built 3 diferent versions of the Chandelier.

Te frst one was was built by Mike Fabio and was the subject of his

2007 thesis Te Chandelier: An Exploration in Robotic Instrument

Design. Tis Chandelier was an instrument featuring 4 groups of 4

strings, each group being actuated in a diferent way.

Te second version is commonly referred to as the Chandelier Testbed.

It is the embodiment of a long series of prototypes developed in the

process of exploring functional and musical possibilities for the fnal

version. Te Chandelier Testbed is a large steel Unistrut frame

53

featuring 32 piano strings tuned in 31-tone equal temperament,

actuated into vibration by powerful electromagnets. Electric guitar

pickups are used to capture and amplify the sounds of the Chandelier.

Te third version is commonly referred to as the Real Chandelier. Tis

is the full-scale 48-string instrument that will be used as a dramatic set

piece and musical instrument in Tod Machover's upcoming opera

Death and the Powers.

My control system was designed to control the third version of the

Chandelier. But my tests have been performed using the second

version, as the third and fnal version is currently still in production. I

refer to the Chandelier Testbed as simple the Chandelier hereafer.

4.2.1 Expressive Dimensions of the Chandelier

Tonal Range

Te tonal range of the Chandelier starts at 27.5Hz, also known as

double pedal A. Tis note is near the bottom of the human hearing

range. Determination of the upper limit of its range has been musically

unimportant, as its range extends beyond the upper limit of the human

hearing range.

Te Chandelier's 32 strings are tuned in 31-tone equal temperament,

their fundamentals covering the range from 27.5Hz to 55Hz. Tese

notes are sounded by using magnetic pulses from the electromagnets to

set the strings resonating at their fundamental frequencies. Because

54

Illustration 26: Intersection of 31-tone equal temperament and frequencies created with upper harmonics

we're driving them with electromagnets, we can also sound each string

at frequencies from that string's upper harmonic modes. So each string

can produce a range of notes, with frequencies corresponding to the

harmonic series, originating with each strings' fundamental frequency.

Te notes in each string's harmonic series do not necessarily

correspond to notes in any equal tempered temperament. Illustration

26 shows a model of notes producible by the Chandelier's 48 strings,

calculated up to each string's 32nd harmonic.

Te horizontal scale denotes frequency. Te circles indicate the notes

that can be produced. Te vertical scale corresponds to steps in each

note's harmonic series. So the top row of green notes shows the

fundamentals, or frst harmonics, starting at 27.5Hz. Te next row

down shows the notes produced by each string's second harmonic,

which lie an octave above the fundamentals. Te third row shows the

third harmonic, 1.5 octaves above the fundamentals. Each note-circle's

color indicates how in- or out-of-tune it is compared to 31-tone equal

temperament. 5 colors of green are used, corresponding to the number

of cents (1200ths of an octave) each note's frequency deviates from its

nearest match in 31-tone equal temperament. Bright green shows a

perfect match. Te darkest green show a deviation of 4 cents. White

circles have a deviation of 5 or more cents. A diference of 6 cents or

less is considered to be imperceptible by most humans [33]. So this

illustration shows that upper harmonics can be used to create more-

than-full coverage of the notes in 31-tone equal temperament.

Timbre and Specifcities

Te electromagnetically-driven strings of the Chandelier feature very

little timbral variation. Slight shades of upper- and sub-harmonics can

be introduced by changing the placement of the electromagnet along

the length of the string, thereby changing its location relative the

string's nodes and anti-nodes. But the dominant sound from each

string is a simple, sine-like wave.

Tese electromagnetically-driven strings have one, very interesting

55

Illustration 27: Harmonic Modes and the harmonic series

specifcity — a throbbing tremolo that increases with the amplitude of

the string's vibration. Tis happens because the tension on a string

increases with its displacement, thus increasing the frequencies of the

resonant modes of the string, and temporarily decreasing the resonant

coupling between the string and electromagnet. Tis slow oscillation

occurs as a string with low-amplitude gains resonant coupling with the

electromagnet, then gains energy and increases amplitude, then

increases its natural resonant frequency and loses resonant coupling

then becomes a string with a low amplitude, restarting the cycle.

Dynamics

I defne the Chandelier strings' amplitude as the ratio between a string's

length and it's maximum displacement while resonating. Te strings of

the Chandelier can be played in a continuous dynamic range from zero

displacement up to the point where they reach a physical limit to their

displacement, such as the limit of physical clearance, the limited power

of the electromagnets, or aforementioned tremolo specifcity. In the

current Chandelier setup, the maximum amplitude is around 2%, at

which point the vibrating strings strike the electromagnets. Tis

dynamic range, from 0% to 2%, provides more than enough dynamic

range for purposes of musical expressivity.

4.2.2 Extra Credit: Synthetic Expressive Dimensions of the

Chandelier

A good controller should be able to add some additional expressive

dimensions that are not inherent to the physical structure of the

instrument. I call these synthetic expressive dimensions.

As mentioned above, the Chandelier's strings tend to sounds like

simple, sine-like waves. Tis sound is pure, but musically dull. I've

found 3 synthetic expressive dimensions that greatly enrich the sound

of the Chandelier.

Slow Vibrato

Driving a string with electromagnetic pulses that are slightly out of

phase with the string's resonance will cause rich harmonics to bloom in

the string's sound. And efective way to keep the pulses continually out

of phase with the string is to slowly and shallowly change the frequency

of the pulses. Te diference in frequencies must remain within a safe

56

Illustration 28: A-440 can be played on multiple strings.

band that is shallow enough that it does not interfere with the resonant

coupling of the pulses and the string. Slowly changing the frequency up

and down within this safe band — efectively a long, shallow vibrato —

is an efective way to add ringing harmonics and produce a richer

sound.

Multiple Strings per Note

One efect of the Chandelier's complex tonal space (Illustration 28) is

that notes from above the frst harmonic can be played on multiple

strings. For instance, Illustration 26 shows how an A-440 can be played

on the 16th harmonic of string 1, the 15th harmonic of string 4, the

14th harmonic of string 7, and so on.

Tese notes all ring at slightly diferent frequencies very close to 440Hz,

as is refected by the range of colors representing them. Sounding all of

them at the same time creates a lush sonic fabric full of meshing and

un-meshing phases.

Harmonics

One more synthetic expressive dimension that can enrich the sound of

the Chandelier is the use of carefully controlled additional harmonics

— as is done with pipe organs and Hammond organs.

57

Illustration 29: all details contributed by user, shown in
context

4.2.3 Expressivity of Nervebox-based Chandelier controller

Here we test the Nervebox-based controller's ability to exploit and

control all of the Chandelier's expressive dimensions.

Illustration 29 shows, in context, the 5 components of a Nervebox-

based controller.

a) Dulla: selection (and assembly) of current switching circuit modules

b) Dulla: custom FPGA confguration written in Verilog

c) Bellum: defnition.py (instrument defnition fle)

d) Bellum: custom instrument behavior written in Python

e) Brum/Nervebox UI: mapping created with Nervebox UI

Tis is how the Nervebox platform is confgured to exploit and control

all of the Chandelier's expressive dimensions.

Tonal Range

Te Chandelier's tonal range is encoded in the Chandelier Bellum's

defnition.py fle, which is summarized in Appendix A2. Te fle

contains a list, freqs_l, of 991 frequencies (31 tones * 31 harmonics)

found in the tonal space shown in Illustration 26. Tese 991

frequencies appear again in a structure called strings, which groups the

frequencies by the strings that can play them.

Te custom instrument behavior written for the Chandelier Bellum

contains a class called TonalStructure which maps the notes of

58

Figure 6: Augmented Verilog module "square_waves"

/* variable frequency square wave generator module */
module square_waves (

input clock, // wire from system clock
input [23:0] period, // 24 wires setting value for square wave period
// 24 wires setting value for square wave duty cycle

 input [23:0] duty_cycle,
output square_wave_pin_out // wire to FPGA output pin

);
reg [24:0] period_counter = 0; // 25-bit register for period counter
reg wave_bool = 0; // boolean value sent to pin square_wave_pin_out
always @(posedge clock) // at the positive edge of every clock cycle

period_counter <= (period_counter > period*2)?0:
period_counter+1;

// increment register period_counter, reset to 0 when it exceeds
period*2
always @(posedge clock) // at the positive edge of every clock cycle

wave_bool <= (period_counter > duty_cycle)?1:0;
// set register wave_bool to 1 if period_counter > period,

otherwise 0
assign square_wave_pin_out = wave_bool;
// continuously assign value of wave_bool to square_wave_pin_out
endmodule;

Figure 5: Verilog for pulse-width modulator

/* pulse-width modulation module */

module PWM(
input clock,// wire from system clock
input [7:0] PWM_in, // 8 wires setting value for duty cycle
output PWM_out // wire to FPGA output pin

);
reg [8:0] PWM_accumulator; // 9-bit register for accumulating PWM cycles
always @(posedge clock) // at the positive edge of every clock cycle

PWM_accumulator <= PWM_accumulator[7:0] + PWM_in;
// continuously assign value of 9th bit of PWM_accumulator to PWM_out

assign PWM_out = PWM_accumulator[8];
endmodule;

incoming OSC messages to the 991 defned notes of the Chandelier.

In this way, an arbitrary number of octaves of the Chandelier's unusual

tonal space can be easily mapped.

Timbre and Specifcities

As mentioned above, the electromagnetically-driven strings of the

Chandelier ofer very little timbral variation. Its natural tremolo varies

with the string's amplitude and can therefor be controlled via the

dynamics.

Dynamics

My current implementation of the Chandelier controller did not

control the Chandelier's dynamics when I started writing this section.

Tis is because the Chandelier was underpowered during much of its

development. And the focus was on producing the largest string

amplitudes possible for the available current. Here I describe how this

was added for purposes of evaluation.

Te dynamics can be controlled very directly by varying the strength of

the magnetic pulses that drive the string. Tis can be done very simply

by adding a pulse-width modulator module to each oscillator.

But high-frequency PWM signals could have complex interactions with

the electromagnet, which is a large solenoid. And a low-frequency

PWM could disrupt the sensitive rhythms of the audio-frequency

signals that set the string resonating.

I chose a simpler solution - modifying the duty cycle of the slow, audio-

59

Illustration 30: Macro pulse-width modulation

V
a

lu
e

 o
f

w
a

ve
_b

o
o

l
re

g
is

te
r

V
a

lu
e

 o
f

p
e

ri
o

d
_

co
u

n
te

r
re

g
is

te
r

ve
ct

o
r

Time
(clock cycles)

Time
(clock cycles)

duty_cycle

Period x 2

V
a

lu
e

 o
f w

a
ve

_
b

o
o

l
re

g
is

te
r

V
a

lu
e

 o
f

p
e

ri
o

d
_

co
u

n
te

r
re

g
is

te
r

ve
ct

o
r

Time
(clock cycles)

Time
(clock cycles)

Period

Period x 2

frequency square waves that drive the electromagnets. Te square

waves originally had a 50% duty cycle. Duty cycles lower than 50% will

impart less energy to the string, changing the amplitude.

Illustration 30 shows how the audio-frequency pulse widths were

modulated by adding one new wire vector, duty_cycle, to the current

square_waves module in the FPGA. Listing 6 shows the code that

generates the new circuit.

Figure 6 below shows a new version of the Verilog module

square_waves (Appendix A5) augmented to use a variable duty cycle.

Te wire vector duty_cycle is printed in red, to show where changes

have been made.

60

Illustration 31: latency for note-on and note-of events

Illustration 32: rising latency, showing the slow fooding of the controller

So only a very small change was needed to enable the current

Chandelier controller to exploit and control the Chandelier's natural

dynamic range.

Slow Vibrato

Te creation of a slow vibrato requires updating 2 separate fles.

Te custom instrument behavior written for the Chandelier Bellum

contains a class called Vibr. Tis class calculates a slow, global vibrato

that can be applied to all current notes, thereby driving the strings out

of phase. Details of the Vibr class can be seen in Appendix A4.

Te Chandelier's defnition.py fle (Appendix A2), contains a list

called inlets_l, which defnes the elements of the timbral data array.

Te frst 2 elements are vibrato_speed and vibrato_depth. Teir entry

in inlets_l causes them to show up as mappable timbres for the

Chandelier in Nervebox UI (as seen in Illustration 16) and also to

occupy the frst 2 positions in the timbral data array of NerveOSC

packages addressed to the Chandelier's Bellum.

Values for vibrato_speed and vibrato_depth received by the Chandelier

Bellum will change the parameters of the Vibr class and accordingly

alter the speed and depth of the vibrato.

Multiple Strings

Te aforementioned TonalStructure class (Appendix A4) in the

Chandelier Bellum maps the frequencies of notes in incoming

NerveOSC packets to the complex tonal space of the Chandelier. It

took only a few lines of code to modify it to return all matches, on all

strings, within a certain number of cents.

Harmonics

Te addition of Hammond Organ-like harmonics is achieved in 3 steps.

First, the values "-1 octave", "+ 3/2 octave", "+ 1 octave", "+ 5/2 octave",

"+ 2 octaves", "+ 9/4 octaves", "+ 7/2 octaves", and "+ 3 octaves" are

added to inlets_l in defnition.py. Tis causes them to become

mappable timbres in Nervebox UI (see Illustration 16).

Second, a mapping is created that assigns values to the new timbre

parameters.

Tird, the parseOSC function in the Chandelier Bellum's custom

instrument behavior is extended to create and play new musically

appropriate notes for each mapped harmonic. See the parseOSC

function in Appendix A4.

61

4.2.4 Fidelity of Nervebox-based Chandelier controller

To measure the fdelity of the Chandelier controller, I measured its

errors, latency, and the limits of its throughput.

I performed these tests on a Dell Inspiron 1525 laptop with 2GB of

RAM and a 1.66GHz Intel Core2 Duo processor. Te laptop was

running Ubuntu 9.10 and Python 2.6.4.

Te test harness for these measurements records the time, in

microseconds, when MIDI events frst enter the Brum and when they

leave the Bellum via its serial port. I would have preferred to take

measurements from the very end of the chain, from the Dulla's current-

62

Illustration 34: measurement of minimum intervals between note-of events

Illustration 33: measurement of minimum intervals between note-on events

switching modules. But I did not have the means with which to sync

the microsecond precision of processor-based measurements with any

time measurements of the current-switching side of the Dulla.

Nonetheless, these timing measurements span the components of the

Chandelier controller that do the complex processing and heavy lifing.

First I measured the total end-to-end latency of events. Illustration 29

shows the distribution of latency in 200 note-on and 200 note-of

events. Te note-of events took considerably less time than the note-

on events. Tis is expected, as the note-on events require the Bellum to

to scan the Chandelier's tonal space multiple times for each event and

each harmonic. Illustration 29 shows this disparity by displaying these

latencies sorted from high to low. Te mean latency for note-on events

is 8921 microseconds and the mean latency for note-of events is 2448

microseconds. Te mean latency for both note-on and note-of events

is is the one that afects performance, since they occur in pairs. Tis

value is 5680 microseconds, which I consider to be comfortably small.

Next I measured the maximum end-to-end throughput. I did this by

adding a function to the test harness that generates MIDI notes slightly

faster than the Chandelier controller can process them. Illustration 30

shows how the latency of a stream of 300 events slowly increases when

MIDI notes are entering the system at a rate slightly higher than the

maximum throughput. Te slow increase in latency demonstrates that

the controller is saturated with events during the testing period. Te

rate at which events emerge from the other end of the stream is a good

measure if the maximum throughput.

Te throughputs for note-on and note-of events were noticeably

diferent in early testing. So I created new tests that show the two

patterns separately.

Illustration 33 shows the intervals between 300 sequential note-on

events. Te mean interval value is 5309 microseconds. Tis

63

Photo 7: Te Heliphon

64

Illustration 36: measurement of minimum intervals between note-on events

Illustration 37: measurement of minimum intervals between note-of events

Illustration 35: latency for note-on and note-of events

corresponds to a throughput of 188 events per second.

Illustration 34 shows the intervals between 300 sequential note-of

events. Te mean interval value is 10634µs. Tis corresponds to a

throughput of 94 events per second.

Te test harness measuring the input and output of the system also

scanned for dropped packets, incorrect ordering, and incorrect values.

Te total count for each of these types of errors was zero.

4.2.5 Conclusion

Te system latency is acceptably low — especially for a controller that

must perform so many tonal calculations for every note.

Te throughput is surprisingly low. Te two note-on and note-of

values average out to about ~141 events per second. Tis is fne for the

Chandelier, which has a very slow attack time.

It is surprising that the throughput for note-of events is lower than that

for note-on events, as they require fewer calculations.

An error rate of zero, even when the controller is saturated with

messages, is a pleasant surprise. Tough it is clear that if the input rate

exceeds the maximum throughput for too long, then bufers

somewhere in the chain will overfow and packets will be lost. I'm not

interested in measuring this threshold, as the important rule is to

prevent the input rate from exceeding the maximum throughput.

4.3 Te Heliphon

Te Heliphon (see Photo 8) is a simple electromechanical musical

instrument developed by Ensemble Robot. It features 25 tuned metal

bars that are struck by 25 linear solenoid actuators. Te Heliphon is far

simpler than the Chandelier, both musically and mechanically.

4.3.1 Expressive Dimensions of the Heliphon

Tonal Range

Te Heliphon plays 25 discreet, unbendable notes, from G3 to G5.

Timbre and Specifcities

Te only timbral dimension I've been able to identify in the Heliphon is

a certain plinkiness that increases with the amplitude. Tis is caused by

an increase in the duration of contact between the bar and the solenoid

rod.

Dynamics

Te Heliphon has a small dynamic range which can be accessed by

charging a bar's solenoid for diferent periods of time. Tis causes the

solenoid rod to strike the bar at diferent velocities. Te efective range

65

is small. If the charge period is lower than ~20ms, the solenoid fails to

reach the bar. If the charge period is greater than ~55ms, the rod

connects with the bar for too long, damping it and creating an

inharmonic timbre.

4.3.2 Extra Credit: Synthetic Expressive Dimensions of the Heliphon

Te Heliphon has one interesting dimension — speed. Te instrument

was built to play faster than any instrument in a Balinese Gamelan. It

can play the same note up to 8 times per second. And the speed at

which it can play sequences of diferent notes is limited only by this

~125ms return time for each note.

Trill

To exploit the Heliphon's speed, I've created a synthetic expressive

dimension that I call trill. Trill is a term for several similar efects —

single repeating notes, 2-note trills, and arpeggios.

Trill has 4 parameters — speed, depth, direction and contour.

Tere is no minimum speed required by the instrument. But it is not

practical for the trill's top speed to exceed the instrument's top speed.

Trill depth can range from a single note to an arpeggio of all active note

to an arpeggio of all active notes plus an extrapolation thereof. Trill

direction denotes the tonal direction of an arpeggio. And trill contour

denotes whether the trill increases or decreases over time.

4.3.3 Expressivity of Nervebox-based Heliphon controller

As the Heliphon is a simple instrument, the evaluation of its

expressivity is simpler than that of the Chandelier.

Tonal Range

Nervebox can exploit and control the tonal range from G3 to G5 in 12-

tone equal temperament without any special code or mapping. Te list

of available frequencies are simply added to the Heliphon's

defnition.py fle.

Timbre and Specifcities

Tis instrument's one timbral dimension is linked to dynamics, and not

independently controllable.

Dynamics

Once the range of valid solenoid charge durations had been measured,

it was a simple matter to map the amplitude values of incoming

NerveOSC packets to the solenoid charge durations in Bellum. Te

solenoid charge durations are passed to the FPGA, which handles the

charge and discharge of the solenoids.

Corresponding note-of events are automatically generated for each

66

note-on, with the delay in between based on amplitude values. So

incoming note-of events are ignored.

Trill

Adding the trill dimension and its 4 parameters required adding

"trill_speed", "trill_depth", "trill_direction" and "trill_contour" to the

inlets_l list in the Heliphon's defnition.py fle. Tis made these timbral

values available for mapping within Nervebox UI.

Custom code for the Bellum was added to parse these values from the

timbral data array and pass them to a multithreaded class called Triller,

with produces all of the trill efects listed in 4.2.2.

Te extrapolation of a scale, which occurs when trill_depth is set to its

maximum value, is achieved simply by using notes from an octave

above or below to double each note.

4.3.4 Fidelity of the Nervebox-based Heliphon controller

I measured the errors, latency, and throughput of the Heliphon

controller using the same experimental setup that was used for the

previous Chandelier test.

Te Heliphon controller is diferent from the Chandelier controller in

that it uses a diferent mapping in the Brum, diferent custom code in

its Bellum, a diferent FPGA confguration, and a diferent defnition.py

fle.

Te custom code in the Bellum is much simpler than that of the

Chandelier. Its tonal mapping is a simple one-to-one list, as is its

amplitude mapping. Its only non-trivial feature is the Triller class,

which is much simpler and far less computationally expensive than the

Chandelier's Vibr class.

I measured the total end-to-end latency of events. Illustration 33 shows

the results, ordered by latency values. Te simplicity of the Heliphon's

behavior is refected in the very low latency shown in the tests. Te

mean end-to-end latency of the Heliphon controller is only 2107

microseconds.

Next I measured the maximum end-to-end throughput using the same

fooding technique used with the Chandelier. Note-on events emerged

from the Bellum with mean intervals of 975 microseconds, as shown in

Illustration 36.

Te results for note-of events were similar, with a mean of 1100

microseconds.

Te average of the mean intervals for note-on and note-of events is

1037.5 microseconds, which corresponds to a throughput of 963 events

67

per second.

Once again, the test harness scanned for dropped packets, incorrect

ordering, and incorrect values. Te total count for each of these types

of errors was zero.

4.3.5 Conclusion

A controller built with the Nervebox platform can easily exploit and

control all of the expressive parameters of the Heliphon.

Te systems latency is imperceptibly low. And again no errors were

found during testing.

Te throughput of 963 events per second is plenty for even a timing-

sensitive instrument like the Heliphon.

To judge whether 963 events per second this is a good value, we can

compare it to the nominal maximum value for MIDI transfers. MIDI's

hardware transport has a nominal maxim throughput of 1042 messages

per second.

So this controller's end-to-end throughput is nearly as high as data

fowing unprocessed through a MIDI cable. And these NerveOSC

events carry more musical data than MIDI messages.

68

5 Conclusion

Te abstractions presented by the Nervebox platform seem to be well

placed.

Using the Nervebox platform, I was able to relatively easily build

control systems for two very diferent electromechanical musical

instruments. Aspects the the development process that were common

to all electromechanical instruments were neatly abstracted behind

generalized sofware and hardware. Tese include the gritty details of

input mapping, internal music representation, the control network,

output mapping, actuation, and a user interface.

Development time was spent only on the unique aspects of the

instruments. And the Nervebox-based controllers were able to exploit

and control all of each instrument's expressive dimensions.

Te current implementation could use improvement. Te throughput

for even complex musical processing should run at a speed that can

keep up with precise music.

My personal experience as a user of Nervebox, rather than as a

developer, was full of pleasant surprises. Te Nervebox UI enabled me

to create mappings in minutes that before had taken a day or more of

hand-coding to write.

But I discovered that the idea of FPGAs is more appealing than the

reality. Verilog is a powerful and elegant way to express the idea of a

complex and time-sensitive machine. But the FPGAs themselves, from

both major manufacturers, are full of strange quirks that can only be

learned through experience.

Still, I found the process of developing control circuits with an FPGA

faster and easier than with integrated circuits and discrete components

— if only because I could test and iterate designs continuously without

needing to buy or spec parts.

Of course, the most important test of Nervebox's usefulness will

happen if and when other musical experimenters use it to build

controllers for their own instruments.

69

6 Future: Openness and Community

It will take more than new technologies and abstractions to create a

new boom in electromechanical music. It will take a community.

Tere are many individuals and small groups making

electromechanical instruments. Tese instruments, ideas and

technologies are evolving separately in isolation, like animals of the

Galapagos Islands.

I hope that by building a website around an open-source version of

Nervebox, I can help create a community of these far-fung groups and

individuals.

Visitors will be able to download the Python, Verilog and Javascript

code, as well as circuit board layouts in various popular formats such as

DFX and PDF.

More importantly, visitors will be able to share their own modular code

and circuits, and their machines, music, and inspirations.

It is my hope that the feld of electromechanical music can fnally enjoy

the type of vibrant community already enjoyed by the felds of digital

and analog synthesis.

70

Appendix A: Code and Circuits
A1: example mapping for Chandelier

[
modules
{action:"new", type:"modules", name:"0",
param:"MIDI_Source_Stream", client_x:23, client_y:14},
{action:"new", type:"modules", name:"1",
param:"MIDI_Filter_Command", client_x:27, client_y:251},
{action:"new", type:"modules", name:"2", param:"MIDI_to_OSC",
client_x:55, client_y:321},
{action:"new", type:"modules", name:"3",
param:"MIDI_Filter_Channel", client_x:383, client_y:159},
{action:"new", type:"modules", name:"4", param:"MIDI_to_OSC",
client_x:26, client_y:476},
functions
{action:"setSendOnPitchBend", type:"function", name:"0", param:false},
{action:"setOSCPath", type:"function", name:"4",
param:"/chandelier/kill/"},
{action:"setFreqMap", type:"function", name:"4",
param:"et31_ofset_0_l"},
{action:"setInstrument", type:"function", name:"4", param:"chandelier"},
{action:"setFreqMap", type:"function", name:"2",
param:"et31_ofset_0_l"},
{action:"setOSCPath", type:"function", name:"2",
param:"/chandelier/freq/"},
{action:"setInstrument", type:"function", name:"2", param:"chandelier"},
{action:"setSendOnModWheel", type:"function", name:"0", param:true},
{action:"setMIDIDevice", type:"function", name:"0",
param:"General_midi"},
{action:"setPath", type:"function", name:"0", param:"/dev/midi1"},
connections
{dest_inlet:0, dest_name:"2", type:"connection", action:"add",
src_name:"1", src_outlet:1},

{dest_inlet:0, dest_name:"3", type:"connection", action:"add",
src_name:"0", src_outlet:0},
{dest_inlet:0, dest_name:"1", type:"connection", action:"add",
src_name:"3", src_outlet:0},
{dest_inlet:1, dest_name:"2", type:"connection", action:"add",
src_name:"1", src_outlet:3},
{dest_inlet:2, dest_name:"2", type:"connection", action:"add",
src_name:"1", src_outlet:6},
{dest_inlet:0, dest_name:"4", type:"connection", action:"add",
src_name:"1", src_outlet:0},
{dest_inlet:3, dest_name:"2", type:"connection", action:"add",
src_name:"3", src_outlet:1},
{dest_inlet:4, dest_name:"2", type:"connection", action:"add",
src_name:"3", src_outlet:2},
{dest_inlet:5, dest_name:"2", type:"connection", action:"add",
src_name:"3", src_outlet:3},
{dest_inlet:6, dest_name:"2", type:"connection", action:"add",
src_name:"3", src_outlet:4},
{dest_inlet:7, dest_name:"2", type:"connection", action:"add",
src_name:"3", src_outlet:5},
{dest_inlet:8, dest_name:"2", type:"connection", action:"add",
src_name:"3", src_outlet:6},
{dest_inlet:9, dest_name:"2", type:"connection", action:"add",
src_name:"3", src_outlet:7},
{dest_inlet:10, dest_name:"2", type:"connection", action:"add",
src_name:"3", src_outlet:8}
]

71

A2: defnition.py fle for Chandelier

Red ellipses (...) indicate truncations in this 1081-line fle.

defnition={
 "name":"chandelier",
 "present_b":False,
 "network":False,
 "inlets_l":[
 "vibrato_speed",
 "vibrato_depth",
 "-1 octave",
 "+ 3/2 octave",
 "+ 1 octave",
 "+ 5/2 octave",
 "+ 2 octaves",
 "+ 9/4 octaves",
 "+ 7/2 octaves",
 "+ 3 octaves"
],
 "paths_l":[
 "/chandelier/freq/",
 "/chandelier/string/1",
 "/chandelier/string/2",

 ...

 "/chandelier/string/31",
 "/chandelier/kill/",
 "/chandelier/test/",
],
 "tuning":["equal_temperament", 31.0, 8.1757989156],
 "freqs_l":[
 ["27.5"],
 ["28.12"],

 ["28.76"],

 ...

 ["1721.08"],
],
 "strings":{
 "00":[
"27.5","55","82.5","110","137.5","165","192.5","220","247.5","275","302.5","
330","357.5","385","412.5","440","467.5","495","522.5","550","577.5","605",
"632.5","660","687.5","715","742.5","770","797.5","825","852.5","880"],
 "01":[
"28.12","56.24","84.37","112.49","140.61","168.73","196.85","224.97","253.
1","281.22","309.34","337.46","365.58","393.71","421.83","449.95","478.07
","506.19","534.31","562.44","590.56","618.68","646.8","674.92","703.05","
731.17","759.29","787.41","815.53","843.65","871.78","899.9"],
 "02":[
"28.76","57.52","86.27","115.03","143.79","172.55","201.3","230.06","258.8
2","287.58","316.33","345.09","373.85","402.61","431.37","460.12","488.88
","517.64","546.4","575.15","603.91","632.67","661.43","690.18","718.94","
747.7","776.46","805.22","833.97","862.73","891.49","920.25"],

 "31":[
"53.78","107.57","161.35","215.14","268.92","322.7","376.49","430.27","48
4.05","537.84","591.62","645.41","699.19","752.97","806.76","860.54","914
.33","968.11","1021.89","1075.68","1129.46","1183.25","1237.03","1290.81
","1344.6","1398.38","1452.16","1505.95","1559.73","1613.52","1667.3","1
721.08"],
 },
}

72

A3: Generic Nervebox Python code for Bellum

import sys
import osc
import time
import json
import math
import copy
import threading
import ConfgParser

try:
 sys.path.index('/opt/nervebox')
except ValueError: # if nervebox is NOT in the path
 sys.path.append('/opt/nervebox')
from bellums import bellum_network
from bellums import bellum_serialPort

import defnition

confg = ConfgParser.ConfgParser()
confg.read(['/opt/nervebox/nervebox.cfg'])
BRUM_IP = confg.get('network','BRUM_IP')
BROKER_PORT = int(confg.get('network','BROKER_PORT'))
trace_enable = False
freqs_l = defnition.defnition["freqs_l"]
name_str = defnition.defnition["name"]

connections_d = None # global stub, instantiated in registerBellum
serial_port = bellum_serialPort.SerialPort()
serial_port.connect()

class EventManager:
 def __init__(self):

 self.events_d = {}
 self.lock = threading.Event()
 def add(self, event_d):
 self.lock.wait()
 self.events_d[event_d["event_id"]] = event_d
 def remove(self, event_int):
 self.lock.wait()
 del self.events_d[event_int]
 def get(self, event_int):
 self.lock.wait()
 if self.events_d.has_key(event_int):
 return self.events_d[event_int]
 else:
 return None
 def getAllKeys(self):
 self.lock.wait()
 return self.events_d.keys()

eventmanager = EventManager()

def brumListener(msg_j):
 msg_l = json.loads(msg_j)
 src_str = msg_l[0]
 action_str = msg_l[1]
 data = msg_l[2]
 if src_str == "system":
 if action_str == "trace_enable":
 global trace_enable
 trace_enable = data

def sendSerialData(binaryWord_str):
 if serial_port.connected:
 bwLen_int = len(binaryWord_str)
 if bwLen_int not in [8,14,18,24,25,30,35,40,44,48,52,56,60,64]:

73

 print "Error in makeSerialPackets, invalid length for
binaryWord_str:", bwLen_int
 return
 if bwLen_int == 8:
 stufByteLength_int = 0
 elif bwLen_int <= 14:
 stufByteLength_int = 1
 elif bwLen_int <= 24:
 stufByteLength_int = 2
 elif bwLen_int <= 40:
 stufByteLength_int = 3
 else:
 stufByteLength_int = 4
 payloadLength_int = 8 - stufByteLength_int
 packets_l = []
 packetNumber_int = 0
 while len(binaryWord_str) > 0:
 byteStuf_str = dec2bin(packetNumber_int, stufByteLength_int) #
packet ordinal
 payload_str = binaryWord_str[0:payloadLength_int] # segment of
binary word
 binaryWord_str = binaryWord_str[payloadLength_int:] # truncate
binary word
 packetNumber_int += 1 # increment packet ordinal
 packet_int = int(byteStuf_str + payload_str, 2) # combine binary
strings and convert into base-10 value
 packet_chr = chr(packet_int)
 # packets_l.append(packet_int)
 serial_port.send(packet_chr)
 else:
 print "serial port not connected"

def dec2bin(n, fll):
 bStr = ''
 while n > 0:

 bStr = str(n % 2) + bStr
 n = n >> 1
 return bStr.zfll(fll)

def registerBellum():
 global name_str
 global connections_d
 connections_d = bellum_network.init(BRUM_IP, BROKER_PORT,
brumListener)
 connections_j = json.dumps(
 {"cmd":"register","data":{"name":name_str,
"server":connections_d["server"]["port"],
"client":connections_d["client"]["port"],
"oscServer":connections_d["oscServer"]["port"]}}
)
 connections_d["client"]["thread"].send(connections_j)

class Scheduler(threading.Tread):
 def __init__(self):
 threading.Tread.__init__(self)
 self.queue_l = []
 def run(self):
 while True:
 self.timestamp = time.time() # create timestamp for NOW
 for evt_ord in range(len(self.queue_l)): # loop through all event ints
in queue
 try:
 evt = self.queue_l[evt_ord] # get reference to event
 if evt["timestamp"] < self.timestamp: # if event's timestamp is
earlier than NOW timestamp
 schedule_lock.set()
 executeOSC(evt["osc_data_d"])# send midi event
 schedule_lock.clear()
 self.queue_l.pop(evt_ord)# delete event
 except Exception as e:

74

 print "exception in main.Scheduler", e.args
 time.sleep(0.001)
 def add(self, osc_data_d, delay):
 timestamp = time.time() + delay
 self.queue_l.append(
 {
 "timestamp":timestamp,
 "osc_data_d":osc_data_d,
 "delay":delay
 }
)

schedule_lock = threading.Event()
registerBellum()

A4: Chandelier-specifc Python code for Bellum

FPGAClock = 50000000
vibrato_rate = 64.0 # this default rate can be overwritten by MIDI
values from a keyboard mod wheel
vibrato_depth = 6 # in cents

class TonalStructure():
 intervalSearchOrder=[
 "tonic",
 "octave",
 "ffh",
 "majorthird",
 "minorseventh",
 "majorsecond",
 "tritone",

 "minorsixth",
 "majorseventh",
 "minorsecond",
 "minorthird",
 "fourth",
 "majorsixth",
]
 intervalToHarmonic={
 "tonic":[1],
 "octave":[2, 4, 8, 16, 32],
 "ffh":[3, 6, 12, 24],
 "majorthird":[5, 10, 20],
 "minorseventh":[7, 14, 28, 29],
 "majorsecond":[9, 18],
 "tritone":[11, 22, 23],
 "minorsixth":[13, 26, 25],
 "majorseventh":[15, 30, 31],
 "minorsecond":[17],
 "minorthird":[19],
 "fourth":[21],
 "majorsixth":[27],
 }
 def __init__(self):
 pass
 def calcCentsDif(self, freq_lo_foat, freq_hi_foat):
 cents = 1200 * math.log(freq_lo_foat/freq_hi_foat) / math.log(2);
 return cents
 def freqMatch(self, freq_foat, tolerance_int):
 stringNames_l = defnition.defnition["strings"].keys()
 stringNames_l.sort()
 stringFreq_l = []
 for intervalName in self.intervalSearchOrder:# loop through
preferred intervals in order
 harmonics_l = self.intervalToHarmonic[intervalName]
 for h in harmonics_l: # loop through harmonic numbers, in order of

75

preferred intervals
 for stringName_str in stringNames_l: # loop through each string
 freqs_l = defnition.defnition["strings"][stringName_str]
 ch_freq = foat(freqs_l[h-1])
 cents = self.calcCentsDif(ch_freq, freq_foat)
 if abs(cents) < tolerance_int:
 stringFreq_l.append([stringName_str, ch_freq])
 return stringFreq_l

tonalstructure = TonalStructure()

class _Vibr(threading.Tread):
 def __init__(self, depth):
 threading.Tread.__init__(self)
 self.depth = depth # vibrato depth, measured in cents
 def run(self):
 global vibrato_rate
 vibrato_increment_f = 0
 while 1:
 vibrato_increment_f = vibrato_increment_f + (vibrato_rate/512)
 vibrato_coefcient = math.sin(vibrato_increment_f)
 # get list of current frequencies from eventmanager
 eventmanager.lock.set()
 eventKeys_l = eventmanager.getAllKeys()
 eventmanager.lock.clear()
 for eventKey in eventKeys_l:
 eventmanager.lock.set()
 evt = eventmanager.get(eventKey)
 eventmanager.lock.clear()
 if evt != None: # if event exists. it might not if delete immediately
before get()
 stringFreq_l = evt["freqs_l"]
 for sf_l in stringFreq_l:
 _freq = sf_l[1] if vibrato_rate == 0 else
self.vibrato_calculation(sf_l[1], vibrato_coefcient)

 bWord_str = makeBinaryWord(sf_l[0], str(_freq))
 sendSerialData(bWord_str)
 time.sleep(.02)
 def vibrato_calculation(self, freq, vibrato_coefcient):
 exponent = vibrato_coefcient * (foat(self.depth) / foat(1200)) #
there are 1200 cents per octave
 vFreq = foat(freq) * foat(pow(2, exponent))
 return vFreq

_vibr = _Vibr(vibrato_depth)
_vibr.start()

def parseOSC(*raw):
 global trace_enable
 osc_data_l = raw[0]
 event_d = {
 "osc_addr":osc_data_l[0],
 "event_id":osc_data_l[2],
 "freq":osc_data_l[3],
 "amplitude":osc_data_l[4] if len(osc_data_l) > 5 else "",
 "vibrato_speed":int(osc_data_l[5]) if len(osc_data_l) > 5 else 0,
 "vibrato_depth":int(osc_data_l[6]) if len(osc_data_l) > 6 else 0,
 "-1 octave":int(osc_data_l[7]) if len(osc_data_l) > 7 else 0,
 "+ 3/2 octave":int(osc_data_l[8]) if len(osc_data_l) > 8 else 0,
 "+ 1 octave":int(osc_data_l[9]) if len(osc_data_l) > 9 else 0,
 "+ 5/2 octave":int(osc_data_l[10]) if len(osc_data_l) > 10 else 0,
 "+ 2 octaves":int(osc_data_l[11]) if len(osc_data_l) > 11 else 0,
 "+ 9/4 octaves":int(osc_data_l[12]) if len(osc_data_l) > 12 else 0,
 "+ 7/2 octaves":int(osc_data_l[13]) if len(osc_data_l) > 13 else 0,
 "+ 3 octaves":int(osc_data_l[14]) if len(osc_data_l) > 14 else 0
 }
 if event_d["osc_addr"] == "/chandelier/freq/":
 freq = foat(event_d["freq"]) # convert freq string to freq foat
 event_d["freqs_l"] = [] #
 sf_l = tonalstructure.freqMatch(freq, 5)

76

 if len(sf_l) > 0:
 event_d["freqs_l"].extend(sf_l)
 if event_d["-1 octave"] != 0:
 sf_l = tonalstructure.freqMatch((freq / 2), 5)
 if len(sf_l) > 0:
 event_d["freqs_l"].extend(sf_l)
 if event_d["+ 3/2 octave"] != 0:
 sf_l = tonalstructure.freqMatch((freq * (3/2)), 5)
 if len(sf_l) > 0:
 event_d["freqs_l"].extend(sf_l)
 if event_d["+ 1 octave"] != 0:
 sf_l = tonalstructure.freqMatch((freq * 2), 5)
 if len(sf_l) > 0:
 event_d["freqs_l"].extend(sf_l)
 if event_d["+ 5/2 octave"] != 0:
 sf_l = tonalstructure.freqMatch((freq * 3), 5)
 if len(sf_l) > 0:
 event_d["freqs_l"].extend(sf_l)
 if event_d["+ 2 octaves"] != 0:
 sf_l = tonalstructure.freqMatch((freq * 4), 5)
 if len(sf_l) > 0:
 event_d["freqs_l"].extend(sf_l)
 if event_d["+ 9/4 octaves"] != 0:
 sf_l = tonalstructure.freqMatch((freq * 5), 5)
 if len(sf_l) > 0:
 event_d["freqs_l"].extend(sf_l)
 if event_d["+ 7/2 octaves"] != 0:
 sf_l = tonalstructure.freqMatch((freq * 6), 5)
 if len(sf_l) > 0:
 event_d["freqs_l"].extend(sf_l)
 if event_d["+ 3 octaves"] != 0:
 sf_l = tonalstructure.freqMatch((freq * 8), 5)
 if len(sf_l) > 0:
 event_d["freqs_l"].extend(sf_l)
 eventmanager.lock.set()

 eventmanager.add(event_d)
 eventmanager.lock.clear()
 if event_d["osc_addr"] == "/chandelier/kill/":
 eventmanager.lock.set()
 e_d = eventmanager.get(event_d["event_id"])
 eventmanager.remove(event_d["event_id"])
 eventmanager.lock.clear()
 if e_d == None:
 print "parseOSC /kill no event found"
 return
 f_2l = e_d['freqs_l']
 for f_l in f_2l:
 stringId = f_l[0]
 bWord_str = makeBinaryWord(stringId, "0")
 sendSerialData(bWord_str)

def makeBinaryWord(ch_str, f_str):
 """
 000 sssss (stringId)
 001 sff (stringId, freq)
 010 fff (freq)
 011 fff (freq)
 100 fff (freq)
 101 fff (freq)
 """
 stringId_b_str = dec2bin(int(ch_str)+1, 6)
 if foat(f_str) == 0:
 period_b_str = "000000000000000000000000"
 else:
 period_int = int((FPGAClock)/foat(f_str))
 period_b_str = dec2bin(period_int, 24)
 word_b_str = stringId_b_str + period_b_str
 return word_b_str

77

def OSCBind():
 """ associate all paths in defnition with mapper function """
 for path_str in defnition.defnition["paths_l"]:
 connections_d["oscServer"]["thread"].bind(parseOSC, path_str)

OSCBind()

A5: Verilog code for Chandelier Dulla

/* declare main module */
module chandelier(

input clock,
input RxD,
output square_wave_pin_01,
output square_wave_pin_02,
output square_wave_pin_03,
...
output square_wave_pin_48,

);

/* create 48 register vectors to hold period data*/
parameter periodBitWidth = 23;
reg [periodBitWidth:0] period_01;
reg [periodBitWidth:0] period_02;
reg [periodBitWidth:0] period_03;
...
reg [periodBitWidth:0] period_48;

/* create register vector longpacket to accumulate bits from RS-232
deserializer */
reg [39:0] longpacket = 0;

/* create 48 variable square wave oscillators */

square_waves CHAN01(clock, square_wave_pin_01, period_01);
square_waves CHAN02(clock, square_wave_pin_02, period_02);
square_waves CHAN03(clock, square_wave_pin_03, period_03);
...
square_waves CHAN31(clock, square_wave_pin_48, period_48);

/* create RS-232 deserializer */
wire RxD_data_ready;
wire [7:0] RxD_data;
async_receiver deserializer(.clock(clock), .RxD(RxD),
.RxD_data_ready(RxD_data_ready), .RxD_data(RxD_data));

/* sort incoming packets and store in register vector longpacket */
always @(posedge clock) if(RxD_data_ready)

begin

/* sort which packet in 8-byte sequence */

case(RxD_data[7:5])

3'b000: longpacket[39:35] <= RxD_data[4:0];
3'b001: longpacket[34:30] <= RxD_data[4:0];
3'b010: longpacket[29:25] <= RxD_data[4:0];
3'b011: longpacket[24:20] <= RxD_data[4:0];
3'b100: longpacket[19:15] <= RxD_data[4:0];
3'b101: longpacket[14:10] <= RxD_data[4:0];
3'b110: longpacket[09:05] <= RxD_data[4:0];
3'b111:
begin
 longpacket[04:00] <= RxD_data[4:0];

/* register vector longpacket is full */

78

/* sort which string id */
case(longpacket[38:33])
/* copy period bits to appropriate period register vector */
6'b000000:period_01 <= longpacket[23:0];
6'b000001:period_02 <= longpacket[23:0];
6'b000010:period_03 <= longpacket[23:0];
...

6'b101111:period_48 <= longpacket[23:0];
endcase
end
endcase
end

endmodule

/* variable frequency square wave generator module */
module square_waves (

nput clock, // wire from system clock
input [23:0] period, // 24 wires setting value for square wave

period
output square_wave_pin_out // wire to FPGA output pin

);
reg [24:0] period_counter = 0; // 25-bit register for period counter
reg wave_bool = 0; // boolean value sent to pin square_wave_pin_out
always @(posedge clock) // at the positive edge of every clock cycle

period_counter <= (period_counter > period*2)?0:
period_counter+1;

// increment register period_counter, reset to 0 when it exceeds
period*2
always @(posedge clock) // at the positive edge of every clock cycle

wave_bool <= (period_counter > period)?1:0;
// set register wave_bool to 1 if period_counter > period,

otherwise 0
assign square_wave_pin_out = wave_bool;
// continuously assign value of wave_bool to square_wave_pin_out

endmodule;

79

A6: Schematic Diagram of Dulla amplifer module

80

Appendix B: Timbral Descriptors

Table 1 Harmonic descriptors I (from Peeters [00])
spectrum :
energy
spec Centroid (global mean spec)
spec.Centroid (global mean spec)
spec variation

harmonic :
spec energy
spec centroid
spec std
spec deviation (of the harmonic computed from the global mean
spectrum)
spec slope
mean of the instantaneous energy
spec centroid computed on the vector composed of the maximum
amplitude [lin] of cgsmax each harmonic over time
spec centroid computed on the vector composed of the mean amplitude
[lin] of each cgsmoy harmonic over time
spec centroid computed on the vector composed of the rms amplitude
[lin] of each cgsrms harmonic over time
mean of the instantaneous spec centroid [amp lin, freq lin]
mean of the instantaneous spec centroid [amp dB, freq lin]
mean of the instantaneous spec centroid [amp lin, freq log]
mean of the instantaneous spec centroid [amp dB, freq log]
spectral std computed on the vector composed of the maximum
amplitude [lin] of each harmonic over time
spectral std computed on the vector composed of the mean amplitude
[lin] of each harmonic over time
spectral std computed on the vector composed of the rms amplitude

[lin] of each harmonic over time
mean of the instantaneous spec std [amp lin, freq lin]
mean of the instantaneous spec std [amp dB, freq lin]
mean of the instantaneous spec std [amp lin, freq log]
mean of the instantaneous spec std [amp dB, freq log]

Table 2. Harmonic descriptors II (from Peeters [00])
spectral std computed on the vector composed of the maximum of
amplitude [dB] of each harmonic over time
spectral std computed on the vector composed of the mean of
amplitude [dB] of each harmonic over time
spectral std computed on the vector composed of the rms of amplitude
[dB] of each harmonic over time
mean of the instantaneous spec deviation [amp lin]
mean of the instantaneous spec deviation [amp dB]
mean of the instantaneous spec slope [amp lin]
mean of the instantaneous spec slope [amp dB]
spec fux using instantaneous spec centroid and cgsmax
spec fux using instantaneous spec centroid and cgsmoy
spec fux using instantaneous spec centroid and cgsrms
spec fux using instantaneous spec centroid and cgsi
harmonic spectral deviation
speed of variation of the spectrum
sum of the variations of the instantaneous harmonic from global mean
harmonics
harmonic attack coherence

envelope :
log-attack time from [rms]
log-attack time from [max]
log-attack time from [smoothed rms]
log-attack time from [smoothed max]
efective duration
efective duration [norm by fle length]

81

efective duration [norm by fle length and f0]
efective duration [norm by fle length and T]

Table 3. Percussive descriptors (from Peeters [00])
log-attack time
temporal centroid
temporal std
efective duration
maximum value
ed*cgt
rms value of the power spectrum
rms value of the power spectrum [amp weighting dbA]
rms value of the power spectrum [amp weighting dbB]
rms value of the power spectrum [amp weighting dbC]
spec centroid of the power spec
spec centroid of the power spec [amp weighting dbA]
spec centroid of the power spec [amp weighting dbB]
spec centroid of the power spec [amp weighting dbC]
spec std of the power spec
spec std of the power spec [amp weighting dbA]
spec std of the power spec [amp weighting dbB]
spec std of the power spec [amp weighting dbC]

skewness of the power spec
kurtosis of the power spec
slope of the power spec

82

References

[1] Bitter Music: Collected Journals, Essays, Introductions, and
Librettos, Harry Partch
 University of Illinois Press, 2000

[2] Max at Seventeen, Puckette, Miller.
 Computer Music Journal - Volume 26, Number 4, Winter 2002, pp.
31-43

[3] Te Chandelier: An Exploration in Robotic Musical Instrument
Design, Michael Fabio
 Masters Tesis for MIT Media Lab, 2007

[4] Hybrid Percussion: Extending Physical Instruments Using Sampled
Acoustics, Roberto Mario Aimi
 PhD Dissertation for MIT Media Lab, 2007

[5] Telephonic Telegraph, Elisha Gray
 U.S. Patent #233,345, 1880

[6] Electric Telegraph for Transmitting Musical Notes, Elisha Gray
 U.S. Patent #166,096, 1875

[7] Music-Generating and Music-Distributing Apparatus, Taddeus
Cahill
 U.S. Patent #1,107,261, 1914

[8] Magic Music from the Telharmonium, Reynold Weidenaar
 Te Scarecrow Press, 1995

[9] Electrical Musical Instrument, Laurens Hammond
 U.S. Patent #1,956,350, 1934

[10] Vibrato Apparatus, Laurens Hammond and John M. Hanert
 U.S. Patent #2,260,268, 1946

[11] Magnetic Tape Sound Reproducing Musical Instrument, Harry C.
Chamberlin
 U.S. Patent #2,940,351, 1960

[12] Sound Reproducing System, Harry C. Chamberlin
 U.S. Patent #2,910,298, 1956

[13] Electronic Music Synthesizer, Robert A. Moog
 U.S. Patent #4,050,343, 1977

[14] Tim Hawkinson's Überorgan, Getty Center
 http://www.getty.edu/visit/events/hawkinson.html

[15] League of Electronic Musical Urban Robots
 http://lemurbots.org/

[16] Ensemble Robot
 http://ensemblerobot.com/VideoPages/whirly.shtml

[17] Absolut Quartet
 http://www.absolut.com/absolutmachines

[18] Analytical Methods of Electroacoustic Music, Mary Simoni
 Routledge, 2005

[19] Musimathics, Volume 1: Te Mathematical Foundations of Music,
Gareth Loy
 Te MIT Press, 2006

[20] Open Sound Control Protocol Spec

83

http://www.getty.edu/visit/events/hawkinson.html
http://www.absolut.com/absolutmachines
http://ensemblerobot.com/VideoPages/whirly.shtml
http://lemurbots.org/

http://opensoundcontrol.org/spec-1_0

[21] What is the diference between OSC and MIDI?
http://opensoundcontrol.org/what-diference-between-osc-and-midi

[22] Why Is musical timbre so hard to understand?, Carol L
Krumhansl
In Structure and Perception of Electroacoustic Sound and Music (eds.
S.Nielzen & O Olsson), 1989

[23] An Exploration of Musical Timbre, J.M.Grey, 1975

[24] Tuning, Timbre, Spectrum, Scale, William Sethares
 Springer, 1998

[25] Polyspectral Analysis of Musical Timbre, Shlomo Dubnov, Ph.D,
1996

[26] Timbre Space as a Musical Control Structure, David L. Wessel,
 Rapport Ircam 12/78, 1978

[27] Te Sackbut Blues: Hugh Le Caine, Pioneer in Electronic Music,
Gayle Young
 National Museum Of Science And Technology,1991

[28] Te ZIPI Music Parameter Description Language, Keith McMillen,
David L. Wessel, Matthew Wright
 Published in Computer Music Journal 18:4 (Winter 94)

[29] SeaWave: A System for Musical Timbre Description, Russ
Ethington, Bill Punch
 Computer Music Journal Vol. 18, Issue 1 - Spring 1994

[30] Cross-Cultural Perception & Structure of Music, William H.
Jackson , 1998
 http://cybermesa.com/~bjackson/Papers/xc-music.htm

[31] Te Analytical Language of John Wilkins, Jorge Luis Borges,
 Essay. 1942

[32] JSON Specifcation, http://json.org/

[33] On the Sensations of Tone, Hermann Helmholz, 1863

84

http://json.org/
http://cybermesa.com/~bjackson/Papers/xc-music.htm
http://opensoundcontrol.org/what-difference-between-osc-and-midi
http://opensoundcontrol.org/spec-1_0

	1	Introduction
	2	Electromechanical Musical Instruments
	2.1	Definition
	2.2	Selected Historical Examples
	2.3	Art, Maker Culture and Electromechanical Music
	2.4	Electromechanical Music vs. Electronic Synthesis
	2.4.1	Acoustic Innovation
	2.4.2	Performance: visible creation vs. music from a laptop
	2.4.3	Acoustic Richness: [electro]acoustic vs. digital
	2.4.4	Contribution: new instruments vs. software with new configurations

	2.5 The Barrier
	2.5.1	Example: Absolut Quartet

	3	Nervebox
	3.1	The Big Idea
	3.2	Abstractions and Processes: Evolution of Electronic Music
	3.3	Nervebox Abstraction
	3.3.1	Input Mapper - The Brum
	3.3.2	Internal Music Representation - NerveOSC
	3.3.3	Control Network - TCP/IP
	3.3.4	Output Mappers - The Bellums
	3.3.5	Actuation Control - The Dulla

	3.4	 Detail of NerveOSC
	3.4.1	Structure
	3.4.2	Address Patterns
	3.4.3 Arbitrary Frequencies
	3.4.4	EventIDs
	3.4.5	Timbre

	3.5	Timbre and Representation
	3.5.1	The Negative Definition
	3.5.2	Physical Analysis
	3.5.3	Perceptual Classification
	3.5.4	In Electromechanical Instruments
	3.5.5	Perceptual Classification and Nervebox

	3.6	Nervebox UI
	3.6.1	Mapping Mode
	3.6.2	Debug Mode
	3.6.3	Go Mode
	3.6.4	Example Mapping

	3.7	Implementation — General
	3.7.1	Hardware
	3.7.2	Operating System
	3.7.3	Languages
	3.7.4	Brum Implementation
	3.7.5	Bellum Implementation
	3.7.6	Dulla Implementation
	3.7.7	Nervebox UI Implementation

	3.8	Development Process
	3.8.1 Creating New Mappings
	3.8.2 Creating New Pachinko Modules
	3.8.3 Creating a New Instrument

	4 	Evaluation
	4.1 Measuring Generality, Expressivity, and Fidelity
	4.2 The Chandelier
	4.2.1	Expressive Dimensions of the Chandelier
	4.2.2	Extra Credit: Synthetic Expressive Dimensions of the Chandelier
	4.2.3	Expressivity of Nervebox-based Chandelier controller
	4.2.4 Fidelity of Nervebox-based Chandelier controller
	4.2.5	Conclusion

	4.3 	The Heliphon
	4.3.1	Expressive Dimensions of the Heliphon
	4.3.2	Extra Credit: Synthetic Expressive Dimensions of the Heliphon
	4.3.3	Expressivity of Nervebox-based Heliphon controller
	4.3.4	Fidelity of the Nervebox-based Heliphon controller
	4.3.5	Conclusion

	5	Conclusion
	6	Future: Openness and Community
	Appendix A: Code and Circuits
	A1: example mapping for Chandelier
	A2: definition.py file for Chandelier
	A3: Generic Nervebox Python code for Bellum
	A4: Chandelier-specific Python code for Bellum
	A5: Verilog code for Chandelier Dulla
	A6: Schematic Diagram of Dulla amplifier module

	Appendix B: Timbral Descriptors
	References

